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Abstract
Purpose. Positron emission tomography (PET) image quality can be affected by artifacts emanating
from PET, computed tomography (CT), or artifacts due to misalignment between PET and CT
images. Automated detection of misalignment artifacts can be helpful both in data curation and in
facilitating clinical workflow. This study aimed to develop an explainable machine learning
approach to detect misalignment artifacts in PET/CT imaging. Approach. This study included 1216
PET/CT images. All images were visualized and images with respiratory misalignment artifact
(RMA) detected. Using previously trained models, four organs including the lungs, liver, spleen,
and heart were delineated on PET and CT images separately. Data were randomly split into
cross-validation (80%) and test set (20%), then two segmentations performed on PET and CT
images were compared and the comparison metrics used as predictors for a random forest
framework in a 10-fold scheme on cross-validation data. The trained models were tested on 20%
test set data. The model’s performance was calculated in terms of specificity, sensitivity, F1-Score
and area under the curve (AUC).Main results. Sensitivity, specificity, and AUC of 0.82, 0.85, and
0.91 were achieved in ten-fold data split. F1_score, sensitivity, specificity, and AUC of 84.5 vs 82.3,
83.9 vs 83.8, 87.7 vs 83.5, and 93.2 vs 90.1 were achieved for cross-validation vs test set, respectively.
The liver and lung were the most important organs selected after feature selection. Significance.We
developed an automated pipeline to segment four organs from PET and CT images separately and
used the match between these segmentations to decide about the presence of misalignment artifact.
This methodology may follow the same logic as a reader detecting misalignment through
comparing the contours of organs on PET and CT images. The proposed method can be used to
clean large datasets or integrated into a clinical scanner to indicate artifactual cases.

1. Introduction

The advent of positron emission tomography (PET)/computed tomography (CT) was a great leap forward in
clinical oncology, enabling non-invasive, in-vivo, and quantitative evaluation of different pathologies
(Maldonado et al 2007). The increased uptake of 18F-fluorodeoxyglucose (18F-FDG) in cancer cells led to
rapid adoption of 18F-FDG PET/CT in clinical oncology for diagnosis, staging/restaging, and monitoring of
treatment response for various cancer types (Czernin et al 2007). The combination of PET with CT enforces
the synergistic effect of integrating anatomical, biological, and functional information and provides the
necessary anatomical data to correct the PET signal for photon attenuation within the patient’s body
(Kinahan et al 1998). However, CT-based attenuation correction (CTAC) can introduce artifacts into the
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reconstructed PET images, reducing overall image quality and quantitative accuracy, and increasing the risk
of misinterpretation and erroneous clinical decision-making (Shiri et al 2023a).

The artifacts introduced to PET images might originate from artifacts present in CT images translating to
PET through the CTAC procedure (e.g. artifacts due to the presence of contrast agents, truncation, and
metallic objects), or artifacts arising from the misalignment and mismatch between PET and CT images
(Cook et al 2004, Blodgett et al 2011). Focusing on the latter, sequential scanning, and different duration of
the scans for both imaging modalities leads to capturing a snapshot of the motion by fast CT scan, and an
average of the motion reflected in the slow PET scan (Kyme and Fulton 2021). Voluntary or involuntary
motion, including bulk movement of the head and limbs, or muscular movement of the spine or jaw can be
simple, such as translations and rotations or include more complex movements, such as twisting of the spine
(Montgomery et al 2006, Gu et al 2010). Involuntary movements are common among pediatric, elderly, or
demented patients and can be managed using fixation devices to position patients (Beyer et al 2005) or
corrected post-acquisition by registering PET and CT images (Yang et al 2020, Shiri et al 2023a). The
involuntary motions on the other hand involve cardiac motion (Lamare et al 2014), thoracic and abdominal
movements due to respiration (Visvikis et al 2006), and peristalsis or bowel movements (Nakamoto et al
2004). It can also include involuntary movements of the whole body or specific muscles resulting from
different neurological conditions (Dinelle et al 2006). Among these, respiratory motion is of importance due
to the prevalence and implications of its induced artifacts.

Modern multi-ring CT scanners with helical acquisition mode are fast enough to perform scans during a
full-inspiration breath-hold (Kyme and Fulton 2021). In contrast, PET is acquired during tidal respiration
with∼3 min per bed position. Unlike CT, it does not reflect a snapshot position of thoracic and abdominal
organs (Kinahan et al 1998, Blodgett et al 2011). This misalignment between the two imaging modalities
increases blurring and reduces the contrast of organs and lesions around the lung-diaphragm interface in the
CTAT PET image (Xu et al 2011). Noticeable anomalies appear particularly in two regions: First, in the
interface of the liver and lung, the upper part of the liver in the PET image may appear in the bases of the
lungs in the CT image, resulting in a curvilinear cold artifact in the reconstructed PET image. Second, in the
region between the lung and left ventricle, the uptake of the left ventricle in the PET image may overlap the
lung tissue in the CT image (Sun and Mok 2012). Previous studies show more than 40% of the studies in the
thoracic region suffer from this misalignment between PET and CT images (Gould et al 2007, Shiri et al
2023b).

Respiratory motion artifacts would be clinically significant when suspicious lesions appear in the
diaphragmatic regions, within or adjacent to an artifact. Lesions, partially or wholly can be overlooked,
assigned to an incorrect organ (Blodgett et al 2011), or undergo inaccurate quantification (McCall et al 2010,
Geramifar et al 2013). McCall et al reported up to 35% and 10% quantification errors due to patient
movement for tumors of 5 and 10 mm size, respectively (2010). In another study, Erdi et al observed up to
30% change in standardized uptake value (SUV), 9 mm error in location and 21% size shrinkage of lung
lesions in PET images resulting from respiratory motion (Erdi et al 2004). A phantom study performed by
Pevsner et al has shown up to 75% underestimation of the maximum activity concentration in surrogate
lung lesions (Pevsner et al 2005). These errors can also propagate to further stages of patient’s treatment,
such as focal radiation therapy with dose escalation when PET is used to derive tumor volume (Lamare et al
2022). The aforementioned errors result in misdiagnosis and incorrect decision-making by clinicians,
adversely impacting patients’ prognosis. A number of solutions have been suggested over the past three
decades to correct for respiratory motion, mainly relying on either breathing instructions to patients or on
external devices, such as motion tracking devices to enable gated PET acquisitions. However, factors such as
the trade-off between patient’s radiation dose and comfort, scanning duration, complexity, workload, cost,
and computational burden have prevented these techniques from widespread adoption in the clinic (Lamare
et al 2022). The recent emergence of data-driven motion compensation approaches is also driving the field
and resulted in a number of innovative developments (Kyme and Fulton 2021). On the other hand, fully
automated identification of respiratory misalignment artifact (RMA) artifacts is of great value, as it can alert
the physicians to conduct their interpretation by analyzing the non-AC image. Furthermore, in severe cases it
can be used to call for instant reperforming of image acquisition of a single bed covering the artifacted region.

Nowadays, we are experiencing a paradigm shift in medicine, driven by the rapid and widespread
adoption of artificial intelligence (AI) for various tasks (Zaidi and El Naqa 2021). AI applications have spread
to every corner of medicine, specifically medical imaging, encompassing image acquisition, reconstruction,
data corrections, segmentation, as well as the use of medical images in diagnosis, prognosis and outcome
prediction (Langlotz et al 2019, Sanaat et al 2021, Salimi et al 2023a, 2024a). The ultimate bridge between
research and real-life application of AI in medicine relies on two key factors: generalizability (Willemink et al
2020) and explainability (Reddy 2022). Currently, access to data is commonly limited to patient populations
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with a particular ethnicity from a single institution and geographical region. This often results in models
with excellent performance on own dataset, but lower performance across other datasets (Soffer et al 2019).
Heterogenous, vast, and inclusive curated datasets with high-quality images and labels are essential for
developing generalizable and robust models suitable for commercialization and clinical exploitation (Park
and Han 2018). However, available large datasets often prioritize quantity over quality and are sourced from
multiple origins, each collecting data for specific applications. This frequently results in low-quality images,
which can diminish the overall performance of the models trained on them or, in severe cases, likely leading
to erroneous outcomes (Mayer-Schönberger and Ingelsson 2018, Redman 2018). Furthermore, curating
large datasets is time-consuming and labor-intensive, with researchers spending most of their time on this
task (van Ooijen 2019). This highlights the demand for automated AI-driven algorithms to conduct
task-specific quality assurance and curate large datasets prior to enrollment in further developments (Amini
et al 2023, Shiri et al 2023a, Salimi et al 2024b).

Another factor preventing acceleration of commercialization and widespread adoption of AI models in
clinical setting is non-explainability and lack of transparency of most of the developed models (Amann et al
2020). As evidence-based decision making is one of the main principles of precision medicine, physicians
show reluctancy and hesitation in using black-box AI-based models in daily practice (Kundu 2021, Yoon et al
2022). Explainable AI have become a hot topic in recent years, paving the way for deployment of AI in daily
clinical practice (Reddy 2022). In this work, we introduce a fully automated AI-driven model to identify
respiratory motion artifact in 18F-FDG PET images using an explainable and transparent methodology. The
proposed model can be used in daily practice to instantly identify images suffering from RMA artifact to
prevent erroneous interpretations, and/or call for second image acquisition/reconstruction. Moreover, this
fully automated model can be used to curate large datasets and deliver clean thoracic/abdominal datasets to
be used further in the development of AI-driven models for various clinical tasks.

2. Material andmethods

2.1. Dataset
A total number of 1216 PET/CT images were included in this study acquired on two clinical scanners
(Siemens Healthineers, Knoxville, USA). Table 1 summarizes the patient population demographic
parameters as well as acquisition and reconstruction parameters.

First, PET/CT images were visually labeled for the presence of respiratory misalignment. Then, four
anchor moving organs were delineated using either PET or CT images as input. The agreement between
segmentation masks was estimated using common segmentation evaluation metrics, a feature selection
algorithm was used to select the most important features, then the selected metrics were fed to a random
forest machine learning model to predict the presence or absence of respiratory motion artifact in PET
images. Figure 1 summarizes the steps followed in this study.

2.2. Visual assessment and labeling of PET/CT images
All PET/CT image pairs were visualized using in house developed MatLab 2022-based software and were
classified into two categories corresponding to images presenting with misalignment artifact (RMA) and
without artifact (No RMA) depending on whether respiratory misalignment between PET and CT in the
chest/abdomen interval region is present or not. The reader checked three images, including non-corrected PET,
attenuation and scatter corrected PET, and CT side by side and using fusion of each of these two images with
toggling between modalities was possible. In clinical setting, all three images are visualized together to check the
presence of RMA. The labels were recorded for the next steps.

2.3. Organ segmentation
We used previously trained nnU-Net (Isensee et al 2021) deep learning models to segment four organs,
including the liver, heart, spleen, and lungs on both PET and CT images. Two different models were
available, a model that uses non-corrected PET (PET-NC) images as input, called PET-nnU-Net (Salimi et al
2024c) generating liver-PET, spleen-PET, heart-PET, and lungs-PET segmentations, and a second model
using CT images as input called CT-nnU-Net (Salimi et al 2023b) generating liver-CT, spleen-CT, heart-CT,
and lungs-CT segmentations. The two models were used to generate organ segmentation masks. The models
were trained in a five-fold data split strategy and all five folds were inferenced on each corresponding image,
i.e. five CT segmentation model models were ensembled on each CT image and five PET segmentation
models were ensembled on each PET image. It should be emphasized that PET-NC images were converted to
SUV units before using them as input to PET-nnU-Net models. Details about the performance of
PET-nnU-Net and CT-nnU-Net models can be found in the above-mentioned references. Supplementary
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Table 1. Patient demographics and PET/CT scanning parameters of clinical studies used in this study.

Group No RMA RMA

Numbers # 553 663
Pitch Factor 0.8 0.8
kVp 109.1± 11.3 (100.0–140.0) 109.1± 11.0 (100.0–140.0)
Manufacturer Siemens Biograph Vision, Siemens

Biograph mCT
Siemens Biograph Vision, Siemens
Biograph mCT

CTDIvol (mGy) 4.28± 2.43 (0.30–20.85) 4.22± 2.05 (0.79–20.21)
Age (Years) 59.9± 17.1 (18.0–93.0) 62.1± 15.642 (18–96.0)
Gender Female: 279, Male: 249, Unknown:

25
Female: 373, M: 273, Unknown: 17

Patient Size (m) 1.67± 0.13 (1.44–2.0) 1.67± 0.12 (1.51–1.97)
Patient Weight (Kg) 69.4± 16.2 (48.7–164.0) 69.6± 15.9 (51.3–147.4)
Tube Current (mA) 130.6± 53.2 (26.4–514.1) 129.3± 45.4 (32.0–361.3)
PET acquisition time/bed (sec) 150± 49 (97–648) 152± 48 (75–658)
PET Reconstruction Method OSEM3D+ PSF+ TOF 5i5s,

OSEM3D+ TOF 2i21s
OSEM3D+ PSF+ TOF 5i5s,
OSEM3D+ TOF 2i21s

figure 1 shows an example of all organs that can be segmented by both CT-nnU-Net and PET-nnU-Net
models. However, the above-mentioned four anchor organs were selected for the next steps.

2.4. Metrics extraction
Two PET-based and CT-based segmentation masks were compared using common image segmentation
evaluation metrics, including the Dice coefficient, Jaccard index, mean surface distance (MSD), Hausdorff
distance (HD), and segment volume difference (mL) between the two segmentation masks. In other words,
segmentation metrics were calculated for liver-PET vs liver-CT, spleen-PET vs spleen-CT, heart-PET vs
heart-CT, and lungs-PET vs lungs-CT. In addition, the overlap between the lung-CT segmentation and
liver-PET masks (Lung-CT/Liver-PET overlap volume) and overlap between lung-CT and spleen-PET masks
(lung-CT/spleen-PET overlap volume) were extracted by implementing image processing algorithms
representing the misalignment between PET and CT images. In total, 22 metrics were extracted and used in
the following steps.

2.5. Feature selection and Random Forest machine learning in 10-fold cross-validation
A total of 1216 images were split randomly into cross-validation (80%, 972 cases) and test (20%, 224 cases)
sets. The cross-validation set was used to train models in 10-fold data split, and the trained models were
tested on 244 separate unseen test set. In the next step, an Analysis of Variance (ANOVA) feature selection
method was used to sort the 22 features by importance and removing the less correlated features to prevent
overfitting. It should be noted that feature selection was performed using only the cross-validation set to
prevent data leakage. The ten most important features were selected and fed into the model in the next steps
of training random forest machine learning models.

A random forest machine learning model was implemented using scikit-learn python library (Buitinck
et al 2013) with the following training parameters: 10-fold random stratified data split, number of estimators
equal to 100, maximum depth equal to 10. The minimum number of samples required to split an internal
node equal to 1 and minimum number of samples required to be at a leaf node equal to 5. At every fold, 90%
of the data were used as training whereas 10% were used as unseen test set. The whole data were used as test
once during 10-fold cross-validation data split. Ten different models were trained and the training
hyperparameters saved and used for the next step, i.e. testing on test set. All 10 models were inferenced on
the unseen test-set and the decisions were ensembled by averaging the probabilities indicated by every 10
models. The decisions taken by the model trained on each fold were recorded and compared with the
ensembled model.

One limitation of the suggested approach could be the lack of all four organs PET and CT segmentations,
although the PET-nnU-Net and CT-nnU-Net models generate all four organs in a single inference, the
end-user might have access to a limited number of segmented organs. To evaluate the performance of the
proposed method using limited organ segmentation masks, we trained multiple RF models with the same
hyperparameters using a single organ information in 6 various combinations i.e. input #1: lungs-CT vs
lungs-PET metrics, input #2: liver-CT vs liver-PET metrics, input #3: spleen -CT vs spleen -PET metrics,
input #4: heart -CT vs heart -PET metrics, input #5: liver-CT vs liver-PET metrics+ lungs-CT vs lungs-PET
metrics+ lung-CT/liver-PET overlap volume, and input #6: spleen-CT vs spleen-PET metrics+ lungs-CT vs
lungs-PET metrics+ lung-CT/spleen -PET overlap volume. Table 2 summarizes the adopted metrics.
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Figure 1.Workflow and processing steps followed in this study protocol.

Table 2.Metrics used for each included combination.

Number Included metrics

Input #1 lungs-CT vs lungs-PET metrics
Input #2 liver-CT vs liver-PET metrics
Input #3 spleen-CT vs spleen-PET metrics
Input #4 heart-CT vs heart-PET metrics
Input #5 liver-CT vs liver-PET metrics+ lungs-CT vs lungs-PET metrics+ lung-CT/liver-PET overlap volume
Input #6 spleen-CT vs spleen-PET metrics+ lungs-CT vs lungs-PET metrics+ lung-CT/spleen-PET overlap volume

2.6. Evaluation strategy
The ML model decisions and probabilities were recorded and used to evaluate the performance of the model
in terms of sensitivity, specificity, F1-score, accuracy, balanced accuracy (BAC, average of sensitivity and
specificity) and area under the curve (AUC). Finally, confusion matrix and receiver operating curve (ROC
curve) were drawn for model evaluation. The evaluation was performed for both cross-validation and test
sets.
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Table 3. Comparison of the 22 image segmentation metrics between two classes (No RMA vs RMA). MSD: Mean Surface Distance. HD:
Hausdorff distance, VD: Volume difference.

Group No RMA RMA

Spleen Dice 0.852± 0.123 0.727± 0.208
Spleen Jaccard 0.756± 0.136 0.605± 0.212
Spleen MSD (mm) 3.6± 13.5 7.1± 20.2
Spleen HD (mm) 11.3± 25.5 20.7± 32.6
Spleen VD (mL) 4.8± 46.3 20.8± 60.2
Heart Dice 0.924± 0.042 0.887± 0.053
Heart Jaccard 0.861± 0.053 0.8± 0.077
Heart MSD (mm) 2.7± 4.7 3.8± 5.3
Heart HD (mm) 19.9± 79.6 23.9± 80.2
Heart VD (mL) 1.1± 47.9 −22.8± 67.2
Lungs Dice 0.934± 0.027 0.904± 0.038
Lungs Jaccard 0.877± 0.04 0.828± 0.058
Lungs MSD (mm) 1.7± 1.2 2.7± 1.5
Lungs HD (mm) 7.2± 21.1 13.6± 9.1
Lungs VD (mL) −28.6± 165.8 −313.7± 336.4
Liver Dice 0.927± 0.034 0.862± 0.074
Liver Jaccard 0.865± 0.049 0.763± 0.102
Liver MSD (mm) 2.1± 1.4 4.2± 2.9
Liver HD (mm) 7.956± 7.4 17.15± 15.2
Liver VD (mL) 15.4± 118.9 142.9± 162.7
Lung-CT/Spleen-PET Overlap Volume (mL) 9.9± 16.6 39.3± 37.9
Lung-CT/Liver-PET Overlap Volume (mL) 35.5± 49.0 163.5± 118.8

3. Results

Of the 1216 images, 553 images (∼45%) belonged to No RMA class whereas the rest, i.e. 663 images (∼ 55%)
belonged to the RMA class. Table 3 compares the measured 22 metrics between the two groups (RMA and
No RMA).

Figure 2 shows an example of PET and CT segmentations for a case labeled as No RMA depicting a good
alignment between the two segmentation masks showing excellent performance of both CT-nnU-Net and
PET-nnU-Net models on the corresponding images.

Figure 3 shows an example of a PET/CT image labeled as RMA in visual assessment and the
corresponding segmentations generated using PET and CT images as input to the models. Both models’
performance was excellent and could detect the misalignment between two segmentations. The
lung-CT/liver-PET overlap and lungs-CT/spleen-PET overlap segmentation visualization is also depicted in
figure 3.

3.1. Feature selection results
ANOVA feature selection method sorted the features by importance and the ten most correlated features of
lung-CT/liver-PET overlap volume, liver Jaccard, liver Dice, lungs’ volume difference, lungs-CT/spleen-PET
overlap, lungs Jaccard, liver MSD, heart Jaccard, liver volume difference, and lungs’ Dice were selected for
training the ML model.

Figure 4 shows the Gaussian fit to two selected metrics of heart HD and lungs-CT/liver-PET overlap
volume showing the difference between the two groups (RMA and No RMA). As presented in figure 4, there
is a good match between heart HD between the two groups, while lungs-CT/liver-PET overlap volume can
separate the two groups. The remaining Gaussian fits for all 22 metrics are presented in supplementary
figure 2.

3.2. Classification results
Cross-validation. Random forest F1_score, sensitivity, specificity, precision, accuracy, BAC, and AUC of 84.5,
83.9, 87.7, 85.1, 86.0, 85.8, and 93.2, respectively, on average were achieved over all 10-fold cross-validation
data split. Figure 5 shows the confusion matrix and ROC curve for the RF model.

All classification results by details for 10-folds cross-validation are summarized in table 4 showing a
consistent and robust performance of RF model over 10-folds. The cross-validation confusion matrix and
ROC curve for every single fold can be found in supplementary figures 3 and 4, respectively.
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Figure 2. Representative PET/CT image labeled as No RMA. Top row: coronal slices of PET images and PET-nnU-NET
segmentation output along with corresponding CT coronal slices and CT-nnU-Net segmentation output. Bottom row: (A)
PET-nnU-NET 3D rendered image, (B) CT-nnU-Net 3D rendered image, (C) Liver-PET and Liver-CT 3D overlay rendered
image, and (D) Lungs-PET and Lungs-CT 3D overlay rendered image.

3.3. Separate unseen test set evaluations
F1_score, sensitivity, specificity, precision, accuracy, BAC, and AUC on separate unseen dataset were 82.3,
83.8, 83.5, 80.9, 83.6, 83.6, and 90.1, respectively. Figure 6 presents the ROC curve and confusion matrix on
the test set for the ensembled classification results. The detailed results of inference for each of the 10 models
are summarized in table 5 showing that the performance of all folds were comparable while the ensembled
decision specificity and sensitivity were more balanced with a higher BAC and closer sensitivity and
specificity. The separate unseen test confusion matrix and ROC curves are presented in supplementary
figures 5 and 6.

As reported by Nakamoto et al (2004), bowel motion could cause under/overestimation of SUV due to
misalignment between PET and CTAC images. Figure 7 shows a PET/CT image labeled with severe
respiratory mismatch between PET and CT images resulting from respiratory motion impacting the
abdominal region. The abdominal organs including the colon and kidney have moved, and this movement
can be captured by the approach we implemented to detect chest/abdomen interval motion.

Supplementary table 1 summarizes performance results of models using a limited number of
segmentation masks available from input #1 to input #6 for both cross-validation and test set data. The
highest accuracy was achieved using input #2 (liver segmentation on PET and CT) and input #5 (liver and
lung segmentations on PET and CT) with accuracies of 83.5 and 85.1 on cross-validation set and 78.6 and
80.8 on the separate unseen test set.

Figure 8 shows another possible application the proposed approach to detect head motion and
misalignment between PET and CT images.

4. Discussion

Misalignment between PET and CT images could cause attenuation and scatter correction errors, resulting in
PET quantification bias through SUV under/overestimation, even missing lesions in the affected areas (Shiri
et al 2023a). This misalignment could be due to either voluntary or involuntary respiratory, bowel, and
cardiac movements. Detecting this kind of misalignment could be beneficial in clinical practice as well as in
data curation approaches for large data management in retrospective machine learning and deep learning
tasks. A high prevalence of respiratory misalignment was observed in our study, which is in agreement with
previous studies (Shiri et al 2023b). Salimi et al (2024c) reported higher performance in 68Ga-PSMA PET
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Figure 3. PET/CT and segmentation masks of an image with RMA. Top row: coronal slices of PET image and PET-nnU-Net
output next to the CT image and CT-nnU-Net output. Bottom row: (A) PET-nnU-NET 3D rendered image, (B) CT-nnU-Net 3D
rendered image, (C) Liver-PET and Liver-CT 3D overlay rendered image, and (D) lungs-PET and lungs-CT 3D overlay rendered
image. The yellow arrows indicate area of misalignment between lungs-CT and lungs-PET segmentation masks. (E) Lung-CT
(green) overlap mask with spleen-PET (dark blue) and liver-PET (res) segmentations. (F) Overlap visualization on PET image.
(G) 3D rendered image of PET image with the overlap segmentations as mask. (H) Lung-CT, liver-PET, and spleen-PET 3D
visualization.

Figure 4. Example of Gaussian fit for two selected metrics: heart HD and lungs-CT/liver-PET overlap volume, demonstrating the
ability of the latter as a good separator between the two groups.

organ segmentation compared to Yazdani et al (2024) study, likely due to excluding PET/CT studies
presenting with misalignment from training data in the former study.

Respiratory motion artifact could be clinically significant when suspicious lesions are present in the
diaphragmatic regions, within or adjacent to an artifact. Lesions, partially or wholly can be overlooked,
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Figure 5. ROC curve and normalized confusion matrix for cross-validation data set.

Table 4. Summary of 10-fold cross-validation results for each fold.

Fold # F1_score Sensitivity Specificity Precision Accuracy BAC AUC

0 84.8 86.7 84.9 83.0 85.7 85.8 92.7
1 78.2 75.6 84.9 81.0 80.6 80.2 90.1
2 82.8 81.8 86.8 83.7 84.5 84.3 91.8
3 82.2 84.1 83.0 80.4 83.5 83.6 93.7
4 80.9 81.8 83.0 80.0 82.5 82.4 90.3
5 88.6 88.6 90.6 88.6 89.7 89.6 94.8
6 85.4 79.5 94.3 92.1 87.6 86.9 93.1
7 84.1 84.1 86.8 84.1 85.6 85.4 94.9
8 88.4 86.4 92.5 90.5 89.7 89.4 96.2
9 89.9 90.9 90.6 88.9 90.7 90.7 95.0
Overall 84.5 83.9 87.7 85.1 86.0 85.8 93.2

Figure 6. Confusion matrix and ROC curve for ensembled models on the 20% test set.

assigned to an incorrect organ (Blodgett et al 2011) or suffer from inaccurate quantification (McCall et al
2010, Geramifar et al 2013). Previous studies developed methodologies that can score overall image quality,
reflecting a combination of the presence of image artifacts, noise and contrast patterns, as well as diagnostic
confidence employing deep learning algorithms (Hopson et al 2020, Amini et al 2023, Qi et al 2023, Schwyzer
et al 2023, Zhang et al 2023). They used PET images or processed PET volumes, such as maximum intensity
projections (MIPs) as input to a deep learning classifier to assess image quality by nuclear medicine
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Table 5. Detailed results of 10 models trained on 10-folds inferenced on the test set.

Fold # F1_score Sensitivity Specificity Precision Accuracy BAC AUC

0 81.9 83.8 82.7 80.2 83.2 83.2 89.8
1 79.6 81.1 81.2 78.3 81.1 81.1 90.4
2 80.3 82.9 80.5 78.0 81.6 81.7 89.9
3 81.8 82.9 83.5 80.7 83.2 83.2 89.9
4 79.8 80.2 82.7 79.5 81.6 81.4 90.0
5 81.6 83.8 82.0 79.5 82.8 82.9 89.7
6 80.4 81.1 82.7 79.6 82.0 81.9 89.8
7 80.3 82.9 80.5 78.0 81.6 81.7 89.6
8 82.1 84.7 82.0 79.7 83.2 83.3 89.7
9 79.8 82.0 80.5 77.8 81.1 81.2 90.1
Ensembled 82.3 83.8 83.5 80.9 83.6 83.6 90.1

Figure 7. Coronal slices of CT and PET images as well as 3D rendered images. Top row: kidneys-CT (yellow) and kidneys-PET
(blue) segmentation and the rendered 3D image showed the displacement of the kidneys between the two imaging modalities.
Bottom row: Colon-CT (blue) and Colon-PET (dark red) segmentation overlay on coronal slices as well as 3D rendered display of
organ segmentations depicting the changes in colon position.

physicians. However, the black box nature of deep learning makes the models less reliable and explainable.
Our study focused on a single misalignment artifact using an explainable approach to detect the mismatch
artifact in the chest/abdomen interval. We followed the same logical steps humans follow to detect
misalignment between PET and CT images through delineation of four anchor moving organs in the
thorax/abdomen region. Thanks to the very robust nnU-Net pipeline, we had access to CT-nnU-Net and
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Figure 8. Brain PET/CT images. The patient moved his head between the two acquisitions. Blue: Brain-CT, Red: Brain-PET.

PET-nnU-NET models. However, none of the models is 100% accurate and we expect errors depending on
the model and the selected organs. Dice coefficients of 92 vs 97, 82 vs 96, 93 vs 97, and 91 vs 94 were reported
for the liver, spleen, lungs, and heart PET-nnU-Net vs CT-nnU-Net, respectively. CT-nnU-Net (Salimi et al
2023b) model performance was superior to PET-nnU-Net model (Salimi et al 2024c) as reported earlier, and
as such, the errors in both model segmentations were expected to overlap between the two groups (RMA and
No RMA) as shown in figure 4 and supplementary figure 2. The Dice coefficient between organ-CT and
organ-PET segmentation masks is due to errors in CT-nnU-Net and PET-nnU-Net models and the
misalignment between PET and CT images. Although there is significant difference between the values
summarized in table 3 according to Wilcoxon test (p-value< 0.05), a model trained using only single organ
segmentation metrics underperformed the final model using the metrics selected after features selection on
all 22 metrics. The best test set accuracy using only a single organ information was the use of liver
information resulting in 78.3 accuracy. Adding lungs segmentation improved the accuracy to 80.7 which is
still lower than using the 10 selected metrics by ANOVA test. To tackle this limitation, we included multiple
metrics extracted from four anchor moving organs as well as the lungs-CT/liver-PET and
lungs-CT/spleen-PET overlap volume to improve the decision-making performance. We used a random
forest machine learning model to classify images into two groups using the selected metrics in a 10-fold data
split strategy to eliminate the randomness in data split and tested the trained models on 20% of data as test
set. We ensembled all 10 trained models on the test set to achieve more robust results on a separate unseen
case and prevent wrong decisions by an overfitted model in a single fold. This method can be improved by
providing a more robust segmentation model on both PET and CT imaging modalities and larger
multi-centric studies. In terms of performance, our model performed reasonably well in both
cross-validation and separate unseen test sets with accuracies higher than 83% and an AUC more than 90%.

Misalignment could cause attenuation and scatter correction errors. Besides, organ segmentations
generated by CT images as a common automated organ segmentation approach in hybrid imaging are not
well aligned with the real molecular information on PET images in case of mismatch, which can cause errors
in time activity curve calculations and estimation of time integrated activities and organ absorbed doses for
personalized radiation dosimetry, not only in the chest/abdomen interval and in moving abdominal regions
as shown in figure 7. The proposed methodology could be used to detect misalignment in other organs, such
as the colon and brain. Involuntary movement was reported for lung, spleen, heart, and liver up to 22 mm
(Giraud et al 2001, Clifford et al 2002, Harada et al 2002, McLeish et al 2002, Allen et al 2004, Brandner et al
2006), the pancreas (Feng et al 2009), and kidneys (Brandner et al 2006, Yamashita et al 2014). We have
tested our proposed methodology only on 18F-FDG images emanating from a single clinical center. The
applicability of this pipeline should be evaluated on other compounds and multicentric datasets.

One of the limitations of our study is that we considered visual labeling, which is the only available
option in clinical setting, as the reference label for presence of artifacts. However, our approach provides
access to volume changes in liver, spleen, and lung as a quantitative metric to evaluate the extent of
misalignment as well as the segmentation mask, showing differences between lungs-PET and lungs-CT
masks as presented in figures 3(C)–(E). The user might check the segmentation mask showing the changes in
size, position, and shape of organs in PET and CT images.

5. Conclusion

We developed a fully automated explainable methodology to detect misalignment between PET and CT
images in the chest/abdomen interval region using a multi-step deep learning-based segmentation and
random forest machine learning pipeline that can be used in clinical setting to identify cases suffering from
misalignment artifacts and in retrospective data curation on large datasets for deep learning applications.
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The advantage of our approach is the use of explainable, easy to compute, and clinically relevant information
such as volume change and Dice coefficient in the decision-making process. More accurate and robust PET
an CT organ segmentation models would enhance the reliability of the proposed approach.
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