
Vol.:(0123456789)

European Journal of Nuclear Medicine and Molecular Imaging 
https://doi.org/10.1007/s00259-024-06805-8

ORIGINAL ARTICLE

The role of biomarkers and dosimetry parameters in overall 
and progression free survival prediction for patients treated 
with personalized 90Y glass microspheres SIRT: a preliminary machine 
learning study

Zahra Mansouri1 · Yazdan Salimi1 · Ghasem Hajianfar1 · Nicola Bianchetto Wolf1 · Luisa Knappe1 · Genti Xhepa2 · 
Adrien Gleyzolle2 · Alexis Ricoeur2 · Valentina Garibotto1,3 · Ismini Mainta1 · Habib Zaidi1,4,5,6 

Received: 13 March 2024 / Accepted: 17 June 2024 
© The Author(s) 2024

Abstract
Background  Overall Survival (OS) and Progression-Free Survival (PFS) analyses are crucial metrics for evaluating the 
efficacy and impact of treatment. This study evaluated the role of clinical biomarkers and dosimetry parameters on survival 
outcomes of patients undergoing 90Y selective internal radiation therapy (SIRT).
Materials/Methods  This preliminary and retrospective analysis included 17 patients with hepatocellular carcinoma (HCC) 
treated with 90Y SIRT. The patients underwent personalized treatment planning and voxel-wise dosimetry. After the proce-
dure, the OS and PFS were evaluated. Three structures were delineated including tumoral liver (TL), normal perfused liver 
(NPL), and whole normal liver (WNL). 289 dose-volume constraints (DVCs) were extracted from dose-volume histograms 
of physical and biological effective dose (BED) maps calculated on 99mTc-MAA and 90Y SPECT/CT images. Subsequently, 
the DVCs and 16 clinical biomarkers were used as features for univariate and multivariate analysis. Cox proportional hazard 
ratio (HR) was employed for univariate analysis. HR and the concordance index (C-Index) were calculated for each feature. 
Using eight different strategies, a cross-combination of various models and feature selection (FS) methods was applied 
for multivariate analysis. The performance of each model was assessed using an averaged C-Index on a three-fold nested 
cross-validation framework. The Kaplan-Meier (KM) curve was employed for univariate and machine learning (ML) model 
performance assessment.
Results  The median OS was 11 months [95% CI: 8.5, 13.09], whereas the PFS was seven months [95% CI: 5.6, 10.98]. 
Univariate analysis demonstrated the presence of Ascites (HR: 9.2[1.8,47]) and the aim of SIRT (segmentectomy, lobec-
tomy, palliative) (HR: 0.066 [0.0057, 0.78]), Aspartate aminotransferase (AST) level (HR:0.1 [0.012–0.86]), and MAA-
Dose-V205(%)-TL (HR:8.5[1,72]) as predictors for OS. 90Y-derived parameters were associated with PFS but not with OS. 
MAA-Dose-V205(%)-WNL, MAA-BED-V400(%)-WNL with (HR:13 [1.5–120]) and 90Y-Dose-mean-TL, 90Y-D50-TL-Gy, 
90Y-Dose-V205(%)-TL, 90Y-Dose- D50-TL-Gy, and 90Y-BED-V400(%)-TL (HR:15 [1.8–120]) were highly associated with PFS 
among dosimetry parameters. The highest C-index observed in multivariate analysis using ML was 0.94 ± 0.13 obtained from 
Variable Hunting-variable-importance (VH.VIMP) FS and Cox Proportional Hazard model predicting OS, using clinical 
features. However, the combination of VH. VIMP FS method with a Generalized Linear Model Network model predicting 
OS using Therapy strategy features outperformed the other models in terms of both C-index and stratification of KM curves 
(C-Index: 0.93 ± 0.14 and log-rank p-value of 0.023 for KM curve stratification).
Conclusion  This preliminary study confirmed the role played by baseline clinical biomarkers and dosimetry parameters in 
predicting the treatment outcome, paving the way for the establishment of a dose-effect relationship. In addition, the feasi-
bility of using ML along with these features was demonstrated as a helpful tool in the clinical management of patients, both 
prior to and following 90Y-SIRT.
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Introduction

Liver cancer is one of the most common cancers world-
wide, with a substantially increasing incident rate. Hepa-
tocellular carcinoma (HCC), in particular, stands out as 
a leading contributor to cancer-related mortality [1, 2]. 
Selective internal radiation therapy (SIRT) through intra-
hepatic arterial injection of 90Y microspheres has been 
used for several decades as a treatment option [3, 4]. The 
safety and effectiveness of SIRT for primary and meta-
static liver cancer with promising post-therapy overall 
survival (OS) is evident [5, 6]. The treatment has dem-
onstrated more effective results by developing personal-
ized dosimetry [7]. The goal of the treatment is delivering 
a lethal absorbed dose to the tumors while sparing the 
healthy liver tissue by tailoring the absorbed dose values 
to each specific individual [7–10].

The SIRT procedure is always simulated by similarly 
injected technetium-99 (99mTc) macro aggregated albumin 
(MAA) to perform a pre-therapy scan (planar and SPECT/
CT). The main objectives are to identify patients with high 
lung shunt and/or gastrointestinal shunt, who are contrain-
dicated to SIRT, and recently to perform personalized 
treatment planning and pre-therapy dosimetry [7, 10, 11].

After therapy, the patients undergo follow-up imaging, 
including multiphasic contrast-enhanced CT or MRI and 
18F-FDG PET/CT to evaluate the response to treatment. 
The response is reflected in changes in total lesion glycoly-
sis measured on follow-up 18F-FDG PET, as well as tumor 
response as assessed by different versions of Response 
Evaluation Criteria in Solid Tumors (RECIST) [12–17]. 
The primary clinical objectives of follow-up imaging are 
the evaluation of tumor local control and early identifi-
cation of non-responders to the treatment. The aim is to 
enhance the decision-making process. Nonetheless, the 
ultimate endpoint is the appraisal of overall survival (OS) 
[17–19].

Many institutions across the world utilize biomarkers, 
such as baseline tumor stage, liver function, tumor mark-
ers and performance status as the cornerstones for prog-
nostication and survival assessment and making decisions 
for treatment options of an individual accordingly [20]. 
The OS and progression free survival (PFS) of patients 
undergoing 90Y SIRT in its different aspects, using these 
biomarkers has been evaluated in previous studies [21–27].

Nowadays as dosimetry for 90Y-SIRT patients advances, 
specifically with developing personalized dosimetry, 
absorbed dose thresholds are used for treatment plan-
ning and treatment verification. These thresholds, known 
as dose-volume constraints (DVCs) to the tumor and 
organs at risk (OAR), were largely derived from exter-
nal beam radiotherapy (EBRT) practices. However, due 

to significant clinical variations in radiation quality, dose 
rate, and other factors between EBRT and SIRT, the bio-
logical responses and implications of these two treat-
ments is different [28–30]. Consequently, and as evidence 
strongly support the presence of absorbed dose-effect 
correlation, investigations have delved into establishing 
an absorbed dose threshold for achieving responses in 
90Y-SIRT [7, 31–33]. Such correlations indicate that per-
sonalized dosimetry-based treatments would improve the 
outcomes and increase the survival [34].

Recent studies have shown promising results regarding 
the correlation between tumor mean absorbed dose and OS 
or PFS [35, 36]. Allimant et al. conducted a comprehensive 
evaluation of PFS and OS in 45 patients, revealing a signifi-
cant increase in both parameters with complete tumor target-
ing (PFS: 2.5 Vs. 7.9 months, OS: 4.5 Vs. 19.2 months) [35]. 
Similarly, Hermann et al. explored the relationship between 
tumor absorbed dose and OS in a large cohort from the 
SARAH trial [36]. Their results indicated that patients who 
received a mean absorbed dose ≥ 100 Gy with resin micro-
spheres to the tumors exhibited an extended overall survival 
(14.1 vs. 6.1 months). However, current studies are limited 
to using statistical approaches for survival analysis consider-
ing only the association of tumor absorbed dose and survival 
without taking into account the corresponding absorbed dose 
values to normal tissues in this context.

In recent years, there has been increasing interest in 
applying machine learning (ML) algorithms to survival anal-
ysis tasks to assist in determining prognostic indicators [37]. 
Compared to conventional statistical models that struggle to 
capture the non-linear relationships between co-variates and 
output, ML models can learn the multivariate and non-linear 
correlations present in the training data, thus minimizing the 
uncertainties, and providing more robust predictions.

We therefore conducted a preliminary, yet comprehensive 
assessment of the contribution made by clinical biomarkers 
and established DVCs either for tumors and OARs in predic-
tive modeling of the time-to-event OS and PFS outcomes for 
patients who underwent 90Y-SIRT procedures. To this end, 
we developed ML models that utilize the DVCs derived from 
99mTc-MAA and 90Y physical and biological effective dose 
(BED) maps in addition to clinical biomarkers to predict 
the OS and PFS.

Materials and methods

Patient characteristics

A retrospective study of 17 HCC patients treated with 
90Y-glass microspheres (Therasphere™; Boston scientific 
group, Marlborough, Massachusetts) at Geneva Univer-
sity Hospital (Switzerland), between November 2021 and 
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January 2023 was conducted. Adult patients over 18 years 
old with at least one tumor > 3 cm, stable liver enzymes, 
no contraindications to angiography, no concurrent treat-
ment, no previous transplantation, or previous liver resec-
tion and an Eastern Cooperative Oncology Group (ECOG) 
performance status of 0 to 1 were included. All patients 
underwent personalized dosimetry and treatment plan-
ning using 99mTc-MAA SPECT/CT imaging and treat-
ment dose distributions were verified after 90Y treatment 
by Bremsstrahlung SPECT/CT imaging. Patient character-
istics (including clinical biomarkers) are shown in Table 1.

SIRT treatment

Liver vessels were mapped, and extrahepatic shunting was 
evaluated through angiography. A patient-specific treatment 
plan was developed based on voxel-wise dosimetry from 
99mTc-macroaggregated albumin (99mTc-MAA) SPECT/
CT images as a surrogate of 90Y microspheres. Lung shunt 
fraction (LSF) was calculated based on planar images. 
Dosimetry and treatment planning was conducted using 
Simpliciti90YTM treatment planning system (Mirada Medi-
cal Ltd, United Kingdom). The median of administered 
activity of 99mTc-MAA was 156 MBq [range: 133–181]. 

Table 1   Patient characteristics 
and values of laboratory tests 
are reported by mean ± SD. * 
ECOG: Eastern Cooperative 
Oncology Group

Characteristics Value

No. of patients 17
Sex 16 Males: 1 Females
Age Median:72±12 [range; 39-87 yrs.]
Etiology
chronic hepatitis
Viral
Cirrhotic + EtOH(alcohol)
Cirrhosis
Noncirrhotic
Viral and EtOH

1
3
4
3
5
1

Child Pugh
A
B
Unknown

5
2
10

Previous treatment
None
Chemoembolization
Chemoembolization+ immunotherapy
Chemoembolization + sorafenib
Previous SIRT (4 years ago)

12
2
1
1
1

Extrahepatic metastasis Non :16
Yes: 1 (lung)

Portal vein thrombosis (PVT) Yes: No (5:12)
Hepatitis Yes: No (4:13) (B:2, C:1, D:1)
Ascites Yes: No (3:14)
liver cirrhosis (No:5, yes: 12)
Aim of SIRT
Lobectomy (right: left)
Palliative
Segmentectomy

12 (10 :2)
1
4

Alpha fetoprotein (AFP) mean ± SD (µg/L) 1509.1 ± 4868.9
Albumin mean ± SD (g/L) 38.4 ± 5.02
Total Bilirubin (µmol/L) 23.3 ± 30.46
Aspartate aminotransferase (AST) (U/L) 67.3 ± 60
Alanine aminotransferase (ALT) (U/L) 66.23 ± 63.51
Hemoglobin (g/L) 132.17 ± 22.23
Leucocyte count (×109/L) 6± 1.5
Platelet count (×109/L) 158.52 ± 81.2
Performance (ECOG* scale) 0:1 (12:5)
Baseline Tumor Volume (ml) mean ± SD 240 ± 210
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After an interval of 32.8 ± 20.25 days, a median activity of 
2.8 GBq [range: 1.24–6.3 GBq] of 90Y microspheres was 
administered to the same vessels through catheterization and 
the residual activity inside the vials was measured.

Image analysis

Multi-phasic contrast-enhanced CT on the SOMATOM Def-
inition Edge (Siemens Healthineers, Erlangen, Germany) or 
MR images performed on 3T Magnetom Skyra (Siemens 
Healthineers, Erlangen, Germany, ) were acquired almost a 
month before simulation (baseline). SPECT/CT images were 
acquired right after simulation or treatment on a dual-head 
Symbia-T series camera (Siemens Healthineers, Erlangen, 
Germany) by imaging 99mTc photons with [128–150] keV 
energy window using a low-energy, high-resolution collima-
tor, a 128 × 128 matrix, 64 views, over a 180-degree arc and 
20–25 s per view. SPECT/CT data were reconstructed using 
3D-ordered-subset expectation maximization (3D-OSEM) 
algorithm with 4 iterations and 8 subsets, while scatter cor-
rection was off, attenuation correction was on, and a gauss-
ian postprocessing filter of 5 mm was applied. The images of 
90Y-bremsstrahlung photons were acquired under the same 
scanner and parameters with the following differences: con-
tinuous energy window [105–195] keV using high energy 
collimator, and 64 views with 15–30 s per view.

Dosimetry

The target volumes (tumors) were segmented on diagnos-
tic images and the perfused lobe was delineated on the co-
registered attenuation correction CT (ACCT) of SPECT/
CT images by an experienced nuclear medicine specialist. 
Tumor segmentations were transferred on the SPECT/ CT 
images through registration of diagnostic images and co-
registered CT of SPECT/CTs using elastix toolbox through 
a rigid registration followed by a deformable registration 
transform. The whole liver was segmented using a previ-
ously trained deep learning model with a dice factor of 
~ 97% [38] on ACCT of SPECT/CT images, followed by 
visual check and modification, if necessary.

We calculated the physical as well as the biological effec-
tive dose (BED) maps using both 99mTC-MAA simulation 
and 90Y therapy for each patient as follows:

3D Voxel-wise physical dose maps were calculated 
according to the Local Deposition Method (LDM, denoted 
as physical or Dose in this study) by applying an in-house 
MATLAB code (MATLAB (2022b), Natick, Massachusetts: 
The MathWorks Inc) validated against replicated analysis 
with Simplicit90Y™ (Mirada Medical, United Kingdom).

The voxel-wise BED maps were calculated separately 
for tumor and for healthy structures (normal perfused liver 

(NPL) and whole normal liver (WNL)) by converting the 
physical absorbed dose of each voxel to BED using:

where D is the cumulative dose of 90Y radiation, TRep is 
the sublethal damage repair half-time and Tphys is the radio-
nuclide decay half-life (64.2 h). �

/

� ratios were set to 10 for 
both normal and tumoral tissues, whereas TRep (h) was set to 
1.5 and 2.5 for Tumoral and Normal structures, respectively. 
These values were derived from a radiobiological study on 
glass-microsphere SIRT by Chiesa et al. [39].

The bin size was set to 0.1 Gy to construct dose volume 
histograms (DVHs). We calculated the Mean absorbed dose, 
maximum, minimum, DVCs obtained from DVHs includ-
ing D50, D70, D95, D98, V20, V30, V50, V70, V90, V120, V205, 
V400 (Dx: minimum dose received by x% of the volume; 
Vx: the percentage of the volume receiving at least x Gy) as 
recommended by a body of evidence[33, 40–42], for three 
defined volumes of interest including Tumoral liver (TL), 
NPL, WNL. The two laters are obtained from subtracting the 
TL from perfused liver and whole liver structures, respec-
tively. Also, tumor to normal liver ratio (TNR) with respect 
to the mass of NPL (TNRNPL), and WNL (TNRWNL) was 
calculated for both simulation and therapy [40]. We also 
introduced a simplified homogeneity index (HI) borrowed 
from EBRT; defined as D5/D95 of tumor [43]. Other dosim-
etry related parameters such as 90Y-injected activity and lung 
shunt fraction and volume of each structure were included 
among the features. All dosimetry metrics were calculated 
once for physical dose maps and once for Biologically effec-
tive dose maps.

Endpoints and strategy designing

The endpoints of this study were defined as the time from 
treatment procedure to death by any cause for OS, and the 
time from treatment procedure to local disease progression 
or development of metastasis for PFS.

The biomarkers and dosimetry parameters were consid-
ered as predictive features of the OS and PFS endpoints. 
We designed four distinct strategies for each of the two end-
points, resulting in a total of eight strategies. These strat-
egies are denoted as “Clinical,” “Simulation”, “Therapy,” 
and “All Features”. The Clinical Strategy is comprised of a 
total of 16 clinical features. Simulation and therapy strate-
gies include dosimetry features derived from physical and 
BED dose maps, calculated based on 99mTc-MAA SPET/CT 
and 90Y SPECT/CT images, respectively. Additionally, both 
strategies include tumor volume, NPL, and WNL as shape 
features. All Features Strategy integrates all 305 features 

(1)BED = D

(

1 +
D

�
/

�

.

TRep

TRep + Tphys

)
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utilized across the Clinical, Simulation, and Therapy strate-
gies. The complete name and description of the features are 
provided in Supplemental-Table 1.

Univariate analysis

To assess the impact of each individual featured on OS and 
PFS outcomes, a univariate analysis was conducted using 
Cox proportional hazard models. The Cox models were fit-
ted for each feature to calculate the hazard ratios (HR) and 
the results were subsequently evaluated using the Wald sta-
tistical test. The threshold for statistical significance was 
set as p-value < 0.05. Additionally, for each feature the con-
cordance index (C-Index) along with corresponding stand-
ard errors were calculated. The Kaplan-Meier (KM) curves 
were constructed for each individual feature. Log-rank test 
(significance threshold: p-value < 0.05) was used to evalu-
ate the statistical significancy of the observed differences in 
survival distribution. The median of each continuous fea-
ture was considered as the cut-off for group stratification. 
Noteworthy, the non-usual DVCs such as V30(%)-tumor or 
D95(Gy)-WNL were not used for univariate analysis.

Feature selection and machine learning modeling

A cross-combination of various supervised ML algorithms 
and feature selection (FS) methods were analyzed. To iden-
tify the most relevant predictors and eliminate redundant 
features, we employed five different FS methods: univariate 
C-Index (UCI), Minimal Depth (MD), Mutual Information 
(MI), Variable hunting (VH), Variable hunting Variable 
Importance (VH. VIMP).

Using each FS method, No more than seven features were 
selected based on the recommendation of having a mini-
mum ten observations per feature [44]. The redundant fea-
tures were removed using Spearman’s correlation test. Pairs 
of features with a Spearman’s rank correlation coefficient 
exceeding 0.95 (rho > 0.95) were identified as redundant 
pairs, and subsequently one from each pair was removed.

The performance of five ML algorithms was evaluated: 
Cox Proportional Hazard regression (CoxPH), General-
ized Linear Model Boosting (GLMB), Generalized Linear 
Model Network (GLMN), Random Survival Forest (RSF), 
and Survival Tree (ST). Further details about the FS and 
ML algorithms utilized in this study can be found in the 
Supplemental ML section as well as in [45, 46].

We adopted 3-fold cross-validation (CV), whereby there 
is a combination of inner and outer CV loops. In the inner 
CV, the dataset was divided into three folds and the model 
trained on different combinations of training and validation 
sets. The process was iterated and then the optimal hyper-
parameters were selected based on the calculated C-indices 

in the inner CV loop. The outer CV loop was used for esti-
mating the model’s performance; the data were split into 
three-fold and for each fold, the model was trained on the 
training dataset using the most effective hyperparameters. 
This process was iterated for each fold in the outer CV loop, 
and the C-indices averaged to provide a more robust estima-
tion of the model’s generalization performance. We used 
this approach to obtain a more reliable performance and to 
prevent overfitting the hyperparameters to a specific dataset. 
It should be mentioned that prior to FS and modeling, the 
features were normalized to their Z-Score based on the train-
ing dataset and the same transformation applied to the test 
dataset of the outer CV loop. Then, FS was performed on 
the training dataset of the outer CV loop, and the selected 
features were fed into each model.

In addition, bootstrap aggregation strategy (with 1000 
bootstrap samples, with replacement) was implemented 
to compensate for small data size and prevent overfitting. 
The Wilcoxon signed-rank statistical test was employed 
to compare the predictive capabilities of each model. 
A p-value < 0.05 was considered significant. FS, modeling, 
and KM curves were calculated using R package (version 
4.1). Figure 1 summarizes the adopted methods

Results

Study population characteristics

Among all 17 participants in this study, no severe adverse 
events were recorded. Predominantly, patients exhibited par-
tial responses according to the modified Response Evalua-
tion Criteria in Solid Tumors (mRECIST) criteria. Among 
the 17 patients included in this study, two patients underwent 
lobectomy by surgery after 7- and 8-months post-SIRT and 
were subsequently lost to more follow-up.

The median OS was eleven months with a 95% CI of [8.5, 
13 months], ranging from 5 to 20 months. Median PFS was 
seven months with a 95% CI of [5.6, 10.9 months], ranging 
from 3 to 20 months.

All patients were followed-up on average 10.8 months 
(range 6–20 months) after treatment. Two patients failed 
to follow-up after 7–8 months as they underwent surgical 
lobectomy and fell out of the follow-up for this treatment. 
Over the course of 20-months follow up, seven patients 
passed away, leaving ten cases still alive. Additionally, 
ten cases developed metastasis or local progression, leav-
ing seven cases free from disease progression. Among ten 
patients who showed progression after treatment wherein 
metastasis in the adrenal gland, lymph nodes, subcutaneous 
and liver metastasis and 6 cases of local progression were 
observed.
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Dosimetry results

The median ± SD of the physical and biologically effec-
tive dosimetry parameters for tumors and OARs (NPL 
and WNL) from both 99mTc-MAA and 90Y are provided 
in Supplemental-Table 2. The median of LSF was 4.3% 
[range: 0.8–16.9%]. The median of tumoral mean absorbed 
doses ± SD were 345.6 ± 179.6, and 662.95 ± 521.65 Gy 
for 99mTc-MAA physical and BED, respectively. For 90Y, 
the median of tumoral mean absorbed doses ± SD were 
256.23 ± 143.66 and 413.78 ± 583.73 Gy for physical and 
BED, respectively.

A representative clinical example of physical dose maps 
and corresponding DVH and BVH (DVH from BED) for 
99mTc-MAA and 90Y is demonstrated in Fig. 2.

Univariate analysis

Figure 3 displays a forest map presenting hazard ratios for 
statistically significant features (p-value < 0.05) determined 
through univariate Cox proportional hazards analysis. The 
results for OS and PFS are reported in the following sec-
tions below.

Univariate analysis‑OS

Notably, among the clinical features, the presence of 
“Ascites” revealed a substantial association with OS 
(HR = 9.2, 95% CI: [1.8, 47]), indicating a significantly 

higher risk in the Ascites group compared to those without 
Ascites.

Within the 99mTc-MAA dosimetry features, “MAA-Dose-
V205(%)-TL” demonstrated a hazard ratio of 8.5, 95%CI: 
[1,72]. The comparison groups were stratified based on the 
median values of the features. Seemingly, patients whose 
78% of their tumor was covered by at least 205 Gy demon-
strated prolonged OS. Additional details on the univariate 
Cox proportional hazard models predicting OS can be found 
in Supplemental-Table 3.

Univariate analysis‑PFS

Based on this dataset, no clinical feature was recognized for 
predicting PFS through univariate analysis. Among 99mTc-
MAA dosimetry features, “MAA-Dose-V205(%)-WNL” 
and “MAA-BED-V400(%)-WNL” were strongly associ-
ated with PFS, showing a hazard ratio of 13 (95% CI: [1.5, 
120]). Among 90Y-dosimetry features, “90Y-Dose-mean-
TL(Gy)”, “90Y-Dose-D50-TL(Gy)”, “90Y-Dose-V205(%)-TL”, 
“90Y-BED-D50-TL(Gy)”, “90Y-BED-V400(%)-TL” emerged 
as statistically significant predictors for PFS, with the 
maximum HR of 15 (95% CI: [1.8, 120]). Patients whose 
tumors received a mean dose of 260 Gy or higher exhib-
ited an extended PFS compared to those with a tumor dose 
(TD) less than 260 Gy. Details of the univariate Cox pro-
portional hazard models predicting PFS are summarized in 
Supplemental-Table 4.

Fig. 1   Flowchart of the methodology followed in this study protocol
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KM curves for all denoted features in Fig. 3 are provided 
in Supplemental-Figures 1 and 2 with stratification based 
on the median values of the continuous features. Figure 4 
illustrates the KM curves for clinical and mean absorbed 
dose features predicting OS, as well as the tumoral mean 
doses that found statistically meaningful for predicting 
PFS. To optimize the stratification of these features, we also 
computed the optimal cut points that yielded the most dis-
tinct (stratified) KM curves. The corresponding KM curves 
based on these optimal cut points can be found in Supple-
mental-Figure 3. The optimal cut points for Aspartate ami-
notransferase (AST), MAA-Dose-V205-TL (%), 90Y-Dose-
mean-TL(Gy) and 90Y-BED-mean-TL(Gy) were 55 (U/L), 
75.2%, 244.7 Gy and 413.78 Gy, respectively.

Machine learning

The heat map in Fig. 5 displays the mean C-indices result-
ing from an extensive analysis involving 25 cross-combi-
nations of feature selection and ML models. Accompa-
nying this visualization are the plots showing the results 
of Wilcoxon statistical tests (p-value) for each strategy. 

Optimal prognostic models were identified based on both 
high performance (highest C-indices) and statistical sig-
nificance. Table 2 summarizes the C-indices, SD, and con-
fidence intervals (CIs) for these selected models.

The KM curves were constructed to visualize the 
performance of the selected models. The median of the 
models’ risk scores served as the cut-off for stratification, 
and the Log-rank test was applied to assess the statistical 
significance.

The “OS-Therapy-VH.VIMP-GLMN” model exhibited 
one of the highest C-index values and demonstrated a sta-
tistically significant KM curve. Figure 6 shows the KM 
curves for models that efficiently stratified patients into 
two groups, regardless of their performance in terms of 
C-index. Additionally, we provided the KM curves for the 
selected high C-index models in Supplemental Fig. 4.

In Fig. 7, the selected features within the three folds 
contributing to the predictive power of the OS-Therapy-
VH.VIMP-GLMN model are presented. The selected fea-
tures through each FS method in each strategy are outlined 
in Supplemental-Tables 6–9 for OS and Supplemental-
Tables  10–13 for PFS. Supplemental Figures  5  and 6 

Fig. 2   A 67-year-old male patient diagnosed with HCC who received 
2.39 GBq of 90Y as palliative treatment. His OS and PFS were 
recorded as 6 months. Panel (A) depicts an axial slice of 99mTc-MAA 
treatment planning dose map along with the corresponding extracted 

DVH and BVH (DVH form BED). The lesion and normal liver are 
delineated in red and green, respectively. Panel (B) shows the same 
information from 90Y treatment verification
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depict the feature importance of the selected features, con-
tributing to constructing the efficient (selected) models. 

Discussion

Early and accurate prediction of OS and PFS in patients 
undergoing SIRT procedure is important and can serve 
as a crucial guide for optimal patient selection, aiding in 
considering alternative treatments when necessary. The 
utilization of dosimetry parameters, specifically derived 
from voxel-level dose maps, contributes to the assessment 
of treatment planning and verification. These parameters 
offer insights into the status of tumors and OARs. While the 
impact of clinical biomarkers and mean absorbed dose in 
tumor response and OS has been explored through statisti-
cal models, there remains a notable gap in understanding 
the role of other potentially valuable dosimetry parameters 
in predicting outcomes. Further investigation is imperative 
to uncover the full spectrum of benefits these features may 
offer in enhancing predictive models for patient prognosis. 
Notably, as artificial intelligence plays a pivotal role in medi-
cal decision-making, the development of effective predictive 

models becomes more essential. Establishing robust models 
for outcome prediction not only facilitates decision-making 
processes but also enhances accuracy in prognosis. Hence, 
it’s important to thoroughly explore different dosimetry 
parameters and include them in detailed predictive models 
to predict patient outcomes.

We explored the impact of each baseline clinical bio-
marker, alongside the dosimetry parameters, derived from 
both physical and biological effective dose maps in treat-
ment planning and verification of SIRT using statistical 
models. In parallel, 200 models were trained, incorporating 
various feature selection methods and ML algorithms. These 

Fig. 3   Cox proportional hazard ratios for each statistically significant feature predicting (A) OS and (B) PFS. HR > 1 is indicated in red, and the 
confidence interval is shown as a gray line

Fig. 4.   Panel A) The features associated with OS within the univari-
ate analysis. The aim-of-RT means whether patient was treated as 
0. Palliative, 1. Lobectomy and 2. segmentectomy. The presence of 
Ascites, with 0 and 1 legends indicating the non-presenting-ascites 
and ascites groups, respectively. The non-presenting-ascites group 
survived longer than ascites group. MAA-Dose-V205-TL (%): The 
group whose more than 78% of their tumors received at least 205 
Gy survived more. Also, the group with Aspartate aminotransferase 
(AST) < 54 experienced more OS. Panel B) 90Y-tumoral mean dose 
values from physical and BED calculations associated with PFS; the 
individuals received mean dose ≥ 260 and mean BED≥ 410 Gy had 
a longer PFS

◂
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Fig. 5    Heat map of mean C-indices obtained from all cross combinations of feature selection and machine learning models. On the right side, 
the plots of p-values calculated from Wilcoxon statistical test for each strategy. The red cells show non-significancy (p-value ≥ 0.05)

Table 2   Optimal prognostic models for predicting OS and PFS within 
each strategy presenting statistically significant differences than the 
others. The table includes the mean Concordance Index (C-index) 

accompanied by the standard deviation (SD) and confidence interval 
(CI) for comprehensive assessment

OS PFS

Model C-Index SD CI Model C-Index SD CI

All Features MI-CoxPH
UCI-CoxPH

0.9
0.9

0.16
0.16

0.89–0.91
0.89–0.9

MI-GLMB
VH-RSF
VH. VIMP-CoxPH

0.86
0.86
0.86

0.14
0.14
0.17

0.85–0.86
0.85–0.86
0.85–0.87

Clinical VH. VIMP-CoxPH 0.94 0.13 0.93–0.94 VH. VIMP-CoxPH
VH. VIMP-GLMB
VH. VIMP-GLMN

0.84
0.84
0.84

0.16
0.16
0.16

0.84–0.85
0.84–0.85
0.84–0.85

Simulation MD-GLMB 0.84 0.18 0.83–0.84 MD-GLMB 0.88 0.16 0.88–0.89
Therapy VH. VIMP-CoxPH

VH. VIMP-GLMN
0.93
0.93

0.14
0.14

0.93–0.94
0.93–0.94

VH-RSF 0.82 0.17 0.82–0.83
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Fig. 6   The KM curve for models predicting A  “OS” and B  “PFS” 
with statistically significant stratification between high and low-risk 
groups. The calculated median of the risk scores by the models was 
used as cut-off criteria for stratification. The high-risk individuals had 

a risk score above or equal to median while the low-risk groups had 
a risk-score below the median. The p-values were calculated by log-
rank statistical test
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models were designed to predict OS and PFS in four distinct 
strategies.

This study strategically utilized well-established fea-
tures extracted from DVH and BVH of the 99mTc-MAA 
simulation and 90Y treatment verification, instead of addi-
tional radiomic or dosiomic features requiring extra time 
and effort, given the challenges associated with the inter-
pretability of many such features as well as reproducibility 
over different calculation parameters. Given the lack of 
spatial information in DVHs, this study does not include 
the spatial information and the locations where inhomoge-
neities occur, the information that radiomic and dosiomic 
features may provide. For instance, we used a homogeneity 
index defined in EBRT, whose appropriateness for SIRT 
should be assessed. However, there are some radiomic fea-
tures that may be more beneficial in this context.

Different scenarios were considered, including the use of 
only simulation or therapy dosimetry features, only clinical 
biomarkers, or a comprehensive set of all features combined. 
This study design allows us to explore and evaluate distinct 
sets of features tailored to each strategy, leading to under-
standing of their respective impacts on the study’s endpoints.

To the best of our knowledge, this study is the first study 
using ML in conjunction with various dosimetry param-
eters derived from both simulation and therapy sessions. 
This approach aimed to predict the OS and PFS outcomes 
in patients undergoing 90Y-SIRT. We extended our analy-
sis to include dosimetry features extracted not only from 
tumors but also from healthy organs (NPL and WNL). 
This approach was inspired by a recent study that high-
lighted the importance of radiomics features from both 
tumors and organs at risk for predicting OS [46]. To date, 
a study on SARAH trial dataset indicated that the tumor 
mean-absorbed-dose (with cutoff of 100 Gy using resin 
microspheres) from MAA is an independent predictor of 
prolonged survival [36]. Using glass microspheres, our uni-
variate analysis has unveiled the potential of several features 
capable of independently predicting OS and PFS (see Fig. 3 
and Supplemental Figures 1–2). Our research indicated a 
mean absorbed dose of ≥ 260 Gy to the tumor, calculated 
based on 90Y, as a threshold of predicting PFS while in the 

literature almost the same value was reported for predicting 
OS [31, 47, 48]. No corresponding value was found as a 
threshold based on MAA- dosimetry. Nevertheless, it’s cru-
cial to note that the threshold identified in this study should 
not be regarded as threshold for an optimal clinical outcome.

DVHs are widely used to summarize and quantify dose 
distribution information, by visually depicting the distribu-
tion. However, the granularity of a DVHs depends on the 
selected dose-volume bin size, and slight changes in bin size 
can change the shape of the DVH curve. This matter could 
potentially influence the extracted DVC parameters and the 
interpretations [49, 50], which should be considered. We 
used an empirical bin size of 0.1 Gy to consider the mini-
mum detectable changes within a dose distribution. It should 
be emphasized that we conducted volume-constraint calcula-
tions based on both percent and milliliter (ml). The percent-
age-based approach provides a sense of normalized volume 
to the total volume. Additionally, we adopted the median of 
these features as the threshold for stratifying KM curves. 
For certain features, such as mean absorbed dose values, we 
adopted the optimal thresholds instead of median. The first 
(median cutoffs) approach yielded a more balanced distri-
bution of the population between the two groups. Whereas, 
identifying optimal cutoffs for certain features led to gener-
ating an unbalanced distribution.

We evaluated the role of baseline laboratory values, 
such as albumin, bilirubin, Alpha fetoprotein (AFP),  Por-
tal vein thrombosis (PVT), etc. as significant factors for 
predicting OS [22, 24]. There was no statistically mean-
ingful correlation between AFP or PVT and the end-
points based on our univariate results. However, these 
features were selected multiple times through feature selec-
tion methods demonstrating their predictive importance 
(Supplemental-Tables 6–13).

Baseline clinical features, including Ascites (log-rank 
p-value of 0.002) and the aim of Radioembolization, 
and AST levels were found to be statistically meaningful 
prognosticators for OS. The aim of Radioembolization 
including segmentectomy, lobectomy or palliative groups 
showed a longer OS for segmentectomy group (log-rank 
p-value = 0.015). An AST level of 54 U/L stratified the KM 

Fig. 7   Illustration of selected features within each fold, and their importance calculated for the VH. VIMP-GLMN model predicting the OS in 
Therapy strategy
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curves (log-rank p-value = 0.01). The other important base-
line clinical prognosticators could be e.g., Barcelona Clinic 
for Liver Cancer (BCLC), Child Pugh, and performance sta-
tus (e.g. ECOG). Information regarding BCLC and Child 
Pugh was missing due to the retrospective nature of the 
study, and no correlation was observed between ECOG and 
both endpoints. Additionally, tumor response could serve 
as an important predictor of survival. However, it was not 
included as a feature both in univariate and into the models, 
given the lack of standardized approach for response assess-
ment. Moreover, the primary objective of the study was early 
prediction of the endpoints using baseline clinical or dosi-
meric parameters, preferably prior to treatment or based on 
treatment verification images, excluding follow-up images. 
Moreover, the impact of tumor response in predicting such 
outcomes could be found elsewhere [25].

The α/β ratios, which are essential radiosensitivity param-
eters used for BED calculations in this study, have been 
sourced from the study by Chiesa et al. [39] where a tumor 
control probability (TCP) model was developed to extract α 
values. However, it’s important to note that studies focusing 
on TCP modeling and biologically effective dosimetry for 
SIRT are scarce. Many of the studies have utilized values 
derived from EBRT, which is a fundamentally distinct treat-
ment from SIRT [42]. The EBRT-adopted α and β values are 
derived from empirical analyses of linear quadratic models, 
incorporating uncertainties [51]. Therefore, given the inher-
ent differences between EBRT and SIRT, thorough studies 
on TCP modeling, BED calculations and radiosensitivity 
parameters are still required.

Our multivariate analysis by ML demonstrated the fea-
sibility of predicting the endpoints using the introduced 
features. Cross-combination of 25 models and FS methods 
for 8 strategies resulted in a total of 200 models. The perfor-
mance of these models was systematically evaluated through 
the average C-index on a 3-fold CV. Publicly available ML 
algorithms were selected. They proved to be capable of han-
dling the continuous time-to-event survival data. The feature 
selection methods were applied to select the most relevant 
features and to improve the performance of the models. It 
should be noted that, in the multivariate analysis, we used all 
the extracted features prior to feature selection, while some 
of the features might not be evaluated in current (clinical and 
research-based) dosimetry calculations (e.g. V30 of tumor or 
D95 of WNL). Nonetheless, we used them all and let the FS 
algorithms decide on keeping the feature or identifying it as 
irrelevant or redundant. Noteworthy, for univariate analysis, 
we did not utilize such features.

While, for each strategy, at least one model outperformed 
the others in terms of the C-Index (Table 2), we constructed 
KM curves to validate the overall model performance. Nota-
bly, among the KM curves, only one model (OS-Therapy-
VH.VIMP-GLMN, C-index = 0.93) that predicted OS using 

Therapy strategy features effectively stratified the high and 
low-risk groups (log-rank p-value = 0.023). Although the 
OS-Clinical-VH.VIMP-GLMN model’s C-index was 0.94, 
i.e. higher than VH.VIMP-GLMN, this model failed to strat-
ify the groups within KM curves. To explain this phenome-
non, C-index assesses how well patients are ranked based on 
their risk of experiencing an event, whereas the KM curve 
shows actual survival probabilities over time. While models 
with high C-index values may effectively rank patients, they 
may not accurately estimate survival probabilities at specific 
time points. Therefore, we evaluate models using multiple 
metrics to ensure performance in different aspects. Limited 
data may contribute to this discrepancy, as models may excel 
at calculating the C-index but struggle to predict survival 
dynamics accurately.

To ensure that ML models’ decision-making procedures 
are explainable, it’s crucial to clarify the contribution of 
each individual input feature [52]. Therefore, we provided 
the importance of the features selected and used by the effi-
cient models (Fig. 7 and Supplemental-Figures 5 and 6).

While our study provided valuable insights, caution 
should be taken in interpreting the results due to the inherent 
limitations. The retrospective nature of the study limited our 
access to only a subset of clinical data, excluding variables, 
such as Child Pugh and tumor staging, etc. The limited sam-
ple size collected from a single center further restricted us 
in compromising the robustness of the ML models. Another 
limitation is the lack of external validation. Unfortunately, 
we did not have access to any clinical database that can serve 
as external validation dataset to evaluate the robustness of 
our models on data from other centers with different dose 
calculation schemes, scanning protocols and population 
demographics. Moreover, the presence of right censoring in 
the dataset implies that not all patients had sufficient follow-
up time to experience the events of interest. Additionally, the 
relatively short duration of the follow-up period represents 
another limitation. Therefore, more investigation on large-
scale dataset collected from multiple centers with a long-
enough follow-up period is still required.

Although we utilized SPECT images corrected for physi-
cal degrading factors, it should be emphasized that the draw-
backs of SPECT imaging, such as limited spatial resolution 
and high noise, effects of physical degrading factors such as 
attenuation, scatter, and collimator septal penetration etc. 
may affect the dosimetry results. The images should be cor-
rected for the degrading factors prior to dosimetry calcula-
tions. Nevertheless, PET/CT images are more suitable for 
dosimetry and further studies.

All in all, developing models with large-scale and mul-
tiscale dataset, with reproducible results, enables clinicians 
to tailor individualized treatment strategies and optimize 
patient care. Identifying patients with good/poor prognosis 
may affect clinician’s decisions in treatment and follow-up 
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regimen. Patients presenting with good prognosis may be 
considered for less aggressive treatments or less frequent 
monitoring, while patients presenting with poor prognosis 
may benefit from more intensive therapeutic interventions 
or more frequent follow-ups.

Conclusion

The feasibility of developing ML models to predict survival 
outcomes using dosimetry parameters obtained from both 
99mTc-MAA and 90Y SPECT images, was evaluated. The find-
ings are based on a personalized dosimetry-based dataset that 
can contribute not only to the refinement of predicting out-
comes for SIRT but also has the potential to pave the way for 
the establishment of dose-effect relationship in SIRT treatment.
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