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Organomics
A Concept Reflecting the Importance of PET/CT Healthy Organ Radiomics in Non–

Small Cell Lung Cancer Prognosis Prediction Using Machine Learning
Yazdan Salimi, MSc,* Ghasem Hajianfar, MSc,* Zahra Mansouri, MSc,* Amirhosein Sanaat, PhD,*
Mehdi Amini, MSc,* Isaac Shiri, PhD,*† and Habib Zaidi, PhD*‡§||
Purpose: Non–small cell lung cancer is the most common subtype of lung
cancer. Patient survival prediction using machine learning (ML) and
radiomics analysis proved to provide promising outcomes. However, most
studies reported in the literature focused on information extracted from ma-
lignant lesions. This study aims to explore the relevance and additional value
of information extracted from healthy organs in addition to tumoral tissue
using ML algorithms.
Patients and Methods: This study included PET/CT images of 154 patients
collected from available online databases. The gross tumor volume and 33
volumes of interest defined on healthy organs were segmented using nnU-
Net deep learning–based segmentation. Subsequently, 107 radiomic features
were extracted from PET and CT images (Organomics). Clinical information
was combined with PETand CT radiomics from organs and gross tumor vol-
umes considering 19 different combinations of inputs. Finally, different fea-
ture selection (FS; 5 methods) and ML (6 algorithms) algorithms were tested
in a 3-fold data split cross-validation scheme. The performance of the models
was quantified in terms of the concordance index (C-index) metric.
Results: For an input combination of all radiomics information, most of the
selected features belonged to PET Organomics and CT Organomics. The
highest C-index (0.68) was achieved using univariate C-index FS method
and random survival forest ML model using CT Organomics + PET
Organomics as input as well as minimum depth FS method and CoxPH
ML model using PET Organomics as input. Considering all 17 combina-
tions with C-index higher than 0.65, Organomics from PET or CT images
were used as input in 16 of them.
Received for publication May 8, 2024; revision accepted May 29, 2024.
From the *Division of Nuclear Medicine andMolecular Imaging, Geneva University

Hospital, Geneva, Switzerland; †Department of Cardiology, Inselspital, Bern
University Hospital, University of Bern, Bern, Switzerland; ‡Department of Nu-
clear Medicine and Molecular Imaging, University of Groningen, University
Medical Center Groningen, Groningen, theNetherlands; §Department of Nuclear
Medicine, University of Southern Denmark, Odense, Denmark; and ||University
Research and Innovation Center, Óbuda University, Budapest, Hungary.

Conflicts of interest and sources of funding: none declared.
This work was supported by the Euratom research and training programme

2019–2020 Sinfonia project under grant agreement No. 945196.
Compliance with ethical standards: This study was performed in line with the

principles of the Declaration of Helsinki. Approval was granted by the
local ethics committee. Consent forms were waived given the retrospective
nature of the study.

Correspondence to: Habib Zaidi, PhD, Division of Nuclear Medicine and
Molecular Imaging, Geneva University Hospital, CH-1211 Geneva,
Switzerland. E-mail: habib.zaidi@hug.ch.

Supplemental digital content is available for this article. Direct URL citation
appears in the printed text and is provided in the HTML and PDF versions
of this article on the journal’s Web site (www.nuclearmed.com).

Copyright © 2024 The Author(s). Published byWolters Kluwer Health, Inc. This
is an open-access article distributed under the terms of the Creative Commons
Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND),
where it is permissible to download and share the work provided it is properly
cited. The work cannot be changed in any way or used commercially without
permission from the journal.

ISSN: 0363-9762/24/0000–0000
DOI: 10.1097/RLU.0000000000005400

Clinical Nuclear Medicine • Volume 00, Number 00, Month 2024
Conclusions: The selected features and C-indices demonstrated that the ad-
ditional information extracted from healthy organs of both PET and CT im-
aging modalities improved the ML performance. Organomics could be a
step toward exploiting the whole information available from multimodality
medical images, contributing to the emerging field of digital twins in
health care.

Key Words: segmentation, radiomics, machine learning, Organomics,
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L ung cancer is the second most common cancer in all genders,
whereas the most common subtype of lung cancer is non–

small cell lung cancer (NSCLC), a leading cause of death among
other malignancies.1,2 Knowledge of prognosis prior to treatment
and during the treatment can be useful to change or optimize the
treatment strategy or prevent other posttreatment. Radiomics analy-
sis aims to convert medical images to high-dimensional data, which
could be connected to a desired target, such as biopsy results for
clinical diagnosis and patient outcome for prognostic and predictive
models.3–5 Radiomics information coupled with machine learning
(ML) algorithms showed potential to predict the prognosis for
NSCLC patients after treatment,6,7 whereas most of the available
studies using artificial intelligence (AI)7–9 focused on radiomic fea-
tures extracted from the tumoral region and used clinical informa-
tion, such as age, gender, and blood tests as additional information.
Amini et al9 developed ML models to predict survival using differ-
ent image fusion strategies and radiomics extracted from the gross
tumor volume (GTV) on the same population.8 Lee et al10 extracted
peritumoral image features and reported gain in classification per-
formance, which depends on tumor size. Hosny et al11 showed that
deep learning classification algorithms emphasized the importance
of peritumoral tissue in patient risk estimation. Perez-Morales et al12
used peritumoral and intratumoral radiomic features to detect a vul-
nerable subset of lung cancer patients associated with poor survival
outcomes who may require aggressive follow-up and/or adjuvant
therapy. Mattonen et al13 reported the importance of metabolic tu-
mor volume penumbra extended by 1 cm in NSCLC recurrence.
Guo et al14 evaluated the predictive value of dosiomics and CT
radiomics of esophageal tumor GTV and whole esophagus for
predicting complications after radiotherapy. They reported the com-
bination of GTV and whole esophagus as the best predictor using
ML models. Lam et al15 used multiomics data including radiomics
and dosiomics extracted from 8 volumes of interest irradiated
around the nasopharyngeal GTV to predict the adaptive radiother-
apy eligibility in nasopharyngeal cancer patients. They reported
the best performance for radiomics plus dosiomics extracted from
these 8 regions plus the GTV. They did not compare the GTVonly
versus added value of the surrounding organs. Girum et al16
www.nuclearmed.com 1
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TABLE 2. List of Segmented Organs for 3 Subgroups of Soft,
Lung, and Bony Tissues

Boney structures 1 Clavicles
2 Hips
3 Sacrum
4 Ribs
5 Vertebrae
6 Femoral heads

Soft tissue 7 Adrenal glands
8 Aorta
9 Brain
10 Colon
11 Esophagus
12 Eyeballs
13 Whole cardiac
14 Cardiac right atrium
15 Cardiac left atrium
16 Cardiac left ventricle cavity
17 Cardiac right ventricle
18 Cardiac left myocardium
19 Kidneys
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reported that the position of lesions relative to spleen has additional
predictive value in lymphoma patients treated with radiopharmaceu-
tical therapy. During the COVID-19 pandemic, few studies reported
the importance of gastrointestinal finding in predicting patient
prognosis.17,18 Szabo et al19 reported the importance of pericardiac
fat in the prognostic prediction of patients with heart failure.

We believe that overall patients’ health condition may play a
role in prognosis. Besides, we hypothesize that it may contain some
information reflecting overall patients’ health in the radiomic features
space from structural (CT) and metabolic (PET) images acquired
from these regions. Deep learning–based segmentation enables fast
and reliable delimitation of healthy organs and hence evaluation
of any organ separately.20,21 To the best of our knowledge, the con-
tribution of healthy organs is always overlooked, and studies exploring
the importance of healthy organs to estimate overall patient charac-
teristics in survival prediction in NSCLC patients are lacking.

The aim of this study was to use as much as possible image
information available from PET/CT images to predict the prognosis
in terms of overall survival prediction in patients with NSCLC ma-
lignancies. We used radiomic features extracted from 33 organs and
tumoral tissues and evaluated the added value of healthy organs
radiomics in a comprehensive study usingmultiple feature selection
(FS) and ML models. The primary question addressed was whether
the incorporation of total body organ information could enhance the
accuracy of AI-based predictions of overall survival.
20 Liver
21 Pancreas
22 Rectum
23 Rectus lumborum muscles
24 Small intestine
25 Spleen
26 Stomach
27 Urinary bladder

Lung tissue 28 Whole lungs
29 Lung LLL
PATIENTS AND METHODS

Dataset
This study used the RadioGenomics NSCLC dataset

downloaded from the TCIA public database.22 Cases where PET/
CT imaging data are available were separated, and the DICOM im-
ages converted to NIFTI format. From 211 cases, there were 166
cases with PET/CT, and after preprocessing and excluding images
with any kind of processing error or missing data, a total number
TABLE 1. Demographic Description of the Dataset Included
in This Study Summarizing Patient Information, PET, and CT
Acquisition/Reconstruction Parameters

Demographics Age (y) 67.2 ± 11.29
Height (m) 1.69 ± 0.17
Weight (kg) 76.26 ± 18.51
Gender Male (#97), female (#57)

Affiliation Stanford (#87), VA (#67)
Survival status Alive (#110), deceased (#44)

PET Manufacturer Siemens (#10), GE (#144)
PET spacing (mm) 4.37 ± 0.84
PET injected activity

(MBq)
453.16 ± 90.46

Time per bed (minutes) 2.33 ± 0.85
Scatter correction

method
Model-based, convolution

subtraction
PET reconstruction

method
OSEM, 3D IR, VPFX, OSEM

PSF, VPHDS
CT kVp 80, 100, 120, 130, 140

Pitch factor 1.08 ± 0.29
Average tube current

(mA)
267.58 ± 163.93

30 Lung RLL
31 Lung RML
32 Lung LUL
33 Lung RUL

LLL, left lower lobe; RLL, right lower lobe; RML, right middle lobe; LUL, left up-
per lobe; RUL, right upper lobe.

2 www.nuclearmed.com
of 154 PET/CT images was included for training/testing. A detailed
description of the demographics, acquisition, and reconstruction pa-
rameters is summarized in Table 1. We calculated the time differ-
ence between the PET acquisition date and the date of the last
follow-up recorded on the dataset description. It should be men-
tioned that the PET/CT acquisition date was not available for a
few cases in the metadata provided by TCIA. For these cases, the
DICOM acquisition date information was used. PET images were
converted to SUV prior to feature extraction.

Organs Segmentation
We used extended and upgraded versions of previously

trained deep learning–based segmentation models in our
department20 to segment 28 volumes of interest in healthy organs
on the CT images. Those models were trained using nnU-Net23 seg-
mentation pipeline using 5-fold data split and ensembling all 5 folds
inferred on the RadioGenomics CT compartment of PET/CT
dataset. The 3Dfullress training model was continued using 2000
epochs, and initial learning rate of 3e-5 decreased after each epoch.
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 3. Summary of All 19 Combinations of Input Data Used in This Study

Red cross signmeans not used, whereas the green thick signmeans using that input. For better readability, they were classified in 4 subgroups and all includedmeans using all 5
inputs as predictors.
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The segmented organs were visually checked searching for poten-
tial outliers presenting with significant errors. The list of segmented
organs is provided in Table 2.

GTV Segmentation
We used nnU-Net pipeline to train a 3Dfullress deep learning

model to segment GTVon CTof PET/CT images. We used 3 online
available datasets including LIDC24 (dataset #1) andNSCLC (dataset
#2) and manual segmentations available on RadioGenomics22 (same
patients as PET/CT images, dataset #3) datasets for model training
using a 5-fold data split. The RadioGenomics dataset had the same
patients whom PET/CT images were used to train the survival ML
models. It should be mentioned that the RadioGenomics diagnostic
CTs with available manual segmentation (143 pair of CT and GTV
segmentations) were used both as part of training set and testing
set. We used datasets #1 and #2 to increase the number of training
datasets and gain a robust model capable of segmenting CT of
PET/CT images with a lower image quality.

These 3 datasets were visually assessed, and cases with pre-
senting with errors were excluded from training. After exclusion,
384 cases from NSCLSC dataset, 143 cases from RadioGenomics
FIGURE 1. Flowchart summarizing the different steps involved in
using 3-fold cross-validation data split. Filled yellow star means us
was not used.

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
dataset, and 787 cases from LIDC dataset (total of 1314 pairs of
CT and GTV segmentation) were included. Similar to organ seg-
mentation part, we ensembled the output from all 5 folds inferenced
on CT images of PET/CT. The GTV segmentations were visually
checked and compared with the available ground truth data pro-
vided on the diagnostic CT, which was not coregistered with the
PET/CT images in few cases.

Feature Extraction
We used Pyradiomics (version 3.1.0)25 library to extract 107

radiomic features, including first-order statistics (19 features),
shape-based (3D) (16 features), shape-based (2D) (10 features),
gray level co-occurrence matrix (24 features), gray level run length
matrix (16 features), gray level size zone matrix (16 features),
neighboring gray tone difference matrix (5 features), and gray level
dependence matrix (14 features). We clipped the images prior to
feature extraction depending on organ composition for organs and
used a predefined clipping value for malignant lesions. We manu-
ally classified organs in 1 of 3 subgroups, namely, lung, soft tissue,
and bony structures. Then, for each category, prior to extracting the
radiomic features, the images were clipped between empirical
the study protocol. All 19 input combinations were trained
ing that input, whereas blank (white) star means that input

www.nuclearmed.com 3
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FIGURE 2. GTV segmentations for a case with Dice coefficient of 0.87 on diagnostic CT images. The top row shows a pair of
manual (ground truth) and deep learning (DL) segmentation output on a diagnostic CT imagewhere the axialmagnified slices
compare the manual (red) and DL (green) contours. The bottom row shows the corresponding axial slices segmented using DL
on CT of a PET/CT image. The 3D visualization shows the whole lung and GTV segmented.
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 on 08/28/2024
minimum and maximum values to emphasize the image histogram
on the heterogeneities inside these tissues. The clipping values were
−900 to 0, −300 to 300, and 0 to 800 HU for lung, soft tissue, and
bony structures, respectively. PET images were clipped between 0
and 40 SUV before feature extraction for all segmentation masks.

We extracted features using bin width equal to 10 HUs and
0.4 SUV for CTand PET images, respectively. PET and CT images
were resampled to 4 � 4 � 4 mm3 and 1.5 � 1.5 � 1.5 mm3, re-
spectively, prior to feature extraction.

Feature Selection and Machine Learning
We considered 19 possible combinations of 5 input data in-

cluding PET Organomics, CT Organomics, PET GTV, CT GTV,
and clinical information. Table 3 summarizes these 19 strategies.

Figure 1 shows the flowchart of steps followed in this study
protocol. We used combinations of 5 FS, 6 ML models, and 19
types of input in 3-fold data split to train overall 570 � 3 (1710)
models and compared the performance in terms of concordance in-
dex (C-index). Different FS algorithms were used in this study, in-
cluding minimal depth (MD), mutual information (MI), univariate
C-index (UCI), Boruta, variable hunting (VH), and variable hunting
variable importance (VH.VIMP). We implemented 6 ML models,
including Cox boost (CB), Cox proportional hazards regression
(CoxPH), generalized linear model network (GLMN), GLM
boosting (GLMB), random survival forest (RSF), and survival tree
(ST). Details about the implemented methods are provided in
supplementary material.

First, we applied 3-fold nested cross-validation for each in-
put. In each fold (external fold), we used z-score method to normal-
ize feature values based on train dataset and transformed the values
(mean and standard deviation) to test dataset. To remove redundant
feature, we used Spearman correlation test with a threshold of 90%.
This method removes one of the features that have a Spearman cor-
relation coefficient over 90%. Then, FS algorithms were applied on
the train dataset. The best selected features for each FSmethodwere
4 www.nuclearmed.com
fed to ML algorithms. Internal 3-fold cross-validation with grid
search was used for hyperparameter optimization. The detail of
these parameters is provided in Supplementary Table 1, http://
links.lww.com/CNM/A493. The trained model with best
hyperparameter was evaluated on test dataset with 1000 bootstraps.
Model evaluation was performed with C-index. Mean and standard
deviation of 3000 C-indices were reported for each model. The mlr
package version 2.18 in R 4.1.2 was used for model development.

Statistical Analysis
The top performance models with respect to the C-index

were selected for Kaplan-Meier (KM) curve analysis. The risk score
in the test dataset for each fold KMwas extracted and combined for
all patients. The risk scores were transformed to high-risk and low-
risk groups using the median value as the threshold. The log-rank
test was used to show significant differences between 2
groups (P < 0.05).
RESULTS

Segmentation Accuracy
Figure 2 shows an example of GTVs segmented on both di-

agnostic quality CTand CTof a PET/CT image for a case with Dice
coefficient equal to 0.87, which is lower than the average value. An
average Dice coefficient of 0.92 ± 0.08 was calculated on the 143
diagnostic cases showing excellent segmentation performance on
GTV segmentation. Figure 3 presents an example of organs seg-
mented on CT of a PET/CT image showing excellent performance
of organ segmentation model as reported in a previous study.20

Selected Features
Table 4 shows the number of selected features for every 14

possible combinations of inputs where at least 2 types of inputs
were used. In other words, CT GTV, PET GTV, CT Organomics,
PET Organomics, and clinical parameters were not included in this
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 3. 3D visualization of organ segmentations. Set1: Brain, eyeballs, vertebrae, clavicles, ribs, whole heart, rectus
lumborum muscle, small intestine, sacrum, hips, and femoral heads. Set2: Vertebrae, esophagus, aorta, heart substructures
(LV, RV, LV cavity, RA, LA), stomach, pancreas, colon, rectum, and bladder. Set3: Lung 5 lobes, ribs, sacrum, hips. Some organs
are repeated in all 3 sets for better visualization and as anatomical reference.
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Table since all the selected features were from the single input data.
The most frequently selected features were for PET Organomics.
The detailed names of features and organ names selected by all 5
FS models may be found in Supplementary Table 2, http://links.
lww.com/CNM/A493.

For inputs of PET Organomics + CT Organomics + PET
GTV + CT GTV (all inputs except clinical information), all 5 FS
methods selected mostly PET Organomics (86/150), and then for
CT Organomics (57/150) features, the most frequent selected or-
gans by all FS methods were aorta, whole lung textures, heart left
ventricle myocardium textures, and heart right ventricle textures.

Model Comparison
Table 5 summarizes the average and the best model C-indices

for every 19 combinations of inputs averaged over 3 folds. Supple-
mentary Table 3, http://links.lww.com/CNM/A493, depicts the C-
index for every 3 folds and all 570 combinations of FS and models.
The highest C-index (0.76) was achieved for a single fold usingMD
FS method, RSF machine, and PET Organomics input. The
resulting C-indices heatmap comparing all the 570 models are
depicted in Figure 4.

Table 6 summarizes the inputs for every 30 combinations of
FS and models with the highest C-index averaged over all folds.
PETOrganomics was used as input in 18/30 of those combinations,
whereas CTOrganomics was used in 14/30 combinations. It should
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
be noted that only 6/30 and 11/30 combinations used CT GTVand
PET GTV radiomics.

Figure 5 shows the KM curves for 9 selected models. GTV
MD/RSF FS and model using PET Organomics + CT
Organomics + PET GTV + CT as input showed the lowest P value
(0.00074), confirming its ability to separate high-risk patients from
the low-risk group.
DISCUSSION
Survival prognosis information may be useful in optimizing

treatment plans, risk stratification, and resource allocation. Artifi-
cial intelligence has been proven to be promising in predicting the
prognosis of patients with various malignancies.26–28 However,
the potential information in regions other than the GTV is often
overlooked and was not considered in NSCLC cancer prognosis.
Lee et al10 used peritumoral regions radiomics and demonstrated
its importance in 2-year survival prediction. Hosny et al11 showed
the importance of radiomics and dosiomics extracted from areas
surrounding the GTV in NSCLC patients in prognosis through ex-
plainable deep learning and importance maps. Mattonen et al13 re-
ported on the importance of metabolic tumor volume penumbra ex-
tended by 1 cm in NSCLC recurrence. To the best of our knowl-
edge, this is the first study exploring the added value of
information contained in regions other than the treatment planning
GTVand its surrounding tissues.
www.nuclearmed.com 5
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TABLE 4. Frequency of Selected Features by Every Input Data by All 5 Feature Selection Methods

The blue color bar shows the frequency. In cases where input information was not used, the value was replaced by “not included.”

Salimi et al Clinical Nuclear Medicine • Volume 00, Number 00, Month 2024
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We explored the survival prediction capability of different
sets of radiomic features extracted from different regions of the
GTV and other organs from PET and CT imaging modalities. We
6 www.nuclearmed.com
also exploited the available clinical information and extensively
tested 5 � 6 � 19 models in a 3-fold data split to avoid the effect
of random test/train split and invalid results. The aim of this study
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 5. Model Performance Comparison Based on Inputs in Terms of 3-Fold Average C-index

# Inputs

C-index (Average Over All Folds)

Mean Std Minimum Maximum

Clinical Only 1 Clinical 0.58 0.02 0.52 0.61
GTVOnly 2 PET GTV 0.59 0.02 0.55 0.63

3 CT GTV 0.59 0.02 0.55 0.62
4 PET GTV + CT GTV 0.59 0.02 0.55 0.63
5 PET GTV + Clinical 0.60 0.03 0.53 0.65
6 CT GTV + Clinical 0.59 0.02 0.54 0.63
7 PET GTV + CT GTV + Clinical 0.60 0.02 0.53 0.63

Organomics Only 8 PET Organomics 0.61 0.03 0.57 0.68
9 CT Organomics 0.61 0.02 0.55 0.67
10 CT Organomics + PET Organomics 0.60 0.03 0.52 0.68
11 PET Organomics + Clinical 0.60 0.02 0.57 0.65
12 CT Organomics + Clinical 0.60 0.02 0.57 0.63
13 PET Organomics + CT Organomics + Clinical 0.60 0.02 0.55 0.63

Single Modalities 14 PET GTV + PET Organomics 0.61 0.02 0.57 0.66
15 CT GTV + CT Organomics 0.60 0.02 0.56 0.65
16 PET GTV + PET Organomics + Clinical 0.60 0.03 0.54 0.66
17 CT GTV + CT Organomics + Clinical 0.59 0.02 0.52 0.62
18 PET Organomics + CT Organomics + PET GTV + CT GTV 0.59 0.02 0.55 0.67

All included 19 PET Organomics + CT Organomics + PET GTV + CT GTV + Clinical 0.60 0.02 0.55 0.65

The highest values of 0.68 and 0.67 achieved are highlighted with bold font.

Clinical Nuclear Medicine • Volume 00, Number 00, Month 2024 The Importance of PET/CT Healthy Organ Radiomics
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was to investigate the prognostic value of information extracted
from different regions. Hence, we used multiple combinations of
FS and ML methods to determine the approach achieving the best
performance. Our results demonstrated that there is much more in-
formation in Organomics that can be used to predict the prognosis
with AI. As summarized in Figure 4, all models achieving a C-
index more than 0.65 used Organomics, except one. The frequency
of the selected features in Table 4 indicates the importance of
Organomics in risk stratification, especially for the last 2 input com-
binations “PET Organomics + CT Organomics + PET GTV + CT
GTV” and “PETOrganomics + CTOrganomics + PET GTV + CT
FIGURE 4. C-indices heatmap comparing all the 570 models. Th
vertical axis depicts the inputs, whereas the horizontal access dep

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
GTV + Clinical” where the whole radiomics information from or-
gans and GTVs was fed into FS algorithm and most of the selected
features belong to PET Organomics and CT Organomics inputs for
all FS methods, except for MI that selected clinical information in-
stead and not the GTV information. Besides as presented in Table 6,
most FS/Model combinations achieved the best results using PET
Organomics and CT Organomics information. The most important
organs affecting patients’ prognosis were the aorta, lungs, and
heart substructures.

Our best models using PETOrganomics and CTOrganomics
C-index averaged over 3 folds were 0.68, whereas the highest C-
e colormap on the right shows the significance of colors. The
icts the FS/Model combination.
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TABLE 6. Highest C-index and the Corresponding Inputs Shown for Every 30 Combinations of FS/Model

FS-Model Best Inputs Overall C-index

MD–CB PET GTV + Clinical 0.63
MD–CoxPH PET Organomics 0.68
MD–GLMB PET Organomics 0.66
MD–GLMN PET Organomics 0.66
MD–RSF PET Organomics 0.67
MD–ST PET Organomics + CT Organomics + PET GTV + CT GTV 0.63
MI–CB CT Organomics 0.61
MI–CoxPH CT Organomics + PET Organomics 0.62
MI–GLMB CT Organomics 0.61
MI–GLMN CT GTV + Clinical 0.62
MI–RSF CT Organomics 0.66
MI–ST CT Organomics + PET Organomics 0.64
UCI–CB CT Organomics + PET Organomics 0.64
UCI–CoxPH PET GTV + PET Organomics + Clinical 0.64
UCI–GLMB CT Organomics + PET Organomics 0.64
UCI–GLMN CT Organomics + PET Organomics 0.65
UCI–RSF CT Organomics + PET Organomics 0.68
UCI–ST CT GTV + CT Organomics 0.64
VH–CB CT GTV + CT Organomics 0.62
VH–CoxPH PET GTV + PET Organomics 0.66
VH–GLMB PET GTV + PET Organomics 0.65
VH–GLMN PET GTV + PET Organomics 0.66
VH–RSF PET GTV + Clinical 0.63
VH–ST CT Organomics 0.62
VH.VIMP–CB PET Organomics 0.61
VH.VIMP–CoxPH PET GTV + Clinical 0.65
VH.VIMP–GLMB PET Organomics + CT Organomics + PET GTV + CT GTV + Clinical 0.64
VH.VIMP–GLMN PET GTV + Clinical 0.64
VH.VIMP–RSF CT GTV + Clinical 0.63
VH.VIMP–ST PET GTV + PET Organomics + Clinical 0.63
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index in a single fold was 0.76. Our best results using PETGTV, CT
GTV, and PET GTV + CT GTV in terms of C-index were 0.63,
0.59, and 0.63, respectively, which is in agreement with results re-
ported by Amini et al9 using the same inputs (0.63, 0.64, and
0.65, respectively), except CT GTV where the C-index achieved
is lower in our study. It should be mentioned that we used 3-fold
cross-validation without harmonization, whereas they used 2-fold
split strategy and ComBat harmonization. This comparison proved
that although we did not have access to the manual GTV segmenta-
tions, our deep learning segmentationmodel provided a comparable
GTV segmentation.

One limitation of our study was the lack of ground truth seg-
mentation on PET/CT images. We tried to overcome this issue by
using a large training dataset including the diagnostic CT for the
same group of patients to train the state-of-the-art nnU-Net model
through ensemble learning. We used CT images of PET/CT for
the same group of patients as part of the training dataset. It should
be clarified that the aim of this study was not to develop a general-
izable deep learning segmentation model. This study aimed to test
the hypothesis of the presence of important radiomics information
in regions other than the GTVand its surrounding tissues. We used
the deep learning models to transfer the segmentations from diag-
nostic CTs available in part of the dataset to PET/CT images. The
overall Dice of 0.92 ± 0.08, actually comparable with results re-
ported by Zhang et al29 andWang et al,30 demonstrated the success-
8 www.nuclearmed.com
ful transform of the segmentations. However, as we illustrate a case
with Dice coefficient equal to 0.87, which is lower than average in
Figure 2, there is a good match between the segmentations.We used
2 other datasets for training to overcome the image quality differ-
ence between diagnostic CT images and nonenhanced low-dose
CT images of PET/CT. It should be mentioned that we cannot claim
that organs other than the lungs were healthy organs; it may be ad-
ditional pathologies in other areas, which may be captured in the
radiomics textures. Organomics information might provide a more
accurate prediction of patients’ prognosis by classifying patients
as high or low risk. The added accuracy may be helpful in the
decision-making process regarding the selection of treatment plans
or in monitoring response to treatment.
CONCLUSIONS
There is important and useful information in terms of

radiomic features outside the primary malignancy regions, includ-
ing organs such as the aorta, heart, and lung, which can improve
the performance of AI algorithms. Our study suggests using as
much as possible information frommedical images toward generat-
ing a digital twin of patients with Organomics, GTV information,
and clinical data.
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 5. KM curves of 9 selected combinations of Inputs/FS/Model. #0: PET GTV + PET Organomics + Clinical/UCI/RSF, #1:
PETOrganomics + CTOrganomics + PETGTV + CTGTV + Clinical/UCI/RSF, #2: CTOrganomics/UCI/RSF, #3: CTOrganomics/
MI/RSF, #4: PET Organomics/MD/Coxph, #5: CT Organomics + PET Organomics/UCI/glmnet, #6: CT GTV + CT Organomics/
UCI/RSF, #7: CTOrganomics + PETOrganomics/VH/Coxph, #8: PETOrganomics + CTOrganomics + PET GTV + CT GTV/MD/
RSF. P values shown in the bottom of each curve. P values <0.05 are considered statistically significant.
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