
An efficient dual-domain deep learning network for sparse-view 
CT reconstruction

Chang Sun a,b, Yazdan Salimi b, Neroladaki Angeliki c, Sana Boudabbous c, Habib Zaidi b,d,e,f,*

a Beijing University of Posts and Telecommunications, School of Information and Communication Engineering, 100876 Beijing, China
b Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, CH-1211 Geneva, Switzerland
c Geneva University Hospital, Division of Radiology, CH-1211, Geneva, Switzerland
d Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
e Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
f University Research and Innovation Center, Óbuda University, Budapest, Hungary
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A B S T R A C T

Background and Objective: We develop an efficient deep-learning based dual-domain reconstruction method for 
sparse-view CT reconstruction with small training parameters and comparable running time. We aim to inves
tigate the model’s capability and its clinical value by performing objective and subjective quality assessments 
using clinical CT projection data acquired on commercial scanners.
Methods: We designed two lightweight networks, namely Sino-Net and Img-Net, to restore the projection and 
image signal from the DD-Net reconstructed images in the projection and image domains, respectively. The 
proposed network has small training parameters and comparable running time among dual-domain based 
reconstruction networks and is easy to train (end-to-end). We prospectively collected clinical thoraco-abdominal 
CT projection data acquired on a Siemens Biograph 128 Edge CT scanner to train and validate the proposed 
network. Further, we quantitatively evaluated the CT Hounsfield unit (HU) values on 21 organs and anatomic 
structures, such as the liver, aorta, and ribcage. We also analyzed the noise properties and compared the signal- 
to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the reconstructed images. Besides, two radiologists 
conducted the subjective qualitative evaluation including the confidence and conspicuity of anatomic structures, 
and the overall image quality using a 1–5 likert scoring system.
Results: Objective and subjective evaluation showed that the proposed algorithm achieves competitive results in 
eliminating noise and artifacts, restoring fine structure details, and recovering edges and contours of anatomic 
structures using 384 views (1/6 sparse rate). The proposed method exhibited good computational cost perfor
mance on clinical projection data.
Conclusion: This work presents an efficient dual-domain learning network for sparse-view CT reconstruction on 
raw projection data from a commercial scanner. The study also provides insights for designing an organ-based 
image quality assessment pipeline for sparse-view reconstruction tasks, potentially benefiting organ-specific 
dose reduction by sparse-view imaging.

1. Introduction

Computed tomography (CT) is an indispensable imaging modality 
widely used in clinical practice, providing highly detailed axial (cross- 
sectional) images of internal anatomical structures [1]. CT can be used 
to image almost any part of the body, making it valuable for a wide 
range of medical applications. Compared with other imaging modalities, 
CT scans are fast and can be advantageous in emergency situations 

where rapid diagnosis and decision-making are crucial. According to 
Harvard Health Publishing, over 80 million CT scans are performed in 
the US each year compared to about 3 million in 1980 [2]. However, the 
possible harmful effects of exposure to ionizing radiation from CT ex
aminations have become a subject of public concern. According to the 
report issued in 2009 by the National Council on Radiation Protection 
(NCRP), the largest portion of the increase in medical exposures came 
from CT scans, accounting for almost half of imaging medical exposures. 
A study by Gonzalez et al. [3] estimated that CT scans performed in the 
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US in 2007 might be related to approximately 29,000 cases of future 
cancer. Currently, the importance of radiation protection in medicine 
and the “as low as reasonably achievable” (ALARA) principle [4] have 
become an internationally increasing awareness. A large number of 
risk-reduction efforts have been made in CT radiation protection [5], 
including justification and optimization of CT procedures [6-8] and the 
development of low-dose imaging techniques while maintaining suffi
cient image quality for diagnostic purposes [9]. In this study, we focus 
on sparse-view CT imaging, which is considered a promising low-dose 
CT strategy that reduces the number of measurements by expanding 
the projection-view interval during acquisition.

Reconstructing CT images from sparse-view projections (sinograms) 
are challenging and ill-posed inverse problems. Conventional recon
struction algorithms include analytical methods, such as filtered back
projection (FBP) and iterative methods, such as Simultaneous Iterative 
Reconstruction Technique (SIRT) [10]. In recent years, various deep 
learning (DL)-based methods have been proposed. Most of these 
methods use large dataset and supervised learning strategy to map the 
input data to high-quality sinograms or images enabling to achieve high 
performance in terms of reducing artifacts and restoring structural de
tails compared to iterative methods. Projection-domain [11,12] and 
image-domain [13,14] DL methods focus on generating the missing 
projections and post-processing the images reconstructed from con
ventional methods, respectively. In particular, Zhang et al. [15] 
designed an effective DenseNet and deconvolution-based network 
(DD-Net) for image-domain reconstruction with the advantages of high 
reconstruction performance, small model size, and short running time. 
However, projection-domain methods lack post-processing of the 
reconstructed images, while image-domain methods do not fully utilize 
the raw measurement data from the sensor.

To make full use of the information in both domains, dual-domain DL 
methods were developed to enhance the sinograms and reconstructed 
images at the same time, e.g., DRONE [16], CDDCN [17], CLRecon [18], 
HDNet [19] and DualCNN [20]. However, the main drawbacks of these 
dual-domain joint learning networks are the large number of trainable 
parameters, high computational time and the independent optimization 
of sub-networks. For example, CDDCN has 42.1 M number of trainable 
parameters and the computational time of DRONE is about 138.48 s 
with image matrix of 512×512 and 624 detector elements on an NVIDIA 
TITAN XP GPU. Another popular dual-domain reconstruction scheme 
consists in directly learning the mapping between the sinogram and 
image domain [21,22]. On the other hand, Wu et al. [23] proposed a 
deep embedding attention-refinement (DEAR) network for 
ultra-sparse-view CT reconstruction. They constructed a new objective 
function for DEAR with constraints in the data, image, and sparsified 
transform domains. They also incorporated deep embedding, deep 
attention, and deep refinement modules based on DNNs for iterative 
optimization. Pan et al. [24] provided a novel iterative residual opti
mization network (IRON) to suppress the unobservable artifacts in the 
reconstructed CT images. They proposed a hybrid structure of the 

convolutional neural network (CNN) and Transformer called CAT and 
integrated it as a regularization term to IRON, which alternatively re
duces the residual measurements, noise, and artifacts in the image 
domain and the projection domain at each iteration stage based on the 
block-coordinate descent. IRON shows competitive reconstruction re
sults and good stabilities when coping with the tiny perturbation in 
input data. As each iteration applies the forward and back projection to 
the outcomes of the previous iteration, these iterative optimization 
methods require large hardware resources. They are time-consuming, 
especially for real CT projection data with large sizes. In recent years, 
with the great success of generative models in image-processing tasks, 
researchers have applied diffusion models to CT reconstruction tasks 
and achieved outstanding reconstruction performance in denoising and 
recovering structural details [25-27]. For example, Wu et al. [28] pro
posed a multi-channel optimization generative model (MOGM) for 
ultra-sparse-view CT reconstruction, integrating a multi-channel fusion 
strategy. This multi-channel-based data consistency policy relied on the 
original data and a multi-channel iteration optimization framework into 
the score-based generative model (SGM). The proposed method tackled 
the problem of instability of single-channel-based SGM and enhanced 
the reconstructed image quality with foundational theoretical supports. 
Wu et al. [29] also developed an unsupervised CT reconstruction 
network based on SGM to address the challenge of acquiring 
high-quality training data. They presented a novel model incorporating 
the strategy of the wavelet sub-network and the SGM sub-net to reduce 
the noise perturbations and improve the reconstruction performance 
effectively. Wang et al. [30] proposed a rapid-sampling strategy for 
SGM, namely the time-reversion fast-sampling (TIFA) score-based model 
for limited-angle CT reconstruction. TIFA can achieve nearly ×100 ac
celeration compared to traditional SGMs while maintaining comparable 
performance. Li et al. [31] also proposed a dual-domain collaborative 
diffusion Sampling (DCDS) model that includes sinogram and image 
domain diffusion processes for multi-source stationary CT reconstruc
tion. They designed a collaborative merging mechanism and an iteration 
optimization approach to enhance data consistency. However, due to 
the nature of SGM and the multi-channel design, these methods require 
more memory and time in the training or testing phase, which leaves 
room for further enhancing the computational efficiency.

Designing lightweight network models has become a hot research 
topic enabling to reduce the number of learnable parameters of a DL 
network and the requirement of large computational memory in the 
training and testing phases [32]. Lightweight network techniques can be 
broadly categorized into two types: designing network structures and 
model compression. Currently, designing specific convolution opera
tions (e.g., group convolution) to reduce the computational complexity 
of the model has been widely explored in low-level visual tasks, such as 
image denoising [33], low-light image enhancement [34], and image 
super-resolution [35]. In medical image enhancement tasks, Li et al. 
[36] proposed a lightweight VolumeNet based on group convolution and 
feature aggregation for super-resolution of medical volumetric data. 

Abbreviations

SNR signal-to-noise ratio
CNR contrast-to-noise ratio
CT computed tomography
FBP filtered back projection
SIRT simultaneous iterative reconstruction technique
DL deep learning
CBCT Cone-beam computed tomography
ADMIRE advanced modeled iterative reconstruction
RLFB residual local feature blocks
ODL operator discretization library

SART simultaneous algebraic reconstruction technique
CGLS conjugate gradient least squares
MAE mean absolute error
PSNR peak signal-to-noise ratio
SSIM structure similarity Index
MedianAE median absolute error
NPS noise power spectrum
nNPS normalized noise power spectrum
ROI region of interest
ICC intra-class correlation coefficient
SDE standard deviation of errors
SD standard deviation
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Cheng et al. [37] proposed a lightweight Unified Fusion Network 
(UNIFusion) based on the Ghost module and auto-encoder, which can be 
used for PET and MR image fusion. Ma et al. [38] proposed a lightweight 
block reconstruction network (LBRN) for CT reconstruction, which 
contains 708.9 M learnable parameters and can directly learn the 
mapping between the sinusoidal and image domains. Inspired by these 
works, we aimed to design lightweight CT reconstruction networks for 
both projection and image domains to reduce the model size and 
decrease the computational resource requirements when processing real 
projection data, thereby offering significant benefits in terms of effi
ciency and resource utilization.

The lack of clinical data is one of the problems in deep learning-based 
medical imaging applications. Especially, for the task of sparse-view CT 
reconstruction, raw projection data of clinical CT images are more 
difficult to obtain. Therefore, the use of synthetic incomplete-sinograms 
and sparse-view CT images to train DL networks has been widely 
explored. The most popular pipeline for incomplete-sinograms synthesis 
is to calculate the parallel/fan-beam projection data (sinogram) from the 
image, which includes the following steps: (i) collecting CT images from 
clinical, experimental, or computerized phantoms; (ii) setting scanning 
geometry parameters, e.g., the type of projection beams, the number of 
detector channels and the number of full projections per rotation; (iii) 
generating full-view sinograms using Radon transform or open-source 
toolboxes such as, ASTRA [39], TIGRE [40], or ODL (Operator Dis
cretization Library) [41]; (iv) performing noise degradation (“Gaussian 
+ Poisson” noise is widely used) according to the protocol and Beer
–Lambert law; (v) down-sampling the projected data to simulate 
sparse-view sinograms; (vi) reconstructing the corresponding 
sparse-view CT images from the sparse-view sinograms using FBP or 
other iterative methods; and (vii) validating the reconstructed images 
qualitatively (by radiologists for clinical outcomes) and quantitatively 
(using image-derived metrics).

The advantage of the above-mentioned approach is that it can 
simulate most scanning geometries and acquisition protocols without 
the need for real raw projection data. However, the drawback of using 
synthetic raw projections is that the simulation of CT scanning geome
tries inherently bears limitations and lack of realism even when using 
the most sophisticated approaches. This prevents us from understanding 
the accuracy and the computational cost of these methods on real CT 
imaging data from commercial medical CT scanners. Moreover, the 
simulated data may not match the actual data in statistical distribution, 
which may degrade the algorithm’s performance in clinical scenarios. 
More recently, efforts have been made to use clinical raw CT projection 
datasets for training and testing DL-based methods in CT reconstruction 
tasks. Moen et al. [42-44] proposed a low-dose CT image and projection 
dataset consisting of 299 clinical CT projection data from two different 
CT manufacturers to facilitate the development and validation of CT 
reconstruction on real CT data. However, only a few methods were 
evaluated. Besides, the experimental validation was not sufficiently 
focused in some previous studies. For example, the number of test 
subjects was small, the quantitative evaluation metrics were not 
compared in the region of interest, and diagnostic quality assessment by 
radiologists lacking.

In this study, we focus on investigating the effectiveness of sparse- 
view CT reconstruction methods on real clinical CT projection data. 
We propose a lightweight DL network that performs end-to-end joint 
learning in both projection and image domains. Different from the 
mentioned dual-domain methods, the proposed model has a small model 
size and competitive running time for raw CT data with a large projec
tion size. We trained and evaluated the model on real CT projection data 
and compared its performance with iterative reconstruction methods 
and state-of-the-art DL-based methods. The contributions of this study 
are as follows:

1. We propose an end-to-end dual-domain deep learning network for 
sparse view CT reconstruction. The proposed network is able to 

achieve good performance with a small model size (1.08 M training 
parameters, 4 MB storage size) and competitive runtime (0.3 s per 
slice on GPU) with joint hybrid domain learning for large projection 
sizes of real CT projection data.

2. Instead of simulating scan geometry and system noise to generate CT 
projections of CT images, we developed and validated the recon
struction algorithms using the clinical raw projection data directly 
from a commercial multi-slice spiral CT scanner.

3. We used a reconstruction platform (ReconCT, Siemens Healthineers, 
Erlangen, Germany) and the commercial reconstruction method 
advanced modeled iterative reconstruction (ADMIRE) to generate 
reference CT images directly from the raw projection data. The 
quality of the reference image is ensured.

4. In performance evaluation, we not only compared the numerical 
metrics of the proposed method and state-of-the-art methods, but 
also conducted organ-based assessment, subjective quality evalua
tion by radiologists, and computational cost evaluation.

2. Materials and methods

2.1. Patients and datasets

The workflow adopted in this study is given in Fig. 1. Sixty-four 
patients who underwent thoraco-abdominal oncologic follow-up PET/ 
CT scans were retrospectively included. Acquisitions were performed on 
a Biograph 128 Edge CT scanner with a helical scanning geometry with a 
curved panel detector having 736 detector elements along the detector 
arc, a source-to-object distance of 595 mm, a source-to-detector distance 
of 1085.6 mm, 2304 projected views uniformly distributed around 360◦

(one rotation), a gantry rotation time of 500 msec and a collimation of 
64 × 0.6 mm. Table 1 reports the scan parameters and patient’s 
characteristics.

2.1.1. Generation of reference CT images
The CT raw projection data were exported from the PET/CT console 

and loaded into an offline reconstruction platform ReconCT (version 
16.0.0.5593; Siemens Healthineers). ReconCT allows reading the CT 
raw data and performing the same commercially used reconstruction 
algorithms, such as ADMIRE, which is a widely used statistical iterative 
reconstruction method developed by Siemens Healthcare, that offers 
high performance in terms of noise and dose reduction. Reference CT 
images were reconstructed using the following parameters: 500 mm 
field-of-view (FOV), 512 × 512 matrix, 0.6 mm slice thickness, 0.6 mm 
increment, 0.98 mm spacing, ADMIRE (strength 3) and soft-tissue kernel 
(Br36f). We used 45 patient datasets for training (34,135 images), 6 for 
validation (440 images) and the remaining 13 for testing (10,713 
images).

2.1.2. Generation of multi-slice fan-beam sinograms
After data acquisition, we read the CT raw projection data using a 

customized MATLAB (MathWorks, MATLAB version R2021b) script and 
save the raw CT projections and meta-information into a file in HDF5 
format. The meta-information is necessary for the generation of the fan- 
beam sinograms and the subsequent image reconstruction. It includes 
the physical parameters of the scanner gantry and the CT detector pro
vided by the Siemens Healthineers, the acquisition geometry and scan
ning parameters selected by the imaging equipment operator, as well as 
the measurement angle of the projection and its relative position in the 
longitudinal direction during the acquisition.

We applied a sinogram rebinning method [45] to first convert the 
original raw helical CT projection from a curved panel detector geom
etry to a flat panel detector geometry, and then rebinned the helical 
projection into multi-slice circular fan-beam projections using a Python 
(version 3.9) script developed by Wagner et al. [43,46]. As a result, each 
raw helical CT projection data was converted into a stack of flat-panel 
detector-based fan-beam sinograms. The resolution of the fan-beam 
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sinogram was 736×2304 pixels. After generating the fan-beam sino
grams, we sparsely down-sampled the sinograms to 384 views to 
simulate the sparse view scanning geometry with a sampling rate of 1/6.

2.2. Proposed network

2.2.1. Conceptual design of the network
The purpose of this study was to develop an efficient deep learning 

method for reconstructing sparse-view CT images. We began with an 
image-domain post-processing method called DD-Net [15], which is a 
smaller model compared to other classic image-domain-based methods, 
such as Improved GoogLeNet [47], Tight frame U-Net [48], and 

RED-CNN [49]. DD-Net achieves similar reconstruction performance by 
using a combination of U-shape architecture, dense connections, and 
effective deconvolution operations. However, it does not preserve the 
original measured projection data, leaving room for further improve
ment in image quality. Therefore, we need a Sino-Net to ensure data 
fidelity in the sinogram domain. Additionally, we require an Img-Net to 
maintain consistency with reference images and correct errors in the 
image domain. Sino-Net and Img-Net are designed to enhance the 
reconstruction model within a dual-domain reconstruction framework. 
We aim to find a network structure that balances reconstruction per
formance and computational overhead. Many lightweight networks 
developed for image restoration tasks may meet this criterion, as 
mentioned in the Introduction section [32]. In this study, we only used 
residual local feature blocks (RLFBs) [50] in Sino-Net and Img-Net. RLFB 
is the core module of the Residual Local Feature Network (RLFN), which 
won first place in the main track of the NTIRE 2022 efficient 
super-resolution challenge [51]. We chose RLFB because it uses three 
convolutional layers for residual local feature learning to simplify 
feature aggregation and applies an enhanced spatial attention (ESA) 
[52] layer with a large reception field to focus on important spatial 
content and reconstruct rich edge and texture information. The network 
includes widely used operations in lightweight network architecture 
design strategies, such as strided convolutions and max-pooling with 
large window sizes.”

2.2.2. Network structure
We developed a dual-domain DL-based network for sparse-view CT 

reconstruction. As shown in Fig. 2, our method includes three steps: 
Firstly, we suppress the streaking artifacts in the FBP-reconstructed 
image using a classical image-domain reconstruction network DD-Net 

Fig. 1. Workflow adopted in this study, including CT raw data acquisition, full-view CT reconstruction using ReconCT software, full-view sinograms rebinning, 
sparse-view sinograms generation, sparse-view CT reconstruction and evaluation of reconstruction methods.

Table 1 
Summary of scan parameters and patient’s characteristics. (Values are expressed 
as mean ± standard deviation or number (percentage)).

Training Validation Testing

Number of cases 45 6 13
Age (years) 56± 14 62± 11 66± 10
Gender
Female 24 (53 %) 3 (50 %) 4 (31 %)
Male 21 (47 %) 3 (50 %) 9 (69 %)
Pitch
0.6 40 (89 %) 4 (67 %) 13 (100 %)
0.8 2 (4 %) 1 (17 %) 0 (0 %)
0.95 3 (7 %) 1 (17 %) 0 (0 %)
kVp
80 1 (2 %) 0 (0 %) 0 (0 %)
100 38 (84 %) 5 (83 %) 12 (92 %)
120 6 (13 %) 1(17 %) 1(8 %)
Tube current (mAs) 270.7± 129.6 373.5± 90.1 309.0± 99.6
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[15]. Secondly, we forward project the enhanced images to dense-view 
sinograms (512 views) and then use an efficient CNN (Sino-Net) to 
enhance the sinograms. Finally, we reconstruct the enhanced sinograms 
using FBP, concatenate them with the output of DD-Net, and finally use a 
lightweight CNN (Img-Net) to further improve image quality.

In the proposed method, as the FBP image Ifbp reconstructed from the 
sparsely sampled sinogram is highly degraded, it is first fed to DD-Net to 
recover an initial refined image Idd. As mentioned earlier, DD-Net is a 
well-known image-domain reconstruction network consisting of a U-Net 
based architecture with four times pooling operations to extract deep 
features and combining the dense connections between different layers 
and deconvolution operations to improve the reconstruction quality. 
Effectiveness of DD-Net is the motivation behind its use. Compared with 
other image-domain reconstruction networks, it presents advantages in 
terms of computational speed compared to Framing U-Net [48], which 
performs wavelet transforms and is more lightweight with only 0.56 M 
training parameters compared with Improved GoogLeNet [47], which 
has 1.25 M training parameters.

Despite the performance improvement achieved by DD-Net, the 
intrinsic information of the raw projection is not directly used. There
fore, we perform sinogram recovery after the initial image-domain 
refinement to ensure the data consistency of the projection data. Spe
cifically, we forward project the initial refined image Idd to a dense-view 
sinogram Sin with 512 views using the same fan-beam geometry. Then, 
we propose using Sino-Net lightweight model for sinogram enhance
ment. We project the image to dense-view instead of full-views (2304 
views) due to the balance between the performance improvement and 
the computational burden of the dual-domain network. We also 
designed the Sino-Net architecture based on this principle.

Inspired by recent DL-based image super-resolution approaches that 
achieve high running speed while maintaining image quality [50], we 
designed the Sino-Net based on residual local feature blocks (RLFBs), 
which is the core module of the Residual Local Feature Network (RLFN) 
[50] that won the first place in the main track of NTIRE 2022 efficient 
super-resolution challenge [53]. As shown in Fig. 2, the dense-view 
sinogram Sin first uses a 3 × 3 convolutional layer to extract the 
spatial feature fs, followed by n cascaded RLFBs. The RLFB first uses 

three stacked 3 × 3 convolutional layer+ReLU layers to perform residual 
learning; at this time, the refined feature is obtained. Using the residual 
feature learning has advantages in suppressing the training instability 
and improving the trainability. Then, a 1 × 1 convolutional layer+ReLU 
layer is employed to further combine the feature information across 
channels. Subsequently, a powerful enhanced spatial attention (ESA) 
block is used at the end, with a large receptive field to get more repre
sentative features for signal recovery. The ESA first reduces channel 
dimensions using a 1 × 1 convolutional layer, and then enlarges the 
receptive field by combining a strided 3 × 3 convolutional layer (stride 
2) and a max pooling layer (kernel size 7, stride 3). After further 
extracting the information from the feature using a 3 × 3 convolutional 
layer, an interpolate operation is applied to recover the spatial di
mensions. A skip connection is applied to forward the feature obtained 
before the spatial dimension reduction. Finally, the attention mask is 
generated using a 1 × 1 convolutional layer+Sigmoid layer.

After n stacked RLFBs, a 3 × 3 convolutional layer is applied and the 
residual feature fr is obtained. Then, the spatial feature fs and the re
sidual feature fr are fused and reconstructed to an enhanced dense-view 
sinogram Sen using a cascaded leaky ReLU+3 × 3 convolutional 
layer+leaky ReLU layer. Finally, the enhanced dense-view sinogram Sen 
is inputted into an FBP layer to reconstruct an enhanced image Ien.

After acquiring the initial refined image Idd recovered by DD-Net, and 
the enhanced image Ien recovered by Sino-Net, we concatenate them 
together and use a small model, img-Net, to reconstruct the structure 
details in the CT image. Similar to Sino-Net, we also apply RLFB to build 
img-Net, but with fewer layers to reduce the computation cost. The ar
chitecture of img-Net is shown in Fig. 2.

2.2.3. Training
The proposed network was trained in an end-to-end manner using an 

overall mixed loss function as follows: 

MAE =

∑M
i=1

∑N
i=1|x(i, j) − x̂(i, j)|

MN
(1) 

where Igt denotes the reference CT images, Sgt denotes the forward 
projection of Igt with 512 dense views. Ien, Sen, and Io denote the output of 

Fig. 2. Proposed dual-domain DL-based sparse-view CT reconstruction network.
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DD-Net, Sino-Net and Img-Net, respectively. Mo is the binary mask for 
image regions belonging to the patient body. We empirically set α = β =
1 to achieve optimal performance. We used PyTorch [54] for network 
training and ODL [41] for the implementation of FBP and forward 
projection. The training parameters were as follows: optimizer=Adam 
[55], initial learning rate=2e-4, batch size=1, and training epoch=10. 
The network was trained on a PC equipped with a NVIDIA 2080Ti GPU.

Prior to the training, CT values were clipped to [− 1000, 2000] HUs 
and then normalized to [0, 1]. Sinogram values were clipped to [0, 9] 
and then normalized to [0, 1]. The number of RLFB in Sino-Net and Img- 
Net was set to 6 and 2, respectively. The channel numbers of the pro
posed network, empirically chosen according to [50], are shown in 
Fig. 2.

2.3. Evaluation strategy

We compared the performance of the proposed method with FBP, 
three iterative reconstruction methods, including simultaneous alge
braic reconstruction technique (SART) [56], SIRT [10], and the conju
gate gradient least squares (CGLS) [57], and three DL-based methods, 
including the image-domain postprocessing method DD-Net [15], which 
has been a common benchmark model for DL-based methods, a 
projection-to-image DL-based method LRR-CED [22], and a 
dual-domain learning approach, namely CLRecon [18]. The motivation 
behind the choice of LRR-CED and CLRecon was that the two methods 
have been tested on simulated or real CT data with projection geometry 
similar to the dataset used in this study. For example, the same fan-beam 
geometry with large projection size (2304×736) or (1152×736) was 
used. Besides, these two methods perform an end-to-end network 
training, which is easy to implement and is advantageous in terms of 
computational cost.

The ODL library was used to implement FBP and iterative recon
struction methods. The number of iterations for SART, SIRT and CGLS 
were 300, 200 and 18, respectively. FBPConvNet [13] was used as the 
base network for CLRecon, as used in the original paper. For LRR-CED, 
we used the U-Net-based structure LRR-CED(U) as it performed better 
than DenseNets-based network LRR-CED(D) in terms of PSNR and SSIM 
in the experiment of real CT data in the original study. The training 
parameters of DD-Net, LRR-CED(U), and CLRecon were similar to 
implementations reported in the original papers. All comparisons were 
implemented on the same PC as the proposed network.

2.3.1. Objective overall quality evaluation
All CT images were cropped to cover only the patients’ body contour 

to eliminate the effect of the bed and background air. The mean absolute 
error (MAE), peak signal-to-noise ratio (PSNR), and structure similarity 
(SSIM) were used. They are defined as follows: 

MAE =

∑M
i=1

∑N
i=1|x(i, j) − x̂(i, j)|

MN
(2) 

PSNR = 20 × log10

(
MN ‖ x‖∞

‖ x − x̂‖

)

(3) 

SSIM =
(2μxμx̂ + C1)(2σxx̂ + C2)(

μ2
x + μ2

x̂ + C1
)(

σ2
xσ2

x̂ + C2
) (4) 

where x and x̂ denote the reconstructed image and reference image, 
respectively. M and N denote the numbers of pixels for the row and 
column, respectively. μx and μx̂ are the mean of images x and x̂, σ2

x and 
σ2

x̂ are the variance of x and x̂, σxx̂ is the covariance of x and x̂, C1 =

0.01L and C2 = 0.03L are constants with L denotes the dynamic range of 
the reference image. Before evaluation, the intensity of the recon
structed image and reference image were clipped to [− 1000, 2000] HUs, 
and further normalized to [0, 1] to measure the PSNR and SSIM. The 
MAE and PSNR metrics were measured in only the region containing the 

patient’s body.

2.3.2. Organ-based assessment
In addition, we performed an organ-based assessment by comparing 

the reconstruction performance in different anatomical structures. 
Firstly, an automated segmentation network [58] was applied on five 
test cases to segment the body into 21 regions including the whole heart, 
left/right atrium, left/right ventricle, myocardium, lungs, adrenal, 
spleen, liver, kidneys, pancreas, stomach, esophagus, colon, small 
bowel, aorta, autochthonous dorsal musculature (autochthon), clavi
cles, ribcage and vertebrae. Fig. 3a displays the segmentation results of 
one case. Subsequently, the median of all the absolute differences be
tween the predicted CT values and the reference CT values, denoted as 
median absolute error (MedianAE), was used to measure the average 
prediction performance of the models in different anatomical structures 
because it is insensitive to outliers compared to MAE. The standard 
deviation of the prediction errors, SDE, was used to evaluate the spread 
of the prediction errors. The MeidianAE and the SDE were defined as 
follows: 

MedianAE = median (|y1 − ŷ1|, ⋯, |yn − ŷn|) (5) 

SDE = standard deviation (y1 − ŷ1, ⋯, yn − ŷn) (6) 

where yi and ŷi denote theith reconstructed CT value and the reference 
CT value of the evaluated organ area,respectively. n denotes the number 
of voxels of the organ being evaluated.

2.3.3. Analysis of lung lesions and liver lesions
The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) 

were used as metrics for evaluating the reconstruction quality in the 
lung and liver area. They were compared between images reconstructed 
using different methods. One radiologist with over 10 years experience 
segmented the lung and liver lesions manually on the test dataset. In the 
liver, the HU value of the lesion was obtained using a region of interest 
(ROI) as large as possible (range 13–97 mm2), drawn on the slice con
taining the lesion. To measure the mean HU value of the liver, two 
circular ROIs (each 107 mm2) were placed within 30 mm of the lesion, 
avoiding the vessel and intestinal gas. Similarly for the lung, a ROI as 
large as possible (range, 30–106 mm2) was drawn on the image con
taining the lesion. Besides, three circular ROIs (each 69 mm2) were 
placed in the lung to measure the HU value of the lung. For the com
parison of images reconstructed by different methods, the ROIs were 
first defined on the reference images and then pasted to other images. 
The radiologist evaluated the 13 cases from the test datasets. After 
excluding cases with no liver lesions or small lesions (<10 mm2) in the 
lung, 5 and 4 cases were included for calculating the CNR and SNR of the 
liver and lung, respectively.

The SNR of the liver and the CNR of the lesion to the liver was 
calculated using the following formulas: 

SNRliver = ROIliver/σliver (7) 

CNRlesion(liver) =
⃒
⃒ROIlesion(liver) − ROIliver

⃒
⃒
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

σ2
lesion(liver) + σ2

liver

)/
2

√

(8) 

where ROIliver and σliver denote the mean and the standard deviation of 
CT HU value within the liver ROIs, respectively. ROIlesion(liver) and σlesion 

(liver) denote the mean and the standard deviation of CT HU value within 
the liver lesion ROIs, respectively. In the same way, the CNR of the lesion 
in the lung was calculated using the following formula: 

CNRlesion(lung) =
⃒
⃒ROIlesion(lung) − ROIlung

⃒
⃒
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

σ2
lesion(lung) + σ2

lung

)/
2

√

(9) 

where ROIlung and σlung denote the mean and the standard deviation of 
CT HU value in the lung ROIs, respectively. ROIlesion(lung) and σlesion(lung) 
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denote the mean and the standard deviation of CT HU value in the lung 
lesion ROIs, respectively.

2.3.4. Analysis of noise properties
We conducted a phantom experiment to investigate the noise prop

erties according to the techniques reported in AAPM Task Group Report 
233 [59]. A water phantom was scanned using the same scanner and 
protocol as the dataset (tube current of 75 mAs, tube voltage of 120 kVp, 
pitch of 0.8, exposure time of 0.5 s, slice thickness of 0.6 mm, pixel 
spacing of 0.98 mm, reconstruction field-of-view of 500 mm). 
One-dimensional Noise Power Spectrum (NPS) and normalized NPS 
(nNPS, divided by total noise power) were measured in the uniform 
section of the phantom to comprehensively analyze the image noise 
magnitude and texture.

The ROIs for the measurement of noise magnitude were placed in 
five areas (center, 3, 6, 9, and 12 o’clock), shown in Fig. 3b. The 
diameter of the ROI was approximately 22 pixels (21.5 mm). The noise 
magnitude was measured as the average standard deviation of pixel 
values across the ROIs for five images. The ROIs for calculating NPS 
were at the center of the images shown in Fig. 3c using 50 slices. The 
squared ROIs were approximately 28 × 28 pixels (~27.3 × 27.3 mm) in 
size. Mean frequencies of NPS fav were measured to describe the noise 
texture, as fine texture usually indicates NPS has higher mean and peak 
frequencies.

2.3.5. Subjective quality assessment
A total of 13 sparse-view test images reconstructed with various al

gorithms including our proposed methodology were presented to two 
radiologists blinded to patient IDs or reconstruction algorithms. An in- 
house image display and reviewing program was designed and the ra
diologists scored images in terms of image quality, diagnostic confi
dence, and conspicuity in scale of 1 to 5 (1: unacceptable, 2: poor, 3, 
average, 4: high, and 5: excellent). The scores were compared between 
the reviewers and reconstruction algorithms.

The interobserver variability of the two radiologists was assessed 
using the Spearman correlation coefficient, ρ, and the intra-class cor
relation coefficient (ICC), with 95 % confidence interval and the p-value. 
ρ is widely used in the image quality assessment (IQA) field [60,61] to 
describe the monotonic relationship between the ratings of two ob
servers, and can be interpreted as describing anything between no as
sociation (ρ = 0) to a perfect monotonic relationship (ρ = − 1 orρ = +1). 
ICC is also a typically used metric in medical imaging research to assess 
the consistency of the rating scores of physicians [62,63]. An ICC < 0.40 
indicates poor agreement, 0.40–0.59 fair agreement, 0.60–0.74 good 
agreement, and 0.75–1.0 excellent agreement, following the guidelines 
[64].

The number of test images was limited and the distribution of scores 
was not normally distributed. Hence, we used non-parametric tests. To 
compare the subjective scores of the proposed method with other 
reconstruction methods, a one-sided paired Wilcoxon signed rank test 
was performed to analyze the statistical significance of the rating results. 
p-value <0.05 was considered statistically significant in all analyses.

3. Results

3.1. Objective overall quality evaluation

Table 2 reports the means and the standard deviations of MAE, PSNR 
and SSIM results of different methods. The proposed network achieved 
an MAE of 29.80±3.86 HUs (i.e. 68 %, 57 %, 42 % and 43 % reduction 
compared to FBP, SART, SIRT and CGLS, respectively), a PSNR of 32.80 
±1.41 dB (i.e. 35 %, 23 %, 17 % and 16 % improvement compared to 
FBP, SART, SIRT and CGLS, respectively), and SSIM of 0.968±0.008 (i.e. 
14 %, 9 %, 5 % and 5 % improvement compared to FBP, SART, SIRT and 
CGLS, respectively). Dual-domain-based DL methods LRR-CED(U) and 
CLRecon show superior performance to DD-Net image-domain-based DL 
method. The proposed method achieved competitive results compared 
to LRR-CED(U) and CLRecon.

3.2. Organ-based assessment

Table 3 summarizes the MedianAE results achieved by the various 
reconstruction methods in different body regions. Among iterative 
reconstruction methods, SIRT achieved smaller MedianAE than SART 
and CGLS in almost all assessed body parts. The DL-based methods 
achieved a smaller MedianAE value than FBP and iterative reconstruc
tion methods. The proposed method achieved smaller MedianAE 
compared to DD-Net (p-value<1e-6), LRRCED (p-value<1e-6), and 
CLRecon (p-value<1e-4). Indeed, we observed that all methods have 
relatively larger MedianAE values in the clavicle, ribcage and vertebrae 

Fig. 3. Example of organ segmentation results and ROI placement for analyzing noise properties. (a) organ segmentation result. (b) ROI placement for measuring the 
noise magnitude. (c) ROI placement for calculating noise power spectrum.

Table 2 
Comparation of quantitative results achieved by the different methods on the 
testing dataset with 384 views.

Method MAE (HU) PSNR (dB) SSIM

FBP 94.39 ± 10.73 24.25 ± 1.47 0.846 ± 0.045
SART 69.09 ± 9.85 26.61 ± 1.26 0.883 ± 0.046
SIRT 51.17 ± 6.36 28.13 ± 1.14 0.925 ± 0.017
CGLS 51.92 ± 6.02 28.17 ± 1.06 0.923 ± 0.019
DD-Net 37.74 ± 3.49 31.14 ± 1.17 0.950 ± 0.012
LRR-CED(U) 34.33 ± 4.42 31.46 ± 1.41 0.958 ± 0.011
CLRecon 32.18 ± 4.69 32.23 ± 1.40 0.965 ± 0.008
Ours 29.80 ± 3.86 32.80 ± 1.41 0.968 ± 0.008
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bones of the skeleton system. Organs with relatively smooth (low fre
quency) regions have relatively smaller MedianAE, e.g., liver and 
spleen, compared to organs with many regions with a lot of CT intensity 
variation (high frequency), e.g., lungs, colon and small bowel. We can 
also observe similar results on the SDE shown in Table 4. To compare the 
performance of the proposed model in different body regions more 
intuitively, Fig. 4 illustrates the linear regression plots (reference CT 
value vs. predicted CT value) and the residual plots of the proposed 
method in different anatomical regions.

3.3. Qualitative visual assessment

Fig. 5 shows the reconstructed lung images of different methods 
under 384 views and the corresponding ROIs. Below each reconstruction 
result, the difference between the reference and reconstructed images 
obtained by the different methods is displayed (the lighter color repre
sents the smaller error). It can be observed that FBP and iterative 
reconstruction results suffer from noise and streaking artifacts. DL-based 
methods can remove the artifacts, preserve organ structure, and produce 
more smoothed images. Zoomed-in images depict that the proposed 
method can reconstruct fine structures e.g., muscle structures and the 

shape of the esophagus, and restore more high-frequency feature details, 
e.g., bronchial tubes and the edge of the spine. It can be observed in the 
difference images that the FBP results have the most obvious errors 
among all methods. Iterative methods improve the image quality with 
less noise, but the errors of structure edges are still significant. DL-based 
methods produce slight errors in most soft-tissue regions, e.g., fat and 
muscles. The proposed method has the least errors in the structure edges 
among DL-based methods.

Fig. 6 displays the abdomen images reconstructed by different 
methods and ROIs defined on the liver, spleen, stomach and aorta. We 
observed that in the zoomed-in liver, spleen and stomach regions, FBP 
and iterative methods results have noise signals and streak artifacts. DD- 
Net results are clearer but still have little noise. LRCEED(U) and CLRe
con suppress the noise but produce overly-smoothed images. The pro
posed method improved image quality by providing more details in the 
organ areas and fewer errors in the structure edges. Similar results can 
be observed in the aorta region. LRCEED(U) and CLRecon reconstructed 
vessels are blurrier than those reconstructed using the proposed method.

Fig. 7 displays the abdomen images reconstructed by different 
methods and ROIs of the kidney, colon and small bowel. In the zoomed- 
in kidney area, the FBP and iterative methods results have severe 

Table 3 
Organ-based evaluation results (MedianAE, HU) of different methods. Evaluation was performed on five testing cases with 384 views.

Body Part FBP SART SIRT CGLS DD-Net LRR-CED(U) CLRecon Ours

WholeHeart 73.4 54.0 29.2 32.2 24.8 21.0 19.6 19.6
Atrium(R) 73.2 54.6 31.2 33.8 24.6 22.4 20.6 19.8
Atrium(L) 79.0 56.6 29.2 34.2 24.4 19.4 18.4 18.4
Ventricle(L) 73.0 52.2 27.0 29.2 22.0 17.2 16.4 16.2
Ventricle(R) 72.2 53.2 28.2 30.4 22.8 20.8 19.6 19.2
Myocardium 74.0 54.8 30.4 33.4 27.4 20.0 19.8 19.6
Lungs 68.2 55.2 38.2 39.6 28.0 29.0 35.2 25.2
Adrenal Glands 82.4 59.4 31.6 33.6 28.2 35.2 29.8 28.8
Spleen 76.6 54.2 29.4 32.0 24.8 20.2 17.4 17.2
Liver 78.4 56.6 28.4 30.8 22.0 19.6 16.4 16.4
Kidneys 78.8 57.0 32.2 34.0 28.0 27.4 24.0 23.2
Pancreas 77.8 55.4 29.0 31.2 25.2 23.6 22.0 21.4
Stomach 78.0 55.8 30.8 32.0 26.2 22.4 21.6 21.0
Esophagus 73.4 54.8 35.2 37.0 28.0 29.4 25.4 24.4
Colon 79.4 60.0 44.2 45.6 36.4 39.6 37.2 34.4
Small Bowel 77.8 57.6 36.4 38.2 30.2 28.4 26.8 25.4
Aorta 74.8 54.2 32.2 35.4 25.4 23.0 20.8 20.0
Autochthon 73.6 52.4 28.2 29.0 26.2 20.2 18.8 18.4
Clavicles 100.7 90.2 112.6 104.8 76.4 71.6 64.2 56.8
RibCage 125.2 111.2 121.6 124.2 78.0 76.0 64.2 56.6
Vertebrae 92.8 73.6 60.0 60.6 53.4 51.6 46.2 43.0

Table 4 
Organ-based evaluation results (SDE, HU) of different methods. Evaluation was performed on five testing cases with 384 views.

Body Part FBP SART SIRT CGLS DD-Net LRR-CED(U) CLRecon Ours

WholeHeart 109.5 80.2 45.4 48.5 35.4 35.5 34.4 33.6
Atrium(R) 111.9 86.5 58.6 59.9 46.7 47.9 45.3 42.9
Atrium(L) 117.1 83.5 42.3 46.1 32.8 32.6 31.7 31.5
Ventricle(L) 106.8 75.9 35.6 40.9 24.7 23.9 23.7 24.1
Ventricle(R) 106.9 77.3 40.1 43.6 31.8 31.4 30.7 30.5
Myocardium 111.6 85.5 52.2 55.9 43.8 41.9 39.9 41.5
Lungs 112.7 99.1 90.8 89.3 71.3 72.4 66.5 61.6
Adrenal Glands 121.4 87.8 46.5 49.3 42.4 40.7 39.5 37.1
Spleen 113.6 79.6 45.1 48.2 33.4 31.7 30.3 30.0
Liver 118.5 82.5 41.1 43.8 28.7 27.2 26.3 26.1
Kidneys 130.7 84.2 48.9 51.2 41.3 41.2 39.6 36.7
Pancreas 114.7 81.0 42.1 44.5 34.8 34.7 34.4 33.0
Stomach 117.0 84.5 51.4 53.5 41.7 42.5 40.7 38.8
Esophagus 109.6 82.1 69.5 66.0 53.8 56.4 47.2 40.7
Colon 146.6 109.2 99.7 97.6 87.2 92.1 85.7 78.2
Small Bowel 155.8 99.8 83.8 82.8 70.3 71.8 66.5 63.0
Aorta 117.9 85.8 67.4 66.9 47.4 48.5 44.2 40.0
Autochthon 122.8 76.7 39.6 42.2 30.8 30.7 29.8 28.7
Clavicles 172.2 161.5 187.7 178.5 160.0 157.0 142.1 129.0
RibCage 195.8 172.7 171.6 172.4 132.7 131.9 117.5 109.4
Vertebrae 154.1 123.9 119.7 116.4 106.0 111.5 101.8 92.8
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Fig. 4. Linear regression plots (actual reference CT value VS. predict CT value by the proposed method) and residual plots of different anatomical structures of one 
test case.
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degradation. DL-based methods significantly reduce the artifacts, 
recover organ shape and enhance the contrast. The proposed method 
gets closer to the reference image regarding the contours and internal 
details of the kidney. In the zoomed-in colon and small bowel region, the 
FBP reconstructed results contain severe streak artifacts and loss of in
formation regarding organ structures with a very low signal-to-noise 
ratio. Iterative methods suppress the artifacts slightly whereas DL- 

based methods further eliminate streaking artifacts and reproduce 
well organ structures. However, it can be observed that although the 
proposed method can recover most organ shapes, reconstructing rich 
features and details in the colon and small bowel area is still challenging.

Fig. 8 compares the coronal planes of one testing sample recon
structed using different methods with lung window [− 1000 200] HUs 
and abdomen window [− 160 240] HUs, respectively. We observe that 

Fig. 5. Visual comparison of sparse-view reconstructions of different methods (display window [− 1000, 1000] HUs). The images in the third, fifth, seventh and ninth 
rows represent zoom-in regions (yellow, blue and green boxes). Below each reconstruction result, the difference images obtained by subtracting the reference image 
from the reconstructed image (display window [− 400 400] HUs).
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the proposed method achieves better results in the recovery of structure 
details of organs compared to other methods, e.g., the artery in the lung 
region and the veins in the liver. The difference images show that the 
proposed method provides the lowest reconstruction error compared to 
other methods, especially in the edges of the rib cage and contours of 
organs.

Fig. 9 compares the sagittal planes of one testing sample recon
structed using different methods. The difference images show that the 
proposed method outperforms other methods in reducing the noise and 
restoring the edges of the spine. The visual performance of the proposed 
method is further demonstrated in the 1D intensity profiles shown in 
Fig. 10, where the results achieved by the proposed method are closer to 
the reference compared to other methods.

3.4. Lung and liver lesions analysis

In the quantitative analysis results shown in Table 5, the standard 
deviations (SDs) of CT HUs measured in the liver on DL-reconstructed 
images are lower than those of FBP, iterative methods and reference 

images. In addition, DL-reconstructed images show higher SNRliver than 
images reconstructed from iterative methods. These results indicate the 
high ability of DL-based methods to suppress the noise caused by sparse- 
view projections. In addition, the CNRslesion(liver) of DL reconstructed 
images are higher than those of iterative methods, and the CNRlesion(liver) 
of the images reconstructed by the proposed method (3.85±0.88) is 
close to CNRlesion(liver) of reference images (4.04±1.50). Besides, the 
CNRlesion(lung) of DL reconstructed images are also higher than those of 
iterative methods. LRR-CED(U) achieved the highest CNRlesion(lung) 
among DL-based reconstruction methods (24.58± 6.39), but the value is 
still lower than the reference images (26.27±2.76).

3.5. Noise properties analysis

Fig. 11a shows the noise magnitude of different methods. The 
average noise magnitude is generally lower for DL-based methods than 
FBP and iterative methods. It can also be observed in the noise texture 
images shown in Fig. 11b that artifacts and noise are still retained in the 
FBP and iterative reconstructed images, while images reconstructed 

Fig. 6. Visual comparison of sparse-view reconstructions of different methods (display window [− 800, 1000] HUs). The images in the third, fifth, seventh and ninth 
rows represent zoom-in regions (yellow, blue and green boxes). Below each reconstruction result, the difference images obtained by subtracting the reference image 
from the reconstructed image (display window [− 400 400] HUs).
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using DL-based methods are smoother. Fig. 11c and d show the NPS and 
nNPS curves, respectively. Overall, the mean frequencies of NPS fav of 
the DL methods shift to the low-frequency domain. This also indicates 
that the DL methods suppress the noise and generate smoother images as 
the low-frequency noise occupies a larger fraction than the high- 
frequency noise. The reference images have higher fav compared to 
images of DL-based methods. As mentioned earlier, fine texture usually 
indicates that NPS has higher fav. The proposed method has 11 %, 25 % 
and 25 % higher fav than DD-Net, LRR-CED(U) and CLRecon, 
respectively.

3.6. Subjective quality assessment

The radiologists achieved fair and good agreements in the rating of 
the confidence, conspicuity, and overall image quality with 
0.70<ρ<0.73, 0.56<ICC<0.72 and p-value<0.001 (Table 6.).

Table 7 shows the subjective scores of different methods (repre
sented as mean ± SD), whereas Fig. 12 shows the distribution of the 
scores. Compared to FBP, SART has lower mean scores for diagnostic 
features; on the other hand, SIRT and DD-Net improved the confidence 
and conspicuity of the anatomic structures as well as the overall image 
quality. However, the mean scores of the overall image quality of FBP, 
SIRT, SART, and DD-Net are <3, which fails to fully meet the diagnostic 
requirement. The mean scores of CGLS, LRR-CED(U), CLRecon, and the 
proposed method in all aspects are greater than 3, which shows better 
visual performance. The proposed method achieved the highest mean 
scores in all aspects of the subjective evaluation. Significant improve
ment of subjective image quality scores is found in the proposed method 

compared to FBP, SART, SIRT and DD-Net (all p-value<0.001) (Table 8) 
The subjective scores of the proposed method are not significantly 
greater than CGLS (p-value>0.05). For the overall image quality scores, 
the proposed method is not significantly better than LRR-CED(U) and 
CLRecon (p-value>0.05).

3.7. Computational cost and memory requirements

We assessed the convergence of SIRT, SART and CGLS iterative 
reconstruction methods. We plotted the running time vs. iteration 
number and the MAE vs. iteration number curves for iterative recon
struction methods. The running time and the MAE metric were calcu
lated by averaging the reconstruction time and the MAE value on 300 
test images. As mentioned earlier, all methods were tested on the same 
PC with NVIDIA 2080Ti GPU. Fig. 13a shows the running time vs. 
iteration number curves of iterative methods. The reconstruction time of 
SIRT, SART and CGLS increases linearly with the number of iterations. 
CGLS runs slightly longer than SIRT per iteration, while SART has the 
shortest computation time per iteration. Fig. 13b shows the MAE vs. 
iteration number curves. The MAE of SIRT and SART converge after 200 
and 300 iterations, respectively. The MAE value of CGLS increases after 
18 iterations. CGLS and SIRT achieve smaller MAE than SART after 
convergence.

Table 9 summarizes the computational complexity of all recon
struction methods. Fig. 13c shows the scatter plot of MAE vs. running 
time of the different methods. It can be observed that CGLS is the most 
efficient among iterative reconstruction algorithms, achieving a similar 
MAE to SIRT but roughly nine times faster. Among the DL-based 

Fig. 7. Visual comparison of sparse-view reconstructions of different methods (display window [− 300, 500] HUs). The images in the third, fifth, seventh and ninth 
rows represent zoom-in regions (yellow, blue and green boxes). Below each reconstruction result, the difference images obtained by subtracting the reference image 
from the reconstructed image (display window [− 400 400] HUs).
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Fig. 8. Visual comparison of sparse-view reconstructions of different methods (coronal plane). The images in the first and second row are displayed with lung widow 
[− 1000 200] HUs. The images in the third and fourth row are displayed with abdomen window [− 160 240] HUs. Below the reconstruction results, the difference 
images obtained by subtracting the reference image from the reconstructed image (display window [− 400 400] HUs).
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methods, DD-Net and LRR-CED(U) are the fastest, with similar recon
struction times to CGLS. The proposed method has a comparable 
reconstruction time to CLRecon. Fig. 13d shows the scatter plot of MAE 
vs. parameter numbers of DL-based methods. We observe that the pro
posed method achieved the lowest MAE, and the model size of the 

proposed method is roughly 11 times and 96 times smaller than LRR- 
CED(U) and CLRecon, respectively.

Fig. 9. Visual comparison of sparse-view reconstructions obtained using the different methods (sagittal plane, display window [− 160 400] HUs). Below the 
reconstruction results, the difference images obtained by subtracting the reference image from the reconstructed image (display window [− 400 400] HUs).

Fig. 10. Comparison of horizontal intensity plot profiles for the region marked in red on the CT image (left).
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3.8. Model and performance trade-offs

In the proposed network, a key module is the efficient RLFBs. Thus, 
we investigated how the number of RLFBs used in Sino-Net and Img-Net 
would influence the reconstruction performance. Fig. 14a plots the 
average MAE of the validation dataset when the trained model uses 5, 6 
and 7 RLFBs in Sino-Net. We observed that increasing the number of 
RLFBs from 5 to 6 slightly decreases the average MAE value, while 
further increasing the number of RLFBs from 6 to 7 shows little influence 
on the MAE metric. Considering the computational efficiency, the 
number of RLFBs in Sino-Net is set to 6. Fig. 14b plots the average MAE 
of the validation dataset when the trained model uses 1, 2 and 3 RLFBs in 
Img-Net. Similarly, considering the trade-off between reconstruction 
performance and computational complexity, the number of RLFBs in 
Img-Net is set to 2.

3.9. Ablation study

The proposed network used in this study is based on an image- 
domain reconstruction network (DD-Net), and combines it with a 
sinogram-domain refinement network (Sino-Net) and a lightweight 
image-domain network (Img-Net). To validate the effectiveness of the 
design of dual-domain learning and the role of these three modules, we 
trained several model variants and compared them against the proposed 

method. The quantitative results (MAE, PSNR and SSIM) of the testing 
dataset, reconstruction time per image and the number of parameters of 
different model variants are summarized in Table 10. We use the Sino- 
Net as the baseline, the combination of DD-Net and Sino-Net can 
improve the reconstruction performance, but the number of training 
parameters is doubled. By comparing the results of ‘DD-Net+SinoNet’ 
and DD-Net+SinoNet+ImgNet’, we observe that using the lightweight 
Img-Net can improve the reconstruction performance slightly without 
compromising the reconstruction time.

Table 5 
The SD of CT HUs within the liver ROIs, SNR of liver and the CNR of the lesion to 
the liver, and the CNR of the lesion to the lung.

Method SDliver SNRliver CNRlesion 

(liver)

CNRlesion 

(lung)

FBP 111.37± 19.24 1.36± 0.33 0.77± 0.29 8.65± 1.21
SART 67.90± 17.79 2.32± 0.84 1.22± 0.37 10.53± 1.62
SIRT 33.74± 8.43 4.62± 1.43 2.06± 0.76 15.20± 2.73
CGLS 34.16± 8.19 4.38± 1.14 2.00± 0.68 15.16± 2.70
DD-Net 13.98± 4.35 11.67± 4.66 3.70± 1.56 20.01± 4.91
LRR-CED 

(U)
9.56± 2.10 12.91± 4.56 3.49± 0.30 24.58± 6.39

CLRecon 8.24± 2.98 19.96± 13.29 3.40± 1.17 21.39± 4.88
Ours 11.28± 4.78 13.31± 6.01 3.85± 0.88 21.50± 3.58
Reference 21.85± 4.97 6.32± 1.80 4.04± 1.50 26.27± 2.76

Fig. 11. Noise properties analysis. (a) Comparison of noise magnitude. (b) Comparison of noise texture. (c) Comparison of one-dimensional NPS. (d) Comparison of 
normalized NPS (nNPS, divided by total noise power).

Table 6 
Inter-observer variability in the subjective quality assessment of CT images.

ρ ICC Confidence interval p-value

Confidence 0.72 0.56 0.08 0.78 <0.001
Conspicuity 0.71 0.60 0.19 0.79
Image quality 0.70 0.71 0.59 0.79

Table 7 
Subjective evaluation of different reconstruction algorithms represented as 
mean ± SD.

FBP SART SIRT CGLS DD-Net

Confidence 2.15 ±
1.03

1.85±
0.72

3.00±
0.78

3.77±
0.58

3.04±
0.59

Conspicuity 2.04±
0.94

1.73±
0.59

2.92±
0.73

3.73±
0.65

2.96±
0.65

Image 
quality

1.77±
0.75

1.46±
0.57

2.65±
0.73

3.15±
0.72

2.73±
0.59

LRR-CED 
(U)

CLRecon Ours Reference

Confidence 3.42±
0.69

3.62±
0.49

3.81±
0.62

5.00±
0.00

Conspicuity 3.42±
0.69

3.50±
0.50

3.81±
0.68

5.00±
0.00

Image 
quality

3.19±
0.68

3.38±
0.68

3.38±
0.56

4.92±
0.27
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4. Discussion

In this study, we proposed a dual-domain deep learning-based 
reconstructed method for sparse-view CT reconstruction. The method 
split the CT reconstruction problem into three stages: Firstly, DD-Net 
[15] was used to recover initial refined images from highly degraded 
FBP images reconstructed from sparse-view sinograms. Secondly, we 
forward projected the refined images to dense-view sinograms and 
proposed a lightweight network, Sino-Net, to enhance sinogram signals. 
Finally, we reconstructed the enhanced sinograms to enhanced images, 
concatenated them with the initial refined images, and then used a small 
Img-Net to further preserve the structural details of image content.

In the past few years, various dual-domain methods and DL-based 

Fig. 12. Subjective evaluation results achieved by the different reconstruction algorithms.

Table 8 
P-value results of statistical significance testing in subjective evaluation. # 
means no significant statistical differences.

Confidence Conspicuity Image quality

Ours vs. FBP <0.001 <0.001 <0.001
Ours vs. SART <0.001 <0.001 <0.001
Ours vs. SIRT <0.001 <0.001 <0.001
Ours vs. CGLS 0.391# 0.319# 0.083#

Ours vs. DD-Net <0.001 <0.001 <0.001
Ours vs. LRR-CED(U) 0.006 0.006 0.113#

Ours vs. CLRecon 0.083# 0.026 0.500#
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iterative reconstruction methods have been developed for sparse-view 
CT reconstruction to make full use of the information in both do
mains, e.g. DRONE [16], CDCNN [17], CLRecon [18], HDNet [19], 
DualCNN [20], SWISTA-Nets [65], DEAR [23], IRON [24] and MOGM 
[28]. However, the main shortcomings of these joint learning networks 
are the large number of trainable parameters and the requirement of 
large hardware resources. They are also time-consuming which may 
restrict their applications on real CT projection data with large projec
tion sizes.

In this work, we made several efforts to reduce the computational 
complexity of dual-domain learning. Firstly, in image-domain process
ing, we choose to use DD-Net, which is sufficiently lightweight with only 
0.56 M training parameters and has a fast-running speed. Secondly, in 

Fig. 13. Comparison of computational cost of different methods. (a) Running time vs. iteration number curves of iterative methods. (b) MAE vs. iteration number 
curves of iterative methods. (c) Scatter plot of MAE vs. running time of different methods. (d) Scatter plot of MAE vs. storage size of DL-based methods.

Table 9 
Quantitative comparison of computational efficiency of different methods.

Method Run time (s)/slice Params (M)

FBP 0.0378 –
SART 0.2779 –
SIRT 0.8915 –
CGLS 0.0965 –
DD-Net 0.0887 0.56
LRR-CED(U) 0.0842 11.78
CLRecon 0.2684 103.65
Ours 0.2951 1.08

Fig. 14. MAE plots on the validation dataset for the proposed method with different network parameters. (a) RLFB number in Sino-Net. (b) RLFB number in Img-Net.
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the sinogram-domain recovery stage, we projected the refined images to 
dense-view sinograms (512 views) instead of full-views (2304 views), 
which benefits the required GPU memory and decreases the running 
time. Thirdly, we designed the network structure following the light
weight principle. We used RLFBs, which have been previously demon
strated in the efficient image super-resolution task by its great 
superiority in inference speed and model capability. Fourthly, we per
formed global optimization of the networks in the three stages with an 
end-to-end training fashion using differential forward projection and 
FBP layers, which highly reduced the training complexity. As shown in 
Table 9, the proposed method has 1.08 M network parameters and re
quires 0.3 s to generate a single image with 512 × 512 pixels from a 
sparse sinogram with 736 detector elements at 384 views on a GPU.

Recently, DL-based models that contain iterative optimization, such 
as SWISTA-Nets [65], DEAR [23], and IRON [24] have demonstrated 
outstanding performance, particularly in low-sparse-view CTs (with 
fewer than 120 views). Due to variations in scanning geometry, imple
mentation details, and the calculation formulas used to assess 
image-derived metrics in different research studies, it’s not fair to 
compare the absolute quantitative results such as PSNR. However, the 
common characteristic of these methods is their higher computational 
costs for reconstructing 512×512 images due to the iterative optimiza
tion they involve. For instance, SWISTA-Nets was trained using an RTX 
2080Ti GPU to reconstruct CT images from 60 views and from 120 
views. The computation time for SWISTA-Nets was approximately 2.7 
and 5.4 s per slice for 60 and 120 views, respectively. DEAR was 
implemented on an NVIDIA TITAN XP GPU for reconstructing CT images 
from projections sized 60×1120, taking 167.90 s to reconstruct one 
case. IRON, accelerated by an NVIDIA TITAN RTX GPU, reconstructed 
sparse-view projections sized 114×1120 views with an inference time of 
around 256 s for 391 test images. In comparison to these methods, the 
proposed method significantly reduces the inference time. As a matter of 
fact, a recently proposed dual-domain reconstruction method, CLRecon 
[18] (FBPConvNet [13]), which performs end-to-end closed-loop 
learning, can also achieve comparable reconstruction time. However, 
our model reduces the model size significantly. The evaluation results 
show that CLRecon tends to reconstruct over-smoothing edges compared 
to the proposed method (Figs. 5-7). The median absolute error obtained 
using our method is smaller in different organ regions, and the noise 
texture of the images is closer to the reference image. Another efficient 
DL-based reconstruction method, LRR-CED(U) [22], which directly re
constructs the image from the sparse-view sinogram, has a competitive 
inference speed. Compared to LRR-CED(U), the proposed method 
further reduces the number of training parameters and achieved better 
reconstruction performance by reducing noise and artifacts and recon
structing anatomic structure details.

The key to network design is how to integrate a lightweight strategy 
within the reconstruction framework. In this study, we utilized light
weight models suitable for dual-domain-based end-to-end reconstruc
tion networks. This is a customized architecture designed for a practical 
CT reconstruction task on real projection data. We provide new ideas on 
how to effectively apply the dual-domain reconstruction algorithm to 
actual projection data and the ablation studies demonstrated the effec
tiveness of the design of dual-domain learning and the role of these three 

models. In fact, we believe that other advanced lightweight strategies, 
such as neural architecture search (NAS) [66], network pruning [67], 
low-rank decomposition [68], low-bit quantization [69], and knowledge 
distillation [70], are worth exploring for application in sparse-view CT 
reconstruction tasks. Investigating the combination of the lightweight 
strategy with different categories of reconstruction frameworks (e.g. 
direct reconstruction and deep-unrolling methods) to enhance the effi
ciency of the reconstruction methods using real projection data would 
be an interesting research direction.

One of the motivations behind this study is to demonstrate the 
feasibility of the proposed method on real clinical projection data from 
commercial CT scanners. As mentioned in the flowchart illustrated in 
Fig. 1, we collected clinical raw projection data of thoraco-abdominal 
diagnostic CT scans acquired on a SOMATOM Edge CT scanner with 
128 rows (Siemens Healthineers, Erlangen, Germany), analyzed the 
helical imaging geometry, and refined the projection data to obtain 
sinograms. Moreover, we utilized a propriety platform (ReconCT) to 
produce reference images using ADMIRE reconstruction algorithm.

The commonly used quantitative evaluation method for CT recon
struction performance compares the average of MAE, PSNR or other 
quantitative metrics on reconstructed 2D slices, which are globally 
averaged results that neglect the image content and details. To tackle 
this problem, we conducted more comprehensive and detailed evalua
tion experiments. Firstly, we performed an organ-specific assessment on 
the reconstructed thoraco-abdominal CT scans. Organ-based assessment 
has been widely used in evaluating the quality of CT images. For 
example, the European Guidelines on Quality Criteria for CT classify 
anatomical image criteria into six categories: cranium, face and neck, 
spine, chest, abdomen and pelvis, bones and joints [71]. Additionally, 
measuring the CT value of specific organs, such as the aorta, liver, 
pancreas, and spleen, has become a widely used objective method for 
quantitatively comparing the quality of CT images acquired using 
different protocols and analyzing the impact of dose-related parameters 
and reconstruction protocols on image quality [72,73]. Moreover, an 
automated technique has been proposed for measuring Hounsfield units 
in specific organs (lung tissue, liver, aorta, and spine) in clinical chest CT 
images to monitor the quality of clinical images [74]. In this study, an 
intuitive sense is that the difficulty of reconstructing the organs is 
different due to the varying sizes, shapes, and textures of different or
gans. Organ-based assessment allows for a quantitative evaluation of the 
effectiveness of different reconstruction methods on various organs. 
From a clinical perspective, this assessment provides crucial informa
tion, indicating which organs present a higher degree of uncertainty in 
reconstructive outcomes. This knowledge can guide clinicians to exer
cise greater caution when making diagnoses in these areas, thereby 
enhancing the accuracy of their clinical decisions. Specifically, we 
segmented the reconstructed thoraco-abdominal CT images into 21 
anatomical structures: whole heart, left/right atrium, left/right 
ventricle, myocardium, lungs, adrenal, spleen, liver, kidneys, pancreas, 
stomach, esophagus, colon, small bowel, aorta, autochthonous dorsal 
musculature (autochthon), clavicles, ribcage and vertebrae, and per
formed quantitative analysis of CT HU values in the different organs 
regions. Secondly, we not only compared the transverse section of the 
reconstructed CT images but also displayed the coronal and sagittal 
planes to fully compare the reconstruction results of different methods. 
Thirdly, we measured the SNR in the liver, the CNR of the lesion to the 
liver and the CNR of the lesion to the lung to quantitively evaluate 
overall image quality. Finally, we conducted a phantom study to analyze 
the noise magnitude and texture of the reconstructed images.

The comprehensive evaluation shows that the proposed method can 
provide high-quality CT images with clear structure edges and fine 
anatomic details under 384 sparse views (1/6 sampling rate). The pro
posed method achieves high SNR in the liver, indicating a high ability to 
suppress noise and artifacts. The images reconstructed by the proposed 
method achieve a high CNR (lesion to the liver) close to the CNR of 
reference images. By observing the difference images, the proposed 

Table 10 
Quantitative performance and computational cost of different ablation 
networks.

DD- 
Net

Sino- 
Net

Img- 
Net

Params 
(M)

Run time 
(s)/slice

MAE PSNR SSIM

√ 0.45 0.2758 34.79 
± 4.97

31.80 
± 1.39

0.960 
± 0.013

√ √ 1.01 0.2865 30.77 
± 3.95

32.50 
± 1.36

0.967 
± 0.009

√ √ √ 1.08 0.2951 29.80 
± 3.86

32.80 
± 1.41

0.968 
± 0.008
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method achieves the lowest total error compared to other methods and 
shows better detail preservation abilities, such as reconstructing the 
artery in the lung region and the veins in the liver. However, recon
structing the anatomic structures in abdominal CT images is still chal
lenging for DL-based methods. Compared to reference images, DL- 
reconstructed methods still tend to over-smooth the images, as shown 
in Fig. 7. More efforts should be made to effectively restore the details in 
the organ area with rich structural information and high-frequency 
features, e.g., in the colon and small bowel region.

In this study, two radiologists conducted subjective scoring of CT 
scans reconstructed using different methods using a 1–5 scoring system. 
The subjective evaluation included the confidence and conspicuity of 
anatomic structures, and overall image quality. The results show that the 
proposed method achieved the highest scores in confidence (3.81±0.62) 
and conspicuity (3.81±0.68) of anatomic structures. The overall image 
quality scores were similar among images reconstructed using CGLS 
(iterative reconstruction), LRR-CED(U), CLRecon, and the proposed 
method (3.15±0.72, 3.19±0.68, 3.38±0.68 and 3.38±0.56 for CGLS, 
LRR-CED(U), CLRecon, and the proposed method, respectively). In the 
future, more subjective image quality indicators can be included to fully 
evaluate the ability of reconstruction methods to meet diagnostic 
requirements.

The current work inherently bears a number of limitations. Similar to 
previous studies based on supervised learning, additional models need 
to be trained for different scanning protocols, which increases the 
required training time and computational resources. One solution would 
be to apply transfer learning to reduce the re-training time. Another 
possible solution is to involve scanning protocols as input of the 
reconstruction network as prior knowledge. Another limitation is that 
we have studied only clinical studies obtained on a single scanner in one 
center. In our future studies, we will investigate the proposed method on 
more datasets acquired using different protocols on different scanners of 
multiple institutions. More sparse sampling strategies will be also 
investigated. Finally, the proposed method works well with high- 
contrast organs but has limitations when reconstructing small organs 
or adjacent organs with similar textures. To address this, one possible 
strategy could be to incorporate prior knowledge of organs and explore 
organ-specific reconstruction methods. This could help improving the 
subjective quality of the reconstructed images, making it closer to the 
reference image for accurate clinical diagnosis. Here, we introduce some 
ideas to achieve this objective. For instance, due to the diverse shapes 
and textures of organs, we can utilize different spatial feature de
scriptors like spatially variant gradients [75], learnable texture priors 
[76] and learnable filters/transformers [77] as image priors to effec
tively capture texture features for CT reconstruction tasks. An 
organ-segmentation mask/context map [78,79] representing the 
pixel-level categories in an image based on their organ/content differ
ences may also be useful for applying the best reconstructio
n/enhancement action to different organs/pixels. Additionally, the 
degradation mask [80], representing the difference between the input 
noisy image and the reference image, is helpful for guiding the network 
to make additional efforts in regions with significant degradations.

5. Conclusion

The proposed dual-domain deep learning-based framework provides 
a new paradigm for efficient sparse-view CT reconstruction. Compared 
with other dual-domain methods that also perform end-to-end training, 
the proposed network reduces the training parameters with competitive 
running time, which decreases the requirement for training resources. 
The organ-based evaluation of the reconstruction performance on real 
clinical projection data demonstrates that the proposed method is 
competitive in reducing artifacts and preserving anatomic details.

Data and code availability

Trained models and code will be made available on GitHub.

CRediT authorship contribution statement

Chang Sun: Writing – original draft, Visualization, Validation, 
Software, Resources, Methodology, Formal analysis, Data curation, 
Conceptualization. Yazdan Salimi: Software, Resources, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization. Ner
oladaki Angeliki: Writing – review & editing, Validation, Investigation, 
Data curation, Conceptualization. Sana Boudabbous: Writing – review 
& editing, Validation, Methodology, Data curation. Habib Zaidi: 
Writing – review & editing, Supervision, Resources, Project adminis
tration, Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

This work was supported by the Euratom Research and Training 
Programme 2019− 2020 under grant agreement No. 945196. Chang Sun 
acknowledges the support from the BUPT Excellent Ph.D. Students 
Foundation (CX2022203).

References

[1] C.H. McCollough, P.S. Rajiah, Milestones in CT: past, present, and future, 
Radiology 309 (2023) e230803.

[2] Radiation Risk from Medical Imaging (2021).
[3] A.B. De González, M. Mahesh, K.-P. Kim, M. Bhargavan, R. Lewis, F. Mettler, 

C. Land, Projected cancer risks from computed tomographic scans performed in the 
United States in 2007, Arch. Intern. Med. 169 (2009) 2071–2077.

[4] T.L. Slovis, The ALARA concept in pediatric CT: myth or reality? Radiology 223 
(2002) 5–6.

[5] J. Malone, X-rays for medical imaging: radiation protection, governance and ethics 
over 125 years, Physica Medica 79 (2020) 47–64.

[6] A. Ferrero, N. Takahashi, T.J. Vrtiska, A.E. Krambeck, J.C. Lieske, C. 
H. McCollough, Understanding, justifying, and optimizing radiation exposure for 
CT imaging in nephrourology, Nat. Rev. Urol. 16 (2019) 231–244.

[7] Y. Salimi, I. Shiri, A. Akavanallaf, Z. Mansouri, H. Arabi, H. Zaidi, Fully automated 
accurate patient positioning in computed tomography using anterior-posterior 
localizer images and a deep neural network: a dual-center study, Eur. Radiol. 33 
(2023) 3243–3252.

[8] Y. Salimi, I. Shiri, A. Akhavanallaf, Z. Mansouri, A. Saberi Manesh, A. Sanaat, 
M. Pakbin, D. Askari, S. Sandoughdaran, E. Sharifipour, H. Arabi, H. Zaidi, Deep 
learning-based fully automated Z-axis coverage range definition from scout scans 
to eliminate overscanning in chest CT imaging, Insights Imaging 12 (2021) 162.

[9] K.S.H. Kulathilake, N.A. Abdullah, A.Q.M. Sabri, K.W. Lai, A review on deep 
learning approaches for low-dose computed tomography restoration, Complex 
Intell. Syst. 9 (2023) 2713–2745.

[10] P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object 
from projections, J. Theor. Biol. 36 (1972) 105–117.

[11] T. Würfl, M. Hoffmann, V. Christlein, K. Breininger, Y. Huang, M. Unberath, A. 
K. Maier, Deep learning computed tomography: learning projection-domain 
weights from image domain in limited angle problems, IEEE Trans. Med. Imaging 
37 (2018) 1454–1463.

[12] Y. Li, K. Li, C. Zhang, J. Montoya, G.-H. Chen, Learning to reconstruct computed 
tomography images directly from sinogram data under a variety of data acquisition 
conditions, IEEE Trans. Med. Imaging 38 (2019) 2469–2481.

[13] K.H. Jin, M.T. McCann, E. Froustey, M. Unser, Deep convolutional neural network 
for inverse problems in imaging, IEEE Trans. Image Process. 26 (2017) 4509–4522.

[14] H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, G. Wang, Low-dose CT via 
convolutional neural network, Biomed. Opt. Express 8 (2017) 679–694.

[15] Z. Zhang, X. Liang, X. Dong, Y. Xie, G. Cao, A sparse-view CT reconstruction 
method based on combination of DenseNet and deconvolution, IEEE Trans. Med. 
Imaging 37 (2018) 1407–1417.

[16] W. Wu, D. Hu, C. Niu, H. Yu, V. Vardhanabhuti, G. Wang, DRONE: dual-domain 
residual-based optimization network for sparse-view CT reconstruction, IEEE 
Trans. Med. Imaging 40 (2021) 3002–3014.

[17] Q. Li, R. Li, T. Wang, Y. Cheng, Y. Qiang, W. Wu, J. Zhao, D. Zhang, A cascade- 
based dual-domain data correction network for sparse view CT image 
reconstruction, Comput. Biol. Med. 165 (2023) 107345.

C. Sun et al.                                                                                                                                                                                                                                      Computer Methods and Programs in Biomedicine 256 (2024 ) 108376 

19 



[18] Y. Guo, Y. Wang, M. Zhu, D. Zeng, Z. Bian, X. Tao, J. Ma, Dual domain closed-loop 
learning for sparse-view CT reconstruction, in: 7th International Conference on 
Image Formation in X-Ray Computed Tomography, SPIE, 2022, pp. 130–136.

[19] D. Hu, J. Liu, T. Lv, Q. Zhao, Y. Zhang, G. Quan, J. Feng, Y. Chen, L. Luo, Hybrid- 
domain neural network processing for sparse-view CT reconstruction, IEEE Trans. 
Radiat. Plasma Med. Sci. 5 (2020) 88–98.

[20] L. Chao, Z. Wang, H. Zhang, W. Xu, P. Zhang, Q. Li, Sparse-view cone beam CT 
reconstruction using dual CNNs in projection domain and image domain, 
Neurocomputing 493 (2022) 536–547.

[21] J. He, Y. Wang, J. Ma, Radon inversion via deep learning, IEEE Trans. Med. 
Imaging 39 (2020) 2076–2087.

[22] V. Kandarpa, A. Perelli, A. Bousse, D. Visvikis, LRR-CED: low-resolution 
reconstruction-aware convolutional encoder–decoder network for direct sparse- 
view CT image reconstruction, Phys. Med. Biol. 67 (2022) 155007.

[23] W. Wu, X. Guo, Y. Chen, S. Wang, J. Chen, Deep embedding-attention-refinement 
for sparse-view CT reconstruction, IEEE Trans. Instrum. Meas. 72 (2022) 1–11.

[24] J. Pan, H. Yu, Z. Gao, S. Wang, H. Zhang, W. Wu, Iterative residual optimization 
network for limited-angle tomographic reconstruction, IEEE Trans. Image Process. 
33 (2024) 910–925.

[25] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural Inf. 
Process. Syst. 33 (2020) 6840–6851.

[26] Z. Li, Y. Wang, J. Zhang, W. Wu, H. Yu, Two-and-a-half order score-based model 
for solving 3D ill-posed inverse problems, Comput. Biol. Med. 168 (2024) 107819.

[27] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole, Score-based 
generative modeling through stochastic differential equations, arXiv preprint 
arXiv:2011.13456, (2020).

[28] W. Wu, J. Pan, Y. Wang, S. Wang, J. Zhang, Multi-channel optimization generative 
model for stable ultra-sparse-view CT reconstruction, IEEE Trans. Med. Imaging 
(2024) 1–11.

[29] W. Wu, Y. Wang, Q. Liu, G. Wang, J. Zhang, Wavelet-improved score-based 
generative model for medical imaging, IEEE Trans. Med. Imaging 43 (3) (2023) 
966–979.

[30] Y. Wang, Z. Li, W. Wu, Time-reversion fast-sampling score-based model for limited- 
angle CT reconstruction, IEEE Trans. Med. Imaging (2024) 1–11.

[31] Z. Li, D. Chang, Z. Zhang, F. Luo, Q. Liu, J. Zhang, G. Yang, W. Wu, Dual-domain 
collaborative diffusion sampling for multi-source stationary computed tomography 
reconstruction, IEEE Trans. Med. Imaging (2024).

[32] F. Chen, S. Li, J. Han, F. Ren, Z. Yang, Review of lightweight deep convolutional 
neural networks, Arch. Comput. Methods Eng. 31 (2024) 1915–1937.

[33] J. Wang, Y. Lu, G. Lu, Lightweight image denoising network with four-channel 
interaction transform, Image Vis. Comput. 137 (2023) 104766.

[34] X. Liu, Z. Wu, A. Li, F.-A. Vasluianu, Y. Zhang, S. Gu, L. Zhang, C. Zhu, R. Timofte, 
Z. Jin, NTIRE 2024 challenge on low light image enhancement: methods and 
results, arXiv preprint arXiv:2404.14248, (2024).

[35] X. Luo, Y. Qu, Y. Xie, Y. Zhang, C. Li, Y. Fu, Lattice network for lightweight image 
restoration, IEEE Trans. Pattern Anal. Mach. Intell. 45 (2022) 4826–4842.

[36] Y. Li, Y. Iwamoto, L. Lin, R. Xu, R. Tong, Y.-W. Chen, VolumeNet: a lightweight 
parallel network for super-resolution of MR and CT volumetric data, IEEE Trans. 
Image Process. 30 (2021) 4840–4854.

[37] C. Cheng, X.-J. Wu, T. Xu, G. Chen, Unifusion: a lightweight unified image fusion 
network, IEEE Trans. Instrum. Meas. 70 (2021) 1–14.

[38] G. Ma, X. Zhao, Y. Zhu, H. Zhang, Projection-to-image transform frame: a 
lightweight block reconstruction network for computed tomography, Phys. Med. 
Biol. 67 (2022) 035010.

[39] W. Van Aarle, W.J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, 
J. De Beenhouwer, K.J. Batenburg, J. Sijbers, Fast and flexible X-ray tomography 
using the ASTRA toolbox, Opt. Express 24 (2016) 25129–25147.

[40] A. Biguri, M. Dosanjh, S. Hancock, M. Soleimani, TIGRE: a MATLAB-GPU toolbox 
for CBCT image reconstruction, Biomed. Phys. Eng. Express 2 (2016) 055010.
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