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Abstract
Purpose Accurate dosimetry is critical for ensuring the safety and efficacy of radiopharmaceutical therapies. In current 
clinical dosimetry practice, MIRD formalisms are widely employed. However, with the rapid advancement of deep learn-
ing (DL) algorithms, there has been an increasing interest in leveraging the calculation speed and automation capabilities 
for different tasks. We aimed to develop a hybrid transformer-based deep learning (DL) model that incorporates a multiple 
voxel S-value (MSV) approach for voxel-level dosimetry in  [177Lu]Lu-DOTATATE therapy. The goal was to enhance the 
performance of the model to achieve accuracy levels closely aligned with Monte Carlo (MC) simulations, considered as 
the standard of reference. We extended our analysis to include MIRD formalisms (SSV and MSV), thereby conducting a 
comprehensive dosimetry study.
Methods We used a dataset consisting of 22 patients undergoing up to 4 cycles of  [177Lu]Lu-DOTATATE therapy. MC 
simulations were used to generate reference absorbed dose maps. In addition, MIRD formalism approaches, namely, single 
S-value (SSV) and MSV techniques, were performed. A UNEt TRansformer (UNETR) DL architecture was trained using 
five-fold cross-validation to generate MC-based dose maps. Co-registered CT images were fed into the network as input, 
whereas the difference between MC and MSV (MC-MSV) was set as output. DL results are then integrated to MSV to revive 
the MC dose maps. Finally, the dose maps generated by MSV, SSV, and DL were quantitatively compared to the MC refer-
ence at both voxel level and organ level (organs at risk and lesions).
Results The DL approach showed slightly better performance (voxel relative absolute error (RAE) = 5.28 ± 1.32) compared 
to MSV (voxel RAE = 5.54 ± 1.4) and outperformed SSV (voxel RAE = 7.8 ± 3.02). Gamma analysis pass rates were 99.0 
± 1.2%, 98.8 ± 1.3%, and 98.7 ± 1.52% for DL, MSV, and SSV approaches, respectively. The computational time for MC 
was the highest (~2 days for a single-bed SPECT study) compared to MSV, SSV, and DL, whereas the DL-based approach 
outperformed the other approaches in terms of time efficiency (3 s for a single-bed SPECT). Organ-wise analysis showed 
absolute percent errors of 1.44 ± 3.05%, 1.18 ± 2.65%, and 1.15 ± 2.5% for SSV, MSV, and DL approaches, respectively, 
in lesion-absorbed doses.
Conclusion A hybrid transformer-based deep learning model was developed for fast and accurate dose map generation, 
outperforming the MIRD approaches, specifically in heterogenous regions. The model achieved accuracy close to MC gold 
standard and has potential for clinical implementation for use on large-scale datasets.

Keywords Radiation dosimetry · Radionuclide therapy · Deep learning · Monte Carlo simulation · [177Lu]Lu-DOTATATE

Introduction

Radiopharmaceutical therapy (RPT) has emerged as a prom-
ising approach for managing various cancers, thus enabling 
selective delivery of high radiation dose to the target while 
minimizing toxicity to normal tissues [1, 2]. Among RPT 
techniques, peptide receptor radionuclide therapy (PRRT) 
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with  [177Lu]Lu-DOTATATE has demonstrated efficacy 
in palliative treatment of patients diagnosed with non-
resectable metastatic neuroendocrine tumors (NETs) with 
significant improvement in their overall survival and pro-
gression-free survival [3, 4]. The commonly used standard 
practice of this treatment employs “one-size-fits-all” empiri-
cal protocol, consisting of the delivery of four cycles of 7.4 
GBq at 8-week intervals [5, 6]. However, this regimen may 
not be optimal for individual variations in tumor burden, 
patient physiology, body size, and overall health condition. 
Therefore, a personalized dosimetry and treatment planning 
approach is indispensable to ensure a balance between thera-
peutic efficacy and patient safety [7].

Implementing personalized dosimetry as a prerequisite 
for treatment planning in routine clinical setting poses chal-
lenges owing to (i) the lack of standardized image quanti-
fication and dosimetry protocols [8, 9], (ii) lack or weak 
dose-effect relationship information [10], (iii) lack of suit-
able radiobiological models [11], (iv) inherent low-quality 
and incomplete imaging data at different time points [12], 
(v) the heterogeneity of tumors and organs at risk (OARs), 
and (vi) the variability of patients’ physiology. Besides, time 
and labor resource requirements [11, 13] further complicate 
the process.

On the other hand, traditional image-based organ-level 
dosimetry approaches based on MIRD formalism may not 
suffice for patient-specific purposes as they rely on using 
tabulated organ-level S-values derived from standard phan-
toms [14]. These S-values can neither reflect activity het-
erogeneities within a region of interest nor do they account 
for inter-patient anatomical differences [15]. Voxel-level 
image-based dosimetry approaches have gained popularity 
as an alternative to overcome this limitation. Direct Monte 
Carlo (MC) is the consensual gold standard approach for 
voxel-level dose calculations which provides accurate and 
reliable dose estimation by considering the individual non-
homogeneity of both anatomical and activity distribution 
into account. However, its extensive computational require-
ments make it impractical for routine clinical use [16–19].

To address the challenges associated with MC, vari-
ous voxel-level dosimetry methods have been developed 
[20–22]. This includes the single S-value (SSV) approach 
using the MIRD scheme pre-tabulated S-values, which 
lacks consideration of anatomical heterogeneities as in these 
approaches dose calculations occurs within homogenous 
water medium [21]. Another approach is the multiple voxel 
S-value (MSV) technique in which instead of using a single-
dose kernel calculated in soft tissue, multiple-dose kernels 
are used according to different tissue densities [22].

Deep learning (DL) has been successfully employed for 
different computational medical imaging tasks [23–29]. 
There have been some attempts to use DL-based voxel-wise 
internal dosimetry in previous studies [15, 30–33]. Lee et al. 

employed a U-net trained by PET and CT image patches as 
input to generate 3D voxel-level dose rate maps [30]. Kim 
et al. [33] developed a modified U-net model for voxel-
wise  [177Lu]Lu-DOTATATE dosimetry, incorporating CT 
and time-integrated activity (TIA) patch images as an input 
followed by a summation of MSV dose map for residual 
learning and validated their model through comparison with 
direct MC calculation at both organ and voxel levels. In the 
study by Li et al. [32], a residual deep convolutional neu-
ral network (CNN) trained with virtual patients obtained 
from PET images instead of SPECT/CT images was used to 
estimate the dose-rate maps compensated for blurring due 
to the poor spatial resolution of SPECT images. While the 
abovementioned studies benefited from utilizing CNNs, the 
application of transformer architectures remains limited in 
dosimetry tasks [34]. Transformers benefit from self-atten-
tion and can process the input data in parallel which leads 
to increased efficacy. In addition, they can achieve adequate 
performance with very limited training data [35–38].

The main objective of the present work is to evaluate a 
hybrid transformer-based deep learning network for voxel-
level dosimetry of  [177Lu]Lu-DOTATATE RPT in terms of 
computational costs and accuracy of absorbed dose calcu-
lations. To this end, we trained an MSV/DL hybrid model 
to predict the necessary corrections on MSV dose maps to 
generate MC dose maps as the ground-truth. Subsequently, 
DL-based absorbed dose distributions were validated by 
comparing the results with MC-based absorbed dose distri-
butions. SSV and MSV dose maps were also calculated for 
further comparison.

Material and methods

Patient characteristics and data acquisition

This retrospective study included SPECT/CT images from 
50 sessions of 22 patients with NETs who underwent  [177Lu]
Lu-DOTATATE therapy for up to 4 cycles. The injected 
activity was personalized for each cycle (median: 7363 
MBq, range 1017–9657 MBq) based on kidney function, 
body habitus, and dosimetry results [39]. Patient character-
istics are summarized in Table 1. The images were acquired 
on a Symbia T16 SPECT/CT camera (Siemens Healthineers, 
Germany) equipped with a medium-energy low-penetration 
collimator (MELP). The images at multiple time points were 
acquired at ~4 h (range 3.6–5.3), 24 h (range 19.6–25.0), 69 
h (range 67.2–74.1), and 120 h post-injection. The recon-
structed CT images had a matrix size of 512 × 512, acquired 
at 110 kVp and 126.48 ± 37.2 mAs with a voxel size of 
0.9766 × 0.9766 × 5  mm3. SPECT images had a 128 × 
128 matrix size, zoom factor of 1, and voxel size of 4.795 
× 4.795 × 4.795  mm3. SPECT projections were obtained 
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in 96 views (48 camera spots) with a duration of 15 s for 
the two first time points and 20 s for the last time points. 
SPECT images were reconstructed using a 3-dimensional 
ordered-subset expectation maximization (3D-OSEM) algo-
rithm with 4 iterations and 8 subsets with resolution recov-
ery, including CT-based attenuation correction, dual-energy 
window (DEW) scatter correction using [187.2–228.8] and 
[166.4–187.2] keV for photopeak and scatter windows, 
respectively [40]. The activity calibration, i.e., translating 
the reconstructed counts (count/s) into absolute activity (Bq/
ml), was performed using a cylindrical phantom (Jaszczak) 
filled with known uniform activity concentration [41].

[177Lu]Lu‑DOTATATE dosimetry workflow

Monte Carlo simulations

The dose maps generated through direct Monte Carlo served 
as standard of reference and were used as the target for train-
ing our network. For this purpose, patient-specific density 
maps (g/cm3) were derived from CT images (Hounsfield 
units) as described by Schneider et al. [42]. These density 
maps, along with time-integrated activities (TIAs) (fur-
ther elaborated below), were input into a previously vali-
dated [15] MCNP MC simulator (version 2.3, Los Alamos 
National Laboratory) [43] generate the voxel-level absorbed 
dose map. About  108 histories were simulated wherein the 
statistical uncertainty was considered negligible [44]. All 
calculations were performed using a 12th Gen Intel ®  core™ 
i7-12700K CPU at 3.6 GHz.

Time‑integrated activities

TIAs were obtained from multiple time points of post-treat-
ment SPECT images through the following steps:

1. A previously trained RESUNET deep learning model 
was used to automatically delineate organs at risk 
(OARs) on the CT images of hybrid SPECT/CT acquired 
after  [177Lu]Lu-DOTATATE administration followed by 

manual adjustment of the contours. The Dice coefficients 
(%) for the liver, kidneys, spleen, bones, lung, and blad-
der were 97, 94, 95, 94, 98, and 84, respectively [45].

2. Malignant tumors were delineated on SPECT images 
manually by an experienced nuclear medicine specialist.

3. An intensity-based SPECT-SPECT registration with 
a mutual information-based cost function was applied 
to multiple-time-point post-treatment serial SPECT 
images followed by visual inspection. The registration 
was automated using an in-house MATLAB code based 
on Elastix1.

4. Time activity curves (TACs) were generated at the voxel 
level for tumors and OARs based on 177Lu-kinetics from 
multi-time-point registered SPECT images. In this 
regard, a trapezoid function was fitted to the TAC at 
each voxel for data points with time <24 h, followed by 
a mono-exponential function C

(

e−�t
)

 , where C scales the 
curve and λ is the biological clearance/elimination rate 
for data points (if available) with t > 24 h.

5. The TIA was calculated by estimating the area under the 
time-activity curve, using a combination of trapezoidal 
and exponential integrations, depending on the number 
of available time points, as proposed in Ref. [41]. To 
mitigate potential errors caused by reconstruction noise 
or registration issues, the effective half-lives (Teff) were 
determined based on the mean value of normal distri-
bution of voxel-level � in the volume of interest (VOI). 
Figure 1 illustrates the steps taken for TIA calculation.

Single and multiple voxel S‑value (SSV and MSV) 
approaches

The MIRD scheme SSV and MSV dose maps were calcu-
lated for further comparisons. The voxel S-value kernels 
were generated using MCNP transport code (version 2.3, 
Los Alamos National Laboratory) [43]. The simulation code 
has been previously validated [15] and the kernels bench-
marked against the database from Ref. [46]. The MSV 
approach involves the utilization of 8 pre-calculated voxel 
S-value kernels. These kernels are computed using the MC 
method within various types of tissues, including lung, adi-
pose, soft tissue, and five different densities corresponding 
to bones. Subsequently, MSV dose map was calculated by 
the convolution of the multiple kernels into TIA according 
to the method proposed by Lee et al. [22].

Network training

Before training, the CT images underwent normalization 
using an empirical factor of  103 to reduce the dynamic range 

Table 1  Summary of patient demographics and treatment character-
istics

Number of patients/total therapy cycles 21/55

Gender (F:M) 8 (38%):13 (62%)
Age, median (range) 62 (26–78)
Height (m), median (range) 1.69 (1.5–1.84)
Weight (kg), median (range) 76.8 (61.8–122.2)
Number of therapy cycles (1:2:3:4) (5:5:4:7)
Injected activity (MBq), median (range) 7215 (1017–9657)

1 https:// elast ix. lumc. nl/

https://elastix.lumc.nl/
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of voxel intensities and scale the Hounsfield units between 
0 and 1. Similarly, the TIA images were normalized using a 
fixed factor of 1.5 ×  1010 without clipping the data.

A modified UNEt TRansformer (UNETR) architecture 
proposed by Hatamizadeh et al. [47] was implemented in 
Pytorch, and trained on an NVIDIA GeForce RTX 3080 
GPU. The dataset was split into 5 sets for 5-fold cross vali-
dation ensuring each set had the same size of data, while 
we ensured that the multiple cycles from the same patient 
are never in the test and train at the same time. Training 
was performed using 2D axial slices. The network was fed 
by co-registered CT images as input with a total of 1000 
epochs, initial learning rate of 0.001, and a weight decay of 
0.0001. The batch size was set to 128. The mean squared 
error (MSE) loss function and Adam optimizer were utilized. 
The target of the network was the difference between MC-
simulated dose maps and MSV dose maps (MC − MSV). 
Instead of directly generating MC dose maps, the DL output 
was set to be the difference between MC and MSV. Finally, 
MSV was added to the DL output for further evaluation 
(i.e., DL = MC − MSV; subsequently, MC = DL + MSV). 
Figure 2 displays the network architecture. We adopted this 
approach by hypothesizing that MSV closely approximates 
MC, with errors primarily limited to small heterogeneous 
and boundary regions. Training a model capable of correct-
ing these errors was anticipated to contribute to performance 
enhancement.

We also tried multiple approaches and strategies prior to 
selecting the transformer-based method. First, we investi-
gated configurations of modified UNet by using versions of 
MONAI DynUNet class [48, 49]. Following unsatisfactory 

performance, we employed U2-Net architecture [50] by 
using two inputs of CT + TIA to skip the need for MSV 
calculations in MC dose map prediction. As the results were 
not conclusive, another strategy was adopted in which CT 
+ MSV was alternatively used as inputs to predict the MC 
dose map. The initial settings (learning rate, decay, number 
of epochs, etc.) were the same as those utilized in the current 
model. Moreover, we attempted multiple configurations of 
2D axial slices and 3D boxes as inputs to the model. How-
ever, these strategies did not yield the expected outcomes.

Evaluation strategy

The DL-generated and calculated dose maps using the two 
MIRD formalisms, namely, SSV and MSV, were quantita-
tively compared to the reference MC dose maps using vari-
ous metrics. These include voxel-wise root mean square error 
(RMSE), mean square error (MSE), mean absolute error 
(MAE), mean error (ME), structural similarity index (SSIM), 
peak signal-to-noise ratio (PSNR), relative error (RE), and 
relative absolute error (RAE). Additionally, Gamma index 
evaluation was performed with the criteria of 4.795-mm dis-
tance to agreement (DTA) and 1% dose difference (DD). The 
Gamma pass rates and Gamma maps were calculated to assess 
the dose distribution agreement between DL, MSV, and SSV 
and the MC reference. The pass rates were calculated accord-
ing to Eq. (1):

(1)Pass rate (%) =
Number of voxels wih� ≤ 1

Total number of voxels
× 100

Fig. 1  The flowchart of preparing the data for dosimetry calculations. 
After tumor delineation by an experienced physician and OAR seg-
mentation using a modified UNET model, and registration of multi-
ple-time-point SPECT images, time activity curves were calculated 

for each voxel, and TIA maps were extracted. These TIA maps, along 
with density maps, served as input for various dosimetry calculation 
approaches
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Moreover, organ-wise absorbed doses were compared 
among all the mentioned strategies in terms of organ error 
(%) and organ absolute error (%). For qualitative evaluation, 
dose volume histograms (DVHs) were compared with the 
reference, i.e., Monte Carlo.

Results

Only tumors with volumes >2 ml (mean volume: 38.18 
± 79.4 ml, range: 2.2–947.2 ml) were delineated in this 
study to be included in the analysis. The mean absorbed 
dose values (Gy) of tumors and OARs for each patient, cal-
culated from MC simulations for the first treatment cycle, 
are presented in Supplementary Table 1. Figure 3 displays 
the voxel-wise relative absolute error maps, highlighting 
the majority of errors in lung tissue when using the SSV 
dose calculation approach. Voxel-wise quantitative metrics 
for three dosimetry approaches with respect to MC are 
tabulated in Table 2. Our DL approach achieved the low-
est errors (e.g., RMSE, ME, MAE, MSE, RE, RAE) and 
maximum resemblance representatives (e.g., SSIM, PSNR, 
Gamma pass rates). The distribution of these quantitative 
metrics is visualized using violin plots in Fig. 4. Addition-
ally, as a result of employing the 5-fold cross-validation 

approach, these quantitative metrics and their distribution 
are reported separately for each fold in Supplementary 
Table 2 and Supplementary Fig. 1, respectively.

We conducted a 3D Gamma evaluation considering 
MC dose maps as standard of reference. Figure 5 presents 
an example of Gamma maps with the highest number of 
rejected voxels (Gamma value >1) in the SSV approach. 
Our hybrid DL approach, on the other hand, generated 
dose maps with reduced number of rejected points in this 
evaluation. Furthermore, we performed the Gamma evalu-
ation within the lesion volumes, and the pass rates were 
found to be 96.8 ± 6%, 97.2 ± 5.3%, and 97.35 ± 5.1% 
for SSV, MSV, and hybrid DL approaches, respectively.

Additionally, we reported the organ-level errors for 
lesions and OARs in Table 3. Our hybrid DL approach 
showed a reduction in error values for most organs, except 
for the left kidney. Organ-wise errors for each fold are also 
reported in Supplementary Table 3. The Bland-Altman 
plots in Fig. 6 depict the differences in mean absorbed 
dose calculated by each dosimetry approach with respect 
to MC for OARs and lesions. The solid line represents 
the mean difference with MC, whereas the dashed lines 
indicate the upper and lower limits of agreement (mean 
difference ± 1.96 times the standard deviation of the dif-
ferences). An example of the DVH for lesions and various 
OARs is depicted in Supplementary Figure 2.

Fig. 2  Architecture of the modified UNETR network used in this 
study. The architecture consists of a transformer encoder which is 
connected to a decoder via skip connections. The network was fed by 

2D axial slices of CT images (size of 128 × 128); the output was the 
difference between Monte Carlo and MSV (MC-MSV)
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Fig. 3  Representative relative absolute error maps in coronal, axial, 
and sagittal views. For each dosimetric approach, the errors were cal-
culated with respect to Monte Carlo simulations serving as standard 
of reference. The SSV method tends to overestimate absorbed dose 

values within low-density regions (e.g., lungs), while overestimat-
ing this quantity in high-density structures (bones). The errors were 
reduced when utilizing the MSV method. However, our DL approach 
demonstrated more effective error mitigation

Table 2  The voxel-wise quantitative metrics calculated for 3 dosimetric approaches with respect to MC calculations

The values are reported as average ± their corresponding standard deviations. SSIM: structural similarity index, PSNR: peak signal-to-noise 
ratio, RMSE: root mean squared error, ME: mean error, MAE: mean absolute error, MSE: mean squared error, RE: relative error, RAE: relative 
absolute error, DL: deep learning, MSV: multiple S-value, SSV: single S-value

SSIM (%) PSNR RMSE  (Gy2) ME (Gy) MAE (Gy) MSE  (Gy2) RE (%) RAE (%) Gamma pass 
rates (%)

DL 99.96 ± 0.0005 62.70 ± 5.79 0.015 ± 0.01 0.0001 ± 
0.0002

0.0010 ± 
0.0006

0.0004 ± 
0.0007

-0.46 ± 1.38 5.28 ± 1.32 99.0 ± 1.20

MSV 99.78 ± 0.0022 55.13 ± 5.78 0.034 ± 0.02 0.0009 ± 
0.0010

0.0020 ± 
0.0013

0.0017 ± 
0.0025

-1.50 ± 1.05 5.54 ± 1.40 98.80 ± 1.30

SSV 99.71 ± 0.0025 54.42 ± 5.6 0.036 ± 0.02 0.0016 ± 
0.0012

0.0026 ± 
0.0016

0.0019 ± 
0.0027

1.13 ± 2.15 7.8 ± 3.02 98.71 ± 1.52
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Computational time

The computational time of the different strategies was 

compared by computing a dose map corresponding to the 
512 × 512 × 130 SPECT/CT image size on a desktop with 
32 GB of RAM, CPU (12th Gen Intel ®  core™ i7-12700K 

Fig. 4  The voxel-wise quantitative metrics distributions calculated for 
three dosimetric approaches with respect to MC. Our deep learning 
(DL) model exhibited superior performance, as evidenced by high-

value metrics like SSIM, PSNR, and Gamma pass rates. Additionally, 
the model effectively reduced errors, as indicated by metrics, such as 
MSE, ME, MAE, and RMSE
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at 3.6 GHz) and GPU (NVIDIA GeForce RTX 3080). Since 
the calculation of TIA and automatic organ segmentation 
was common among all strategies, the corresponding time 

for these steps was not taken into account. For the DL dose 
map generation, including pre-processing (CPU), infer-
ence (GPU), and post-processing (CPU), the process took 

Fig. 5  Gamma maps in coronal, axial, and sagittal view for a case with pass rates of 98% for SSV 99% for MSV and 99.5% for DL approaches, 
with the criteria of 4.79 mm DTA and 1% DD. Voxel values less than or equal to 1 passed for this evaluation

Table 3  Organ-wise errors for 
each dosimetric approach with 
respect to MC for lesions and 
OARs

The average values are reported with ± SD

Error (%) Absolute percent error (%)

SSV MSV DL SSV MSV DL

Lesions 0.06 ± 3.38 −0.13 ± 2.90 0.05 ± 2.70 1.44 ± 3.05 1.18 ± 2.65 1.15 ± 2.5
Left kidney 0.11 ± 0.12 0.09 ± 0.12 0.29 ± 0.15 0.16 ± 0.05 0.14 ± 0.05 0.30 ± 0.10
Right kidney −0.12 ± 1.95 −0.04 ± 1.31 0.01 ± 1.67 0.45 ± 1.9 0.35 ± 1.26 0.49 ± 1.59
Liver 0.90 ± 0.94 0.83 ± 0.86 0.59 ± 0.42 0.90 ± 0.93 0.84 ± 0.86 0.61± 0.40
Spleen 1.05 ± 2.18 0.99 ± 2.08 0.14 ± 0.26 1.11 ± 2.1 1.06 ± 2.05 0.22 ± 0.20
Bones −17.07 ± 9.32 −11.47 ± 6.4 −8.21 ± 5.92 17.07 ± 9.32 11.47 ± 6.4 8.21± 5.92
Lungs 45.0 ± 39.1 4.57 ± 5.86 0.49 ± 3.52 45 ± 39.1 4.84 ± 5.64 2.60 ±2.40
Spinal cord 3.25 ± 14.98 3.70 ± 14.65 −4.50 ±15.44 10.1 ± 11.44 9.96 ± 11.27 7.42 ±14.25
Bladder −2.0 ± 7.19 −2.03 ± 7.17 −0.79 ± 1.97 2.44 ± 7.03 2.42 ± 7.04 1.08 ±1.81
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Fig. 6  Bland-Altman plots 
demonstrating the differences 
of each dosimetric approach 
with respect to MC for OARs 
and lesions. The solid line 
represents the mean differ-
ence with MC, whereas the 
dashed lines indicate the upper 
and lower limits of agreement 
(mean difference ± 1.96 times 
the standard deviation of the 
differences
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approximately 1 min. While for the whole inference on CPU 
for desktops not equipped with dedicated GPU, the whole 
computational time was 4 min. On the other hand, the dose 
map calculation based on SSV and MSV took ~1.2 h each 
on CPU. However, MC calculation was the most time-con-
suming technique, taking about 2 days on CPU to simulate 
100 million histories. 

Discussion

Fast and accurate generation of dose maps may help the 
implementation and adoption of personalized dosimetry 
in RPT in the clinic. A modified UNETR model com-
bined with MSV was developed to achieve efficient and 
accurate voxel-wise dosimetry for  [177Lu]Lu-DOTATATE 
therapy. This study evaluated organ- and voxel-wise errors 
in comparison to MC dose calculation, considered as 
standard of reference. While this study does not aim to 
conduct a direct head-to-head comparison of independent 
approaches, we included the analysis of the voxel S-value 
MIRD formalisms to ensure a comprehensive dosimetry 
investigation. Additionally, our objective is to highlight 
and demonstrate the potential limitations associated with 
these approaches. One of the motivations behind employ-
ing a DL network for  [177Lu]Lu-DOTATATE voxel-wise 
dosimetry was the limitation of current voxel-level MIRD 
formalisms. In the SSV approach, the dose map from a 
radiopharmaceutical is constructed through the convo-
lution of only one voxel S-value kernel (water) with the 
TIA calculated from emission tomography images (PET 
or SPECT). This approach does not account for organ het-
erogeneities [21]. The alternative MIRD-based dosimetry 
approach, referred to as multiple S-value (MSV), utilizes 
multiple kernels, overcoming the limitations of the SSV 
technique. However, it still presents visible errors in tissue 
boundaries and interfaces [22].

Monte Carlo simulations were used as the gold standard. 
However, MC itself is prone to statistical errors and differ-
ences with real-world occurrences that may lead to missing 
dose heterogeneities. We had access to limited computa-
tional resources, and hence, only 100 million tracked parti-
cles were simulated which means the MC itself is prone to 
sampling statistical errors even negligible [44]. Besides, the 
inherent approximations within MC calculations and geom-
etry simplifications may not accurately capture the complex-
ity of clinical scenarios.

In a broader point of view, the distinctions among SSV, 
MSV, and MC techniques lie in the extent of approxima-
tions and assumptions made. SSV assumes uniform radi-
ation absorption across all tissues (assumed as water), 
whereas MSV introduces tissue-specific kernels, reducing 
assumptions but increasing the descriptive parameters and 

calculations. In contrast, MC makes the fewest assumptions 
but requires more parameters to be defined. This explains 
the superior performance of MSV over SSV and even better 
performance of MC over MSV.

Noteworthy, absorbed dose heterogeneity in the context of 
RPT includes both spatial and temporal heterogeneities. The 
first refers to uneven distribution of absorbed doses within 
a VOI, while the second refers to the variation of absorbed 
dose rates over time due to pharmacokinetics and radioactive 
decay. Although dynamic imaging or imaging in multiple time 
points is performed to address the temporal heterogeneity, 
radiopharmaceutical kinetics is oversimplified in TAC fitting 
process [51]. The accuracy of TAC derivation depends on the 
spatial resolution of the imaging modality as well as the fre-
quency of the time points. Low spatial resolution or infrequent 
time points lead to inadequate capturing of rapid changes in 
radiotracer distributions, affecting the accuracy of TACs and, 
consequently, the calculated absorbed doses. However, the 
initial steps including time-point registration, curve fitting, 
and TIA calculations were similar for all four dose calculation 
methods (SSV, MSV, MC, and DL) evaluated in this work.

Most of the errors in voxel-wise dose calculations occur 
when using the SSV approach, which is evident in Fig. 3. 
The SSV method overestimates the absorbed dose values 
inside the low-density tissues, such as the lungs, and under-
estimates the absorbed dose values in tissues with high den-
sity, such as bones. While MSV mitigated these errors, it still 
showed limitations in high-gradient tissue density regions, 
i.e., the tissue boundaries (lung/soft tissue and bone/soft tis-
sue). However, our proposed hybrid DL model effectively 
reduced errors in these areas as confirmed by Gamma maps 
(Fig. 5). Our method improves the MSV dose map accuracy 
both in voxel-level and organ-level evaluations as presented 
in Figs. 4 and 6. Although Gamma evaluation pass rates 
were reported, displaying Gamma maps allowed observ-
ing regions of failure. In addition, lesion-wise Gamma 
evaluation indicated a slightly higher pass rate for the DL 
approach. To the best of our knowledge, there is no guide-
line indicating a specific criterion for Gamma evaluation in 
targeted radiotherapy. However, the chosen criteria (DTA = 
4.79 mm and DD = 1%) were based on the spatial resolu-
tion of SPECT images as a determinative factor and external 
beam radiation therapy standards.

DVHs are shown in supplementary Figure 2, where we 
can compare the dose distributions visually. The rationale 
behind using DVHs relies on their ability to provide a com-
prehensive and quantitative summary of dose distribution. 
This involves representing the percentage volume of a vol-
ume of interest (VOI) that receives a specific dose or higher 
(Vx (%)) or a specific absorbed dose received by a percent-
age of volume (Dx (Gy)). This quantitative data is crucial to 
evaluate the delivered absorbed doses to lesions and OARs, 
especially for heterogenous dose distributions. DVHs visually 
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depict dose distribution, facilitating straightforward compari-
sons between different dose distributions. Although DVHs 
are well-studied for handling heterogeneous dose distribu-
tions, they are not able to provide spatial information on 
where dose inhomogeneities occur within the volume. Fur-
thermore, by simplifying the complex 3D dose distribution 
into a single metric for each dose level, DVHs may overlook 
specific geometric patterns or gradients that hold clinical sig-
nificance. Additionally, the granularity of a DVH depends 
on the selected dose-volume bin size, and slight changes in 
bin size can alter the shape of the DVH curve, potentially 
influencing interpretations [52]. One of the reasons that pre-
vented us from distinguishing the differences among vari-
ous dosimetry approaches using DVHs is attributed to the 
absence of spatial information. To address this limitation, we 
have employed Gamma analysis and visualized the results to 
identify specific regions showing observed differences.

In this study, a transformer-based UNET-shaped model 
was utilized. To our knowledge, in dosimetry-related stud-
ies, CNNs have been mostly utilized, while the applica-
tion of transformers in this specific task remains limited 
[34, 5 4]. Transformer-based models are generally used in 
Natural Language Processing (NLP) with the capability of 
highlighting the important features of word sequences due 
to self-attention mechanism [47, 54]. The computational 
efficiency and superiority of our model in image domain-
related tasks, such as organ segmentation, has been demon-
strated compared to state-of-the-art CNNs [34, 47]. While 
the optimal performance of complex transformers often 
relies on the availability of a large-scale dataset, our model 
as a less-complex transformer model does not necessarily 
perform better using larger-scale dataset. It should be men-
tioned that the true value of a large-scale dataset lies in its 
capacity to inject diversity into the training process. The 
absence of diversity in a large-scale dataset may result in 
suboptimal performance when applied on external datasets. 
In our study, despite the limited size of our dataset, we 
paid attention to diversity by including various patients with 
personalized injected activities ranging from 1017 to 9657 
MBq. While transformer-based models may not consistently 
outperform other networks in terms of performance met-
rics, their adaptability to small-size datasets, proficiency in 
managing diversity, and ability to capture complicated rela-
tionships make them well-suited for personalized dosimetry 
tasks. Nevertheless, to cope with the inherent black-box 
nature of deep learning methods, including transformers, 
the development of explainable AI models to enhance the 
interpretability and trustworthiness of the predicted results 
is suggested [55].

It is worth mentioning that before opting for the current 
approach, we tried other strategies involving the use of other 
networks, such as UNET and U2-NET. However, the results 
were not as favorable as using the adopted network. The best 

results we could achieve through other networks or strategies 
are summarized in Supplementary Table 4.

Noteworthy, the size, shape, and texture variations of 
organs/lesions, as well as SPECT and CT images, in different 
regions of interest, can influence the performance of the DL 
method, justifying distinct errors in various regions of interest.

Despite using limited training data, our hybrid model 
provided fast and accurate voxel-wise dose estimations. 
Dose map generation time for an image size of 128 × 128 
× 80 voxels is approximately 1 min, which is an impressive 
improvement compared to MC running time. The model per-
formance was consistent among folds showing robustness. 
Moreover, the DL approach exhibited a slight advantage 
over MIRD-based dose calculations, consistent with recent 
studies on  [177Lu]Lu-DOTATATE dosimetry calculated by 
DL [33, 53]. In this study, rather than directly generating 
MC dose maps, we calculated the difference between MC 
and MSV which resulted in further error reduction. Since 
MSV provides a good approximation of MC dose maps, 
and errors only occur in small heterogeneous and boundary 
regions, therefore, training a model that focuses on correct-
ing these errors helped in performance improvement. The 
network predicts the difference map based on anatomical 
information in the CT image. Although generating the dif-
ference dose map between MC and MSV requires the MSV 
dose map calculations to perform the DL-based dosimetry 
calculation, once the model has been trained, the infer-
ence time (~1 min including pre- and post-processing) is 
negligible compared to the MSV calculation time (~1.2 h). 
Nevertheless, it is important to highlight the dependence of 
the proposed approach on the MSV map post-inferencing 
to reconstruct the MC dose map, as outlined in the “Mate-
rial and methods” section (predicted MC = DL + MSV). 
Therefore, the DL model is presented as a hybrid MSV/DL 
model, and the inference time should be added to MSV cal-
culation time (1.2 h on CPU + 1 min). As described in the 
“Material and methods” section, the MSV calculations were 
performed on CPU. We implemented the MSV calculation 
part on GPU to accelerate the procedure. Indeed, GPU-based 
computations for MSV would further reduce the calculation 
time (14 s for each voxel S-value kernel of MSV for a 2-bed 
SPECT image with a resolution of ~4.8 mm traceable on P#6 
of SNMMI dosimetry challenge dataset [13]). Therefore, 
conducting our hybrid DL approach on GPU would take ~3 
min for a two-bed SPECT (MSV with 8 kernels ~2 min, and 
inference time ~1 min).

Automated tools, such as OAR segmentation, which is the 
most time-consuming step in the dosimetry workflow, and 
SPECT-SPECT registration facilitated and accelerated our 
study. The OAR segmentation model demonstrated a high 
degree of reliability as reflected by the performance metrics 
(high Dice coefficients) [45]. This model can be employed in 
dosimetry workflow of other radionuclides and embedded in 
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treatment planning systems. It should be mentioned that organ 
segmentation on CT images is a more practical approach, yet 
susceptible to potential errors arising from the different reso-
lutions of CT and SPECT images, the spill-in/out phenomena 
in SPECT images, and the likely mismatch between SPECT 
and CT images. Lesion segmentation was manually carried 
out by a physician, considering both SPECT and CT images, 
along with the fused image at all three time points.

The SPECT-SPECT registration for the generation of 
TIA has an advantage over transformation methods based 
on the CT of hybrid SPECT/CT, avoiding issues with mis-
alignment errors in SPECT-CT co-registered images origi-
nating from patient movement and respiratory motion [44, 
56]. However, given the time intervals between different 
acquisitions, several factors introduce challenges to achiev-
ing precise alignment even with SPECT-SPECT registra-
tion approach. These factors include patient motion, fluctua-
tions in radiopharmaceutical distribution, radioactive decay, 
inherent image noise and poor spatial resolution, lack of 
anatomic information, and anatomical-related variables, 
such as nutritional and voiding status of the patient. The 
complicated interplay of these dynamic elements necessi-
tates a comprehensive appraisal to ensure accurate and reli-
able image registration [56]. The incorporation of trapezoi-
dal and mono-exponential TAC fitting in this study allowed 
modeling both the uptake and washout of the tracer, which is 
not achievable by using mono-exponential TAC fitting alone 
[13], particularly in organs at risk, such as the kidneys [41].

This study bears inherently a number of limitations, 
including the small sample size. Yet, the results demon-
strated the effectiveness of the network with a 5-fold cross-
validation strategy. Furthermore, the unavailability of diag-
nostic images for accurate tumor delineation may lead to 
underestimation of absorbed dose values [13]. Manual lesion 
segmentation on SPECT/CT images introduces inherent 
sources of error, particularly in cases where the lesions are 
distributed across various anatomical regions. The reliance 
on visually selected image windowing (window width and 
window level) poses challenges in accurately defining lesion 
borders. Such misalignments adversely impact the accuracy 
of TAC calculation, as the delineated lesion may include 
voxels from surrounding tissues. Conversely, there is a possi-
bility of missing part of the lesion when using this approach.

Another limitation of our study is that users are required to 
compute the MSV dose maps for reconstructing MC estimate 
from DL results. Nevertheless, the MSV dose map can serve 
as a conventional method with a known extent of error, aid-
ing in identifying cases where the DL dose map prediction 
may be unreliable in an external dataset. The time required 
for MSV calculation contributes to the safety of our method-
ology in identifying outliers in an external, unseen dataset. 
Another limitation of this work is the use of mono-centric 
instead of multi-institutional datasets to ensure the robustness 

and generalizability of trained hybrid DL model, and as such, 
further evaluation on larger multi-centric datasets is still 
required.

Conclusion

This work aimed at developing a hybrid transformer-based 
deep learning model incorporating the MSV approach, 
trained for fast and accurate generation of absorbed dose 
maps. The results demonstrated superiority of this hybrid 
network over the MIRD SSV approach, and a slight improve-
ment compared to the MSV approach while significantly 
outperforming MC in terms of computational efficiency. 
It can be concluded that our method achieved an accuracy 
close to the gold standard and surpassed it in terms of time 
and computational effort, making it more readily applicable 
in clinical setting once trained using a large-scale and multi-
centric dataset. In summary, according to our results, using 
the MSV method is recommended for organ-level dosim-
etry, whereas MC or hybrid DL method is suggested for 
voxel-wise dosimetry, especially for small lesions/organs in 
regions with high gradient of density.
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