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1. Development of a method to estimate patient organ dose from 

radiological examinations involved in cancer diagnosis, treatment, and 

follow-up 

Lymphoma and brain tumor patients, with multiple exposures in radiology, nuclear medicine, and radiation 

therapy, face risks of radiation-induced malignancies, especially children and young adults [1-4]. The 

objective of Tasks 2.1 and 2.4 by UoC was to propose accurate methods, considering patient size and 

exposure characteristics utilizing computational MC and AI models, for estimating radiation dose to organ 

structures during the diagnosis and radiotherapy of tumors. 

The proposed method combines Monte Carlo (MC) computational techniques and patient CT scans in five 

steps: (a) collecting suitable patient CT scans; (b) determining examinations' parameters; (c) conducting MC 

dosimetric computations; (d) obtaining three-dimensional (3D) patient-specific dose distribution output; 

and (e) establishing correlations between dose and patient characteristics. These 3D dose distributions will 

form the foundation for AI and ML algorithms to derive organ doses from the 3D dose-volume during or 

immediately after a radiological examination by modeling the patient-specific dose-response relationship. 

 

2. Data Collection 

Images from 226 pediatric and 308 adult lymphoma and brain tumor patients were included in this task. All 

images and exposure were selected and extracted from the local Picture Archiving and Communication 

System (PACS) database following specific data protection guidelines as proposed by the SINFONIA Data 

Management Board to ensure data privacy and security. 

Data Privacy and Security 

Data was collected on-site, using a local secure network through PACS Digital Imaging and Communication 

in Medicine (DICOM) protocol. Before delineation and MC simulations, all CT images collected were 

anonymized and patient and exams id were kept in a different password protected archive, so as images’ 

identifiers were all limited to alphanumeric characters with no direct connection to patient personal data. 

Anonymization 

Proper handling is essential for maintaining patient privacy when dealing with sensitive patient data. [5]. 

There are mainly two methods to de-identify patient-related information through a DICOM header strategy 

[6]. The first method is anonymization which removes information carried by header elements or replaces 

the information with random data such that the remaining information cannot be used to reveal the 

patient identity at all. Another method, pseudo-anonymization, is implemented by replacing these fields 

using artificial identifiers that could be used to track down the real identity of the patient in case of clinical 

analysis. An in-house developed application was used to access and pseudo-anonymize DICOM Metadata.  
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3. Monte Carlo based dosimetric calculations: Software parametrization  

Monte Carlo software for dosimetric computations 

The MC software selected for dosimetric computations was ImpactMC (version 1.6, CT Imaging© GMBH, 

Erlangen, Germany). ImpactMC is a software package providing fast calculation of 3D dose distributions for 

CT scans using MC algorithms [7-9].  

Based on volumetric data as input, an individualized voxelized MC simulation is performed to calculate the 

dose deposited. Dose is calculated on a per image voxel basis, considering all available physical interactions. 

ImpactMC’s output comprises of parametric dose images in which every voxel carries the normalized dose 

(to Computed Tomography Dose Index- CTDI) of the initial image grid.  

The generated 3D dose distributions are useful to estimate organ doses and to calculate effective dose of 

individual scans. Figure 1 demonstrates the graphical user interface (GUI). The GUI consists of two main 

panels - one for parameter input and one for visualization. At the bottom of the image viewer a panel gives 

information on dose, density and material for the voxel selected with the mouse cursor. 

ImpactMC utilizes any available Nvidia graphics processing unit (GPU) to accelerate computations. In 

conjunction with high-speed parallel processing within the GPU, higher GPU memory bandwidth facilitates 

greater compute efficiency compared to CPU-only intensive calculations. 

 

Figure 1: The graphical user interface of ImpactMC. 
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Each estimation of the dose distribution in a CT volume starts with setting up an ImpactMC project.  

Figure 2 provides an overview of the project structure. The following input data were required by the 

software to start the dose computation procedure: 

1. Input volume: The input volume represents the scanned patient or phantom; a set of CT 

reconstructed images from one examination, in DICOM format.  

2. Scan parameters: Data for beam spectrum, filtration, and geometrical specifications  

3. Simulation parameters: The number of x-rays depositing energy in the input volume was selected.  

 

Figure 2: ImpactMC project structure. 

 

4. Monte Carlo based dosimetric calculations: Simulations 

Diagnostic CT scans simulations  

Scanner-specific dose computations required the parameterization of the MC software according to 

operating and physical characteristics of each CT scanner [10]. The scanner model used was based on the 

scanner used in our institution (GE GSI Revolution 64). Data for x-ray beam spectra, beam shaping devices 

(bow-tie filters) and geometrical specifications were provided by the manufacturer (Table I) and converted 

to input parameters suitable for the Monte Carlo software. 

Focus to Isocenter (mm) Fan Angle (deg) Beam collimation (mm) Beam shaping devices 

539 58 20.0 Small, Medium, Large 
Table 1: Scanner geometric parameters used to model the GE GSI Revolution 64 behavior. 
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Simulation of CT Scanner tube current modulation  

The DICOM header of each reconstructed image (z) included a unique mAz value along with the 

corresponding table location. Each mAz value is the average of the angularly and longitudinally modulated 

values applied over the gantry rotation used to reconstruct this z-th image. mAz profile values were 

retrieved from the DICOM header of the image data using ImageJ manipulation software and used as a 

custom tube current file for the MC simulation software (Figure 3). 

 

 

Figure 3: Graphical representation of extraction of longitudinally modulated tube current from DICOM header. Columns A and B 
represent z-axis position and tube current, respectively. 

 

Determination of scanner parameters – Spectral characteristics 

Beam spectra for various modes of operation, were produced for each modality using SpekCalc spectrum 

calculation program [11]. SpekCalc allows the user to calculate and display the x‐ray spectra emitted from 

tungsten‐anode x‐ray tubes. The underlying theoretical description for the bremsstrahlung and 

characteristic x‐ray production was taken from a recently published model [12]. The user can select tube 

potential in kVp, the take‐off angle and the amount of filtration. The resulting spectrum can be calculated, 

displayed, and saved/exported for later use. Beam quality parameters such as the half‐value‐layer, in mm 

of aluminum and copper, and the mean beam energy, in keV, can also be considered as depicted in Figure 

4. Filtration can be selected in mm, for 7 materials (e.g., Al, Co, Zn, etc.). 
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Figure 4: SpekCalc spectrum calculation software GUI. 

 

The structure of IMPACTMC ‘s spectrum text file consists of several entries, each defining the number of 

photons at a certain energy level (Fehler! Verweisquelle konnte nicht gefunden werden.). Each line has 

the following syntax: 

energy e (in keV), number of photons in the spectrum in energy bin e 

The values for e must be positive, monotonically increasing, and equidistant. The number of photons did 

not have to be normalized because normalization was done by the software, if necessary. This text file was 

imported using the GUI. 
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Figure 5: A user defined spectrum and spectral data file. 

 

Determination of scanner parameters – CT shaping filters modelling 

In ImpactMC software, the user has the option to include a shaped filter where the thickness of the filter is 

varying with the fan angle at the x-ray source in the MC simulations. The shaped filter can be switched off 

and on from the GUI (Figure 6). The user can add a shaped filter from a specification file. In this case the 

values for filter material and thickness are read from the file according to the following file structure: 

line 1: Filter (keyword) 

line 2: # Name of the material (mandatory comment line) 

line 3: Name of the material, e.g. Al. (software specific name) 

line 4: # Density of the material (g/cm^3) (mandatory comment line) 

line 5: Density of the material in g per cm3,  

line 6: # Angular increment (°) (mandatory comment line) 
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line 7: Angular increment between the given thickness values in degrees. 

line 8: # Thickness array (mm) (mandatory comment line) 

line 9: thickness of the shaped filter at angle = 0°, i.e. in the middle of the fan beam 

line 10: thickness of the shaped filter at angle +/- angular increment 

following lines: thickness of the shaped filter at n angle +/- angular increment 

 

Figure 6: Definition of the shaped filter material and density, angular increment, and thickness (Adapted from ImpactMC user-
manual). 

 

Radiotherapy related CT scans simulations – Treatment planning CT 

CT imaging is used in radiotherapy treatment planning serves two key purposes: to allow, with high 

geometric fidelity, the position of the tumor and surrounding tissues along with organs at risk to be 

accurately identified and to provide a map of the electron density information for the various tissues to be 

used in the treatment planning system (TPS) dose calculation. Simulating a treatment planning CT requires 

the same equipment, spectral and protocol parameters as conventional diagnostic CT imaging (Table 2). 

The modeled scanner was GE GSI Revolution 64. 
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Patient 

Population 

Anatomical 

Site kV 

mA 

modu-

lation 

Acquisition 

Type 

Filter Type & 

Collimation (mm) Pitch 

Adult  

Head 

Thorax 

Abdomen/ 

Pelvis 

120 No Helical 
Large /  

40 mm 
0.984 

Pediatric 

Head 

Thorax 

Abdomen/ 

Pelvis 

120 No Helical 
Large /  

40 mm 
0.984 

Table 2: CT exposure parameters for Treatment Planning CT scans. 

 

Radiotherapy related pre-treatment scans – CBCT simulations 

Cone beam computed tomography (CBCT) is a 3D x-ray imaging technique in which the x-ray beam is 

transmitted to an object with wide beam geometry producing a 2D image per projection. Due to its faster 

image acquisition time, wide coverage length per scan, and fewer motion artifacts compared to 

conventional CT, CBCT systems are becoming popular in diagnostic and therapeutic radiology. In radiation 

oncology, on gantry-CBCT imaging is utilized for on-line correction of patient’s isocenter localization error 

for image guided radiation therapy (IGRT). 

Simulating a pre-treatment CBCT scan requires similar equipment, spectral and protocol parameters as 

conventional diagnostic CT imaging. However, several alterations must be implemented to MC software to 

simulate a CBCT scan compared to a conventional CT simulation. These adaptations include definition of a) 

in-plane fan angle of the x-ray beam (smaller than conventional CT), b) number of rotations (0-1 for a full 

rotation), and c) starting angle z-position of the x-ray tube. Most prominently, a sequential mode was 

selected, and a collimation file was implemented according to ImpactMC configuration. 

ELEKTA XVI (R5.04) system was modeled [13]. The protocols were supplied by ELEKTA through the XVI 

interface and are tabulated in Table 3. The Elekta XVI CBCT system does not employ moveable collimators 

and the field size is specified using lead cassettes with a predefined, fixed, opening. Bow-tie filtration is 

usually employed in half-fan acquisitions.  
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Patient 

Populatio

n 

Preset 

protocol/ 

collimatio

n 

Anatomica

l Site 
kV 

mAs/pe

r frame 

Acquisitio

n Type 

Filte

r 

Type 

Span 

(deg

) 

Frame

s 

Adult & 

Pediatric 
M20 Chest 

12

0 
0.40 CBCT F1 360 660 

Adult M20 Pelvis 
12

0 
1.60 CBCT F1 360 660 

Adult L20 Pelvis 
12

0 
3.84 CBCT F1 360 660 

Table 3: Exposure parameters for CBCT in-room pre-treatment scans. 

 

In both medium and large FOV, the center of the kV detector panel is offset from the kV center axis in the 

direction of the beam limiting device (Figure 8, 9). This is to prevent a collision with the touch guard of the 

MV detector arm when this detector panel is retracted. Οff-setting were modeled through different 

collimations options in IMPACTMC collimation and fan and Z-collimation file options (Figure 7). 

 

 

Figure 7: Sketch of the different collimation options in IMPACTMC collimation file and definition of the fan and z collimation with 
respect to the center of rotation. 
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Figure 8: Graphical description of the medium FOV position of the kV detector panel (XVI user manual). 
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Figure 9: Graphical description of the large FOV position of the kV detector panel (XVI user manual). 

 

For all anatomical sites, the M20 protocol was applied in most of the patients, and the L20 protocol in 

especially larger patients. The protocols/presets for CBCT imaging in radiotherapy are presented in Table 3, 

and the MC parameters for the simulations are depicted in Table 4. The F0 filter cassette is a blank filter 

and has no effect on the X-ray beam. The F1 bowtie filter cassette delivers a lower skin dose, decreases the 

image saturation of the kV detector panel, and decreases the cupping artifacts across the FOV. This 
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increases the image quality for a range of anatomical sites. F1 cassette is the bowtie filter used by ELEKTA 

for kV imaging [14]. 

 

Table 4: ImpactMC simulation/ exposure parameters for CBCT pre-treatment scans (Adapted from Elekta XVI 5.0 user manual). 

 

 

Figure 10: ImpactMC simulation of CBCT pre-treatment on-line isocenter correction scan. 

 

Radiotherapy related imaging – kV-planar IGRT 

Simulating a kV-planar radiograph requires the same equipment, spectral and protocol parameters as 

conventional projection DR radiography. Radiography simulations were performed in lateral (Lat), and 

Anterior-Posterior (AP) position. 

The number of performed simulations was determined by the specified protocol for each modality and 

anatomical site. Protocol selection for simulation was based on most frequent examinations performed in 

our institute. The modeled protocols are depicted in Table 5. 
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Patient Population 

Anatomical 

Site kV mAs Views 

Adult Head 100 0.5 AP, Lat 

Adult Thorax 120 6.25 AP, Lat 

Adult Abdomen 120 5/6.4 AP, Lat 

Pediatric Head 100 0.5 AP, Lat 

Pediatric Thorax 120 6.25 AP, Lat 

Pediatric Abdomen 120 5/6.4 AP, Lat 

Table 5: Exposure parameters for diagnostic radiology DR scans. 

 

 

Figure 11: Simulation of plain projection radiography with IMPACTMC - Distance focus- center of rotation. 
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Figure 12: ImpactMC simulation of digital radiography (DR) AP projection. 

 

5. Patient-specific 3D dose distributions 

The MC software output after each computation is in the form of a 3D dose distribution (Figures 13 a, b), 

based on the physical properties (i.e., attenuation, composition, and size) obtained from the patient-

specific input. Each slice in the dose volume corresponds to the same slice of patient-input. Each pixel in a 

specific slice of the input volume has a corresponding dose value in the 3D dose distribution output. The 

dose distribution was exported in DICOM file format. The unit of dose values in the 3D volume was 

mGy/mGy per 100mAs. Organ dose information was extracted from 3D dose distributions through 

appropriate delineation.  
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 (a) (b) 

Figure 13: (a) CT image slices and (b) corresponding dose distribution in the thorax region. 

 

The contours of an organ were overlaid on the corresponding slices of the dose distribution (Figure 14) and 

the respective dose was extracted. The dose over the whole organ was computed as: 

𝐷 = ∑ 𝐷𝑖

𝑁

𝑖

                     (1) 

where, 𝐷𝑖 is the dose within the contour at slice 𝑖, and 𝑁 the total number of slices that contain contours of 

a specific organ. The calculated dose (𝐷) was normalized to 100 mA, pitch factor (𝑝) equal to one, and 

rotation time (𝑡𝑟𝑜𝑡) equal to one second using the following formula: 

𝐷𝑛 = 𝐷 ×
𝑝 × 100

𝑡𝑟𝑜𝑡 × 𝑚𝐴
                (2) 

 

 

 

Figure 14: Graphical representation of right lung contours overlaid on corresponding dose slices. 

 

Due to the large number of simulated results organ dose calculation procedure was automated. Relevant 

in-house algorithms were implemented to provide unsupervised organ dose calculation, WED values and 

corresponding linear regression outcomes. 



D2.4 - Software tool on personalised dosimetry in photon-based radiation therapy imaging and deep learning-
guided algorithms 

 

Page 21/57 

6. Delineation of radiosensitive organs within the primary exposed 

volume 

Open-source tools were utilized to delineate radiosensitive organs within the primary exposed volume of all 

pediatric and adult CT scans. Structures that were automatically delineated were bones, lungs, and the 

outline of the patient. To segment these structures, thresholding techniques were utilized [14-15]. Lung 

entities were manually selected after thresholding, and bone structures were automatically assembled 

using the analyze particles ImageJ tool, which extracts and measures objects in binary or thresholded 

images. Size and circularity were used to trace particles: 

Esophagus, breast, heart, bladder, kidneys, liver, gallbladder, pancreas, stomach and spleen were manually 

delineated by a radiologist using a Wacom tablet for added accuracy and by adjusting the brightness and 

contrast of the image to optimum levels ImageJ ROI (Region of Interest) Manager was used for working 

with multiple selections. Multiple organ selections for each structure were saved as a ZIP file, containing 

multiple ROIs incorporating complete CT-sequence’s organ assortment. 
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Figure 15: Automatic segmentation of bone structures using thresholding techniques. 
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Figure 16: Automatic segmentation of skin contour and lungs using thresholding techniques. 
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7. Automatic CT couch/table removal 

Accurate patient skin segmentation requires detailed delineation of the patient body outline on the CT slice 

without including the CT couch/table. In radiation therapy, body, organ and tissue delineation is part of the 

treatment planning routine, hence, body outline is readily available. In diagnostic radiology, such 

delineations are not usually provided. Although this task can be performed manually by experts, it is 

practically cumbersome and time-consuming over many CT scans.  

Within the scope of this project, an algorithm to automatically delineate the patient body and remove the 

couch from each CT slice was developed (body segmentation). The algorithm is based on morphological 

operations applied on each image slice (Fig. 17a). A square structuring element with heuristically 

determined size equal to 12 pixels was used to perform morphological opening. This step effectively 

removed small structures in the vicinity of the body and preserved the body shape and size (Fig. 17b). The 

next step was conversion of the image to binary using Otsu’s method to determine the single HU threshold 

between background and any other structure [16,17]. During this step, the couch is usually removed from 

the image without affecting the body size or shape (Fig. 17c).  

In addition, since lungs and other low-density tissues are likely to produces empty spaces (holes) in the 

binarized image within the region defined by the body shape. This empty space was filled by detection of 

zero value locations that were not connected with the image borders (Fig. 17d). In the final step, non-zero 

areas that were not connected were identified and the largest area was kept (i.e. the body) as seen in Fig. 

17e. 

 

Figure 17: (a) original image slice of patient with pulmonary fibrosis; (b) image after morphological opening; (c) binarization – notice 
the couch has been already removed; (d) filling the empty space; (e) outline overlaid on original image. 
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8. Dosimetric results  

Correlation of organ doses to Water Equivalent Diameter (WED) 

Water Equivalent Diameter (WED) and organ dose correlation was determined through univariate 

regression analysis. The estimated regression function was of the exponential form: 

𝑦 = 𝑎 ⋅ 𝑒𝑏⋅𝑥           (2) 

were the independent variable, 𝑥, corresponds to the WED value in millimeter (mm) units, estimated per 

patient as described previously. The WED was measured at the central axial plane crossing the geometrical 

center of the heart. The variable 𝑦, corresponds to the dependent variable, organ dose in 

mGy/mGy/100mAs (or similar normalized unit). Parameters 𝑎 and 𝑏 were estimated for each patient-

specific WED at each organ dose computed by the MC software. The coefficient of determination 𝑅2, was 

used as a measure to assess the strength of correlation between WED and organ dose.  

In the following sections tables are demonstrated with the results of regression analysis for all WED and 

organ dose correlations. Furthermore, representative graphs for exponential fits depicting WED and organ 

dose correlations are provided. parameters appearing on the tables are explicated as follows: 

Organ: The name of the organ (e.g. , bones, breast, esophagus, heart, lungs, etc.) 

Scanner: The name of the simulated scanner (GE: GE Revolution GSI 64) 

Region: Anatomical Region (Head, Thorax, Abdomen/Pelvis) 

kV: The kV beam setting of the computed dose data 

AEC: True (1) if TCM was used or False (0) if tube current was fixed 

a, b: Fit parameters of 𝑦 = 𝑎𝑒𝑏𝑥 
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Organ dose conversion coefficients: Parametric fits for Radiotherapy Treatment Planning CT Imaging – 

Adult Patients 

Region Scanner kV AEC Organ a b 

Head GE 120 0 Bones 0.03291 -0.006308 

Head GE 120 0 Brain 0.006727 -0.001457 

Head GE 120 0 Eye bulbs 0.00929 -0.001403 

Head GE 120 0 Oral mucosa 0.006774 -0.0007512 

Head GE 120 0 Salivary glands 0.008461 -0.001048 

 

Region Scanner kV AEC Organ a b 

Thorax GE 120 0 lungs 0.01712 -0.005316 

Thorax GE 120 0 heart 0.0203 -0.005254 

Thorax GE 120 0 bone 0.02373 -0.005022 

Thorax GE 120 0 esophagus 0.01444 -0.004972 

Thorax GE 120 0 skin 0.009394 -0.00371 

Thorax GE 120 0 breast 0.006829 -0.005123 

 

Region Scanner kV AEC Organ a b 

Abdomen GE 120 0 bones 0.02756 -5.3470E-03 

Abdomen GE 120 0 gbladder 0.02507 -6.2510E-03 

Abdomen GE 120 0 kidneys 0.02641 -6.6520E-03 

Abdomen GE 120 0 liver 0.01868 -5.5200E-03 

Abdomen GE 120 0 pancreas 0.02286 -6.3250E-03 

Abdomen GE 120 0 spleen 0.02380 -6.3170E-03 

Abdomen GE 120 0 stomach 0.02097 -6.0170E-03 
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Organ dose conversion coefficients: Parametric fits for Radiotherapy Treatment Planning CT Imaging – 

Pediatric Patients 

Region Scanner kV AEC Organ a 

Head GE 120 0 Bones 0.04879 

Head GE 120 0 Brain 0.01491 

Head GE 120 0 Eye bulbs 0.01174 

Head GE 120 0 Eye lens 0.01339 

Head GE 120 0 Oral mucosa 0.09986 

Head GE 120 0 Skin 0.01002 

 

Region Scanner kV AEC Organ a 

Thorax GE 120 0 lungs 0.0118 

Thorax GE 120 0 heart 0.01198 

Thorax GE 120 0 bone 0.02703 

Thorax GE 120 0 esophagus 0.01039 

Thorax GE 120 0 skin 0.009099 

 

Region Scanner kV AEC Organ a 

Abdomen  GE 120 0 Bones 0.024060 

Abdomen GE 120 0 Gallbladder 0.009380 

Abdomen GE 120 0 Kidneys 0.009108 

Abdomen GE 120 0 Liver 0.006694 

Abdomen GE 120 0 Pancreas 0.007304 

Abdomen GE 120 0 Small intestine 0.005761 

Abdomen GE 120 0 Stomach 0.010630 
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Organ dose conversion coefficients: Parametric fits for Radiotherapy pre-Treatment CBCT Imaging – 

Adult Patients 

Region Scanner kV Organ a b 

Head ElektaXVI 100 bones 0.03184 -8.399E-03 

Head ElektaXVI 100 brain 0.01689 -9.376E-03 

Head ElektaXVI 100 eyes 0.03812 -9.452E-03 

Head ElektaXVI 100 oralmucosa 0.006803 -2.886E-03 

 

Region Scanner kV Organ a b 

Thorax ElektaXVI 120 lungs 0.02184 -4.6700E-03 

Thorax ElektaXVI 120 heart 0.02279 -4.7480E-03 

Thorax ElektaXVI 120 bone 0.03175 -4.4890E-03 

Thorax ElektaXVI 120 esoph 0.02043 -5.0800E-03 

Thorax ElektaXVI 120 skin 0.004094 -4.2980E-03 

Thorax ElektaXVI 120 breast 0.02079 -4.0460E-03 

 

Region Scanner kV Organ a b 

Abdomen ElektaXVI 120 adrenals 0.02752 -6.8420E-03 

Abdomen ElektaXVI 120 bones 0.04492 -7.7080E-03 

Abdomen ElektaXVI 120 esoph 0.02607 -9.4530E-03 

Abdomen ElektaXVI 120 gbladder 0.02600 -5.3810E-03 

Abdomen ElektaXVI 120 kidneys 0.02843 -5.9180E-03 

Abdomen ElektaXVI 120 liver 0.01497 -4.1580E-03 

Abdomen ElektaXVI 120 pancreas 0.02436 -5.8410E-03 

Abdomen ElektaXVI 120 prostate 0.11470 -1.8790E-02 

Abdomen ElektaXVI 120 spleen 0.03315 -6.5250E-03 
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Organ dose conversion coefficients: Parametric fits for Radiotherapy pre-Treatment CBCT Imaging – 

Pediatric Patients 

Region Scanner kV Organ a b 

Head XVI 100 Bones 0.1273 -7.464E-03 

Head XVI 100 Brain 0.0399 -6.424E-03 

 

Region Scanner kV Organ a b 

Thorax XVI 120 lungs 0.01632 -4.7120E-03 

Thorax XVI 120 heart 0.01265 -2.6830E-03 

Thorax XVI 120 bone 0.0325 -4.5860E-03 

Thorax XVI 120 esoph 0.01089 -2.4640E-03 

Thorax XVI 120 skin 0.01415 -3.7430E-03 

Thorax XVI 120 breast 0.01524 -4.1350E-03 

 

Region Scanner kV Organ a b 

Abdomen XVI 120 Bones 0.04387 -6.678E-03 

Abdomen XVI 120 Gallbladder 0.01371 -3.743E-03 

Abdomen XVI 120 Kidneys 0.01504 -3.922E-03 

Abdomen XVI 120 Liver 0.01335 -3.808E-03 

Abdomen XVI 120 Pancreas 0.01313 -3.550E-03 

Abdomen XVI 120 Spleen 0.01348 -3.706E-03 

Abdomen XVI 120 Adrenal Glands 0.01056 -2.573E-03 

Abdomen XVI 120 Skin 0.01941 -6.420E-03 

Abdomen XVI 120 Small intestine 0.0119 -1.870E-03 

Abdomen XVI 120 Stomach 0.01417 -4.124E-03 

Abdomen XVI 120 Large Intestine 0.01375 -3.001E-03 
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Organ dose conversion coefficients: Parametric fits for Imaging in Radiotherapy Planar X-ray Imaging – 

Adult Patients 

Region Scanner kV Organ a b 

Head AP XVI 100 bone 0.234800 -2.649E-02 

Head AP XVI 100 brain 0.004278 -8.740E-04 

Head AP XVI 100 eyes 0.011850 -1.905E-03 

Head AP XVI 100 oral_mucosa 0.005836 -1.092E-03 

Head AP XVI 100 salivary_glands 0.010990 -4.504E-03 

 

Region Scanner kV Organ a b 

Thorax AP XVI 120 bone 0.05872 -6.6730E-03 

Thorax AP XVI 120 breast 0.49250 -1.3390E-02 

Thorax AP XVI 120 esophagus 0.04008 -6.9770E-03 

Thorax AP XVI 120 heart 0.04364 -5.3810E-03 

Thorax AP XVI 120 lungs 0.04931 -6.8750E-03 

 

Region Scanner kV Organ a b 

Abdomen AP XVI 120 bladder 0.01468 -7.1650E-03 

Abdomen AP XVI 120 bowel 0.05248 -1.4140E-03 

Abdomen AP XVI 120 kidneys 0.03659 -3.9330E-03 

Abdomen AP XVI 120 liver 0.04995 -2.8540E-03 

Abdomen AP XVI 120 rectum 0.00742 -4.7890E-03 

Abdomen AP XVI 120 spleen 0.03251 -4.1810E-03 

Abdomen AP XVI 120 stomach 0.12010 -3.1560E-03 

 

Region Scanner kV Organ a b 

Abdomen LAT XVI 120 bladder 0.12250 -1.9950E-02 

Abdomen LAT XVI 120 bowel 0.12560 -1.3880E-02 

Abdomen LAT XVI 120 kidneys 0.01312 -3.2930E-03 

Abdomen LAT XVI 120 liver 0.00837 -7.6710E-03 

Abdomen LAT XVI 120 rectum 0.06671 -1.8690E-02 

Abdomen LAT XVI 120 spleen 0.01384 -3.7630E-04 

Abdomen LAT XVI 120 stomach 0.25460 -1.4180E-02 
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Organ dose conversion coefficients: Parametric fits for Imaging in Radiotherapy Planar X-ray Imaging – 

Pediatric Patients 

Region Scanner kV Organ a b 

Head AP XVI 100 bone 0.01514 -1.7360E-03 

Head AP XVI 100 brain 0.02760 -7.5070E-03 

Head AP XVI 100 eye_bulbs 0.03336 -1.4030E-03 

Head AP XVI 100 eye_lens 0.02765 -7.3570E-04 

Head AP XVI 100 oral_mucosa 0.04486 -5.8430E-03 

Head AP XVI 100 skin 0.03594 -1.1240E-02 

Head AP XVI 100 bone 0.01514 -1.7360E-03 

 

Region Scanner kV Organ a b 

Thorax AP XVI 120 bone 0.15300 -3.6520E-03 

Thorax AP XVI 120 esophagus 0.09021 -5.0390E-03 

Thorax AP XVI 120 heart 0.06585 -3.3860E-04 

Thorax AP XVI 120 lungs 0.07097 -2.4440E-03 

 

Region Scanner kV Organ a b 

Thorax LAT XVI 120 bone 0.15630 -4.5750E-03 

Thorax LAT XVI 120 esophagus 0.07307 -5.3450E-03 

Thorax LAT XVI 120 heart 0.05690 -1.6840E-03 

Thorax LAT XVI 120 lungs 0.05900 -3.1160E-03 

 

Region Scanner kV Organ a b 

Abdomen AP XVI 120 bladder 0.14810 -6.2650E-03 

Abdomen AP XVI 120 bone 0.21190 -6.6220E-03 

Abdomen AP XVI 120 kidneys 0.07861 -5.6660E-03 

Abdomen AP XVI 120 liver 0.09920 -5.1710E-03 

Abdomen AP XVI 120 pancreas 0.11320 -5.0270E-03 

Abdomen AP XVI 120 spleen 0.09580 -6.6570E-03 
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9. Software development – iDose web calculation tool 

The server-side (backend) of the calculation tool was developed using Python Django. The client-side 

(frontend) was implemented using HTML5, pure JavaScript, jQuery, AJAX JavaScript libraries, and Bootstrap 

for the CSS. jQuery is a JavaScript library designed to simplify HTML DOM tree traversal and manipulation, 

as well as event handling, CSS animation, and Ajax. Bootstrap is a free and open-source CSS framework 

directed at responsive, mobile-first front-end web development. It contains CSS- and optionally JavaScript-

based design templates for forms, buttons, navigation, and other GUI components. In addition, since XML 

was not suitable to handle all database entries and possible future data implementations, MySQL was 

employed.  

iDose (Abbrev.) – a tool for personalized organ doses estimation from radiological examinations on patients 

with lymphomas and brain tumors – is installed at http://medphys-tools.med.uoc.gr and is available upon 

free user registration (Figure 18). 

 

http://medphys-tools.uoc.gr and http://idose.med.uoc.gr   

 

Figure 18: UoC Medical Physics tools web site and login page of iDose organ dose estimation tool, which will be located at 
http://medphys-tools.uoc.gr and idose.med.uoc.gr. 

http://medphys-tools.med.uoc.gr/
http://medphys-tools.uoc.gr/
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Following the submission of the current deliverable report (D2.1), the dose tools will undergo continuous 

refinement and development throughout the project's duration. This process will be driven by users’ 

feedback, encompassing input from UoC staff and consortium members. The aim is to address errors, 

enhance visuals, and improve functionality based on their valuable suggestions. Moreover, further 

measurements and calculations are planned to validate the precision of results from the iDose tools. 

 

10.  iDose web tool calculation interface 

iDose Landing Page Navigation Panel 

The web-tool dose calculation code is implemented using Javascript on the client side. This reduces load 

from server-side requests and improve dose calculation time and web-site responsiveness. After login, the 

user is presented with a sleek, simple three-option integration of personalized dosimetry tools (Figure 19): 

1. iDoseDiag: Personalized dosimetry tool for organ doses estimation from radiological examinations on 

patients with lymphomas and brain tumours (as described here, in Deliverable 2.1). 

2. iDoseRTI: Personalized dosimetry tool for organ doses estimation from imaging in radiotherapy on 

patients with lymphomas and brain tumours (as described in Deliverable 2.4). 

3. iDoseAI: A dosimetric tool which incorporates all ML/AI algorithms from D2.1 and D2.4 for personalized 

dosimetry tool for organ doses prediction from examinations on patients in diagnostic radiology and 

radiotherapy imaging (as described in Deliverables 2.1 and 2.4). 

 

Figure 19: iDose organ dose estimation tool initial landing page and selection of personalized dosimetry tools. 

 

After the user leaves the iDose Landing Page, having selected the module to use, a panel is displayed 

encompassing all the links for access all tools according to a hierarchical structure (Figure 20). The 

arrangement and appearance of the panel was carefully designed for easy access to all tools, without 

having to move to the iDose landing page. However, the user can access these pages directly from the 

browser address bar, by typing: 

1. idose.med.uoc.gr/links – for the landing page 

2. idose.med.uoc.gr/idosediag – for the iDoseDiag diagnostic calculation page 
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3. idose.med.uoc.gr/idoserti – for the iDoseRTI imaging in radiotherapy page 

4. idose.med.uoc.gr/idoseai – for the iDoseAI ML/AI algorithms calculation page 

 

 

 

 

Figure 20: iDose organ dose estimation tool navigation panels for hierarchical selection of dosimetry tools. 
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11. iDose Radiotherapy Imaging Module – Radiotherapy Treatment 

Planning CT 

In iDoseRTI imaging in radiotherapy module, organ doses from radiotherapy treatment planning CT scans 

can be estimated using the fitting parameters and dosimetric methodology explained in sections 3 to 8 

(Figure 21). Each group can appear or disappear on the screen based on the preference of the user 

(“accordion” implementation).  

User input fields are organized into three groups: 

• The ‘Patient Data’ group requires basic demographic input (i.e., age and gender), CT scan region 

(currently thorax is the only available choice), and WED, which can either be directly inserted as a 

number or calculated using the automatic WED calculation tool.  

• In the ‘Scanner/Protocol Settings’ group, users will select the CT scanner model (three models 

currently available) and corresponding exposure settings (i.e., kV, mA, current modulation, beam 

collimation, pitch, and rotation time). Users will also select the clinical indication for the CT scan.  

• In the ‘CTDI Group’, users enter the CTDI type and value they for their corresponding scanner.  

 

 

Figure 21: iDoseRTI web calculation tool interface accordion implementation overview. 

 

Both adult and pediatric calculation tabs provide dose estimates for organs in the 

head/thorax/abdomen/pelvic region for patients undergoing CT examinations for various exposure settings 

(i.e., kV, mA, current modulation, beam collimation, pitch, and rotation time). 

Patient Group submenu requires demographic data such as gender and age to be entered. This data is 

required for organ dosimetry and risk estimation. Water equivalent diameter is needed for correlation 

absorbed organ dose and patient size characteristics. WED is given in millimeters and can be entered as a 

value or calculated from user-uploaded CT data utilizing Image-based WEB tab.  
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Figure 22: iDoseRTI organ dose calculation tool - main calculation tab - adults. 

 

Scanner Group submenu requires:  

• Selection of CT scanner; Currently only one scanner is available: GE Revolution. 

• Tube Voltage: Currently there is one kV selectable, 120 kV. 

• mA modulation: User can select if tube current modulation (TCM) or fixed tube current (NO) will be 

utilized or not for organ dose calculation. For the radiotherapy imaging module, mA modulation is 

set to NO (fixed current), for all calculations. 

• mAs: User can manually enter the mAs of the examination. For Siemens scanners, effective mAs 

reading from CT console should be used. 

• Beam Collimation: Beam collimation in millimeters. In MDCT the actual beam collimation is not 

directly correlated with slice thickness. It is the length of the individual detector (or linked detector 

elements) acquiring data for each of the simultaneously acquired slices that limits the width of the 

x-ray beam contributing to that slice, this length is often referred to as detector collimation. Beam 

collimation depends on CT scanner and detectors configuration. 

• Pitch: User can select pitch of the examination.  

• Rotation time: User can specify time (in seconds) in which a full gantry rotation is performed. 

CTDI Group submenu requires the user to enter CTDI type and value they for their corresponding scanner. 

CTDI values can be entered in their CTDI-free-in-air form (Figure 22). 

 

 

 

 

 

 



D2.4 - Software tool on personalised dosimetry in photon-based radiation therapy imaging and deep learning-
guided algorithms 

 

Page 37/57 

12. iDose Radiotherapy Imaging Module – Radiotherapy 3D kV CBCT 

In iDoseRTI imaging in radiotherapy module, organ doses from radiotherapy pre-treatment on-board 

imaging CBCT scans can be estimated using the fitting parameters and dosimetric methodology explained in 

sections 3 to 8. 

User input fields are organized into three groups: 

• The ‘Patient Data’ group requires basic demographic input (i.e., age and gender), CT scan region 

(currently thorax is the only available choice), and WED, which can either be directly inserted as a 

number or calculated using the automatic WED calculation tool.  

• In the ‘Protocol Settings’ group, users will select the on-board imaging device (currently only Elekta 

XVI only available) and corresponding exposure settings (i.e., kV, mAs/frame, frames/rotation, 

beam collimation options).  

• In the ‘CTDI Group’, users enter the CTDI type and value for their corresponding scanner.  

Each group can appear or disappear on the screen based on the preference of the user (“accordion” 

implementation).  

 

Figure 23: iDoseRTI web calculation tool interface accordion implementation overview. 

 

Both adult and pediatric calculation tabs provide dose estimates for organs in the 

head/thorax/abdomen/pelvic region for patients undergoing CBCT examinations for various exposure 

settings (i.e., kV, mAs/frame, frames/rotation, beam collimation options).  

Patient Group submenu requires demographic data such as gender and age to be entered. This data is 

required for organ dosimetry and risk estimation. Water equivalent diameter is needed for correlation 

absorbed organ dose and patient size characteristics. WED is given in millimeters and can be entered as a 

value or calculated from user-uploaded CT data utilizing Image-based WEB tab.  
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Figure 24: iDoseRTI organ dose calculation tool - main calculation tab - adults. 

 

Scanner Group submenu requires:  

• Selection of CT scanner; Currently only one linac-mounted imaging device is available: Elekta XVI 

• Tube Voltage: 100kV is selected for head CBCT and 120 kV for thorax/abdomen/pelvic CBCT scans. 

• mA modulation: For the radiotherapy imaging module, mA modulation is set to NO (fixed current), 

for all calculations. 

• mAs/frame: User can manually enter the mAs/frame of the examination. For Elekta XVI, predefined 

values are provided according to table 5. 

• Beam Collimation: 

• Frames/roatation: User can specify the number of acquired frames per revolution. For Elekta XVI, 

predefined values are provided according to table 5. 

 

CTDI Group submenu requires the user to enter CTDI type and value they for their corresponding scanner. 

CTDI values can be entered in their CTDI-free-in-air form. For Elekta XVI, predefined CTDI values are 

provided according to manufacturer specifications. 

 

13. iDoseRTI Imaging in Radiotherapy Module – DR Planar Imaging 

In iDose Radiotherapy Planar Imaging module, organ doses from conventional planar imaging prior to 

radiotherapy treatment can be estimated using the fitting parameters and dosimetric methodology 

explained in sections 3 to 8. 

Both adult and pediatric calculation tabs provide dose estimates for organs in the head/thorax/abdomen-

pelvic region for patients undergoing planar examinations for various predefined exposure settings. 

Patient Group submenu requires demographic data such as gender and age to be entered. This data is 

required for organ dosimetry and risk estimation. Water equivalent diameter is needed for correlation 

absorbed organ dose and patient size characteristics. WED is given in millimeters and can be entered as a 

value or calculated from user-uploaded CT data utilizing Image-based WEB tab. In addition, the tool will 

suggest a value for WED according to patient’s BMI, if no image is available for WED calculations. 
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Exposure settings submenu requires:  

• Selection of anatomical region: Head, Thorax, abdomen pelvis 

• Tube Voltage: Tube voltage is fixed for each radiological examination (eg 100 kVp for thorax, 100 

kVp for head. 

• mAs: tube load is fixed for each radiological examination and represents the most commonly mAs 

used with AEC; however, user can alter tube load to calculate organ dose for different exposure 

setting used 

• FID: Fous-to-Image Receptor-Distance is fixed and represents mostly used distance for each 

radiological examination 

 

Figure 25: iDose organ dose calculation tool - main calculation tab - adults. 

 

14. Automatic Imaged-Based Water-equivalent diameter (WED) 

calculation module 

Accurate WED determination requires detailed delineation of the patient body outline on the CT slice 

without including the CT couch/table. Within iDose, an automatic module for calculation of WED based on 

user-uploaded CT scans was developed. The algorithm is based on morphological operations applied on 

each image slice. A square structuring element with heuristically determined size equal to 12 pixels was 

used to perform morphological opening. This step effectively removed small structures in the vicinity of the 

body and preserved the body shape and size. The next step was conversion of the image to binary using 

Otsu’s method to determine the single HU threshold between background and any other structure [16, 17]. 

During this step, the couch is usually removed from the image without affecting the body size or shape. 

Lungs and other low-density tissues are likely to produce empty space (holes) in the binarized image within 

the region defined by the body shape. This empty space was filled by detection of zero value locations that 
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were not connected with the image borders. In the final step, non-zero areas that were not connected 

were identified and the largest area was kept.  

For imaged-based WED calculation, the user is prompted with an interface to upload a single DICOM image 

or a DICOM series as a group of images for the WED calculation (of each image/slice) to AAPM TG220 

formulation. No images and DICOM header information are stored after exiting the Imaged-Based 

calculation tab, so there is no risk of sharing sensitive patient data.  

WED and tube current values for each uploaded DICOM image are presented and the user can select which 

WED value will be used/transferred in the organ dose calculation tab. Users can use average, median, or 

WED value for a specific slice in this tool.  
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Figure 26: Image-based WED tool inside iDose organ dose calculation tool with user image upload capability. 
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Figure 27: Image-based WED calculation from user-supplied DICOM series inside iDose organ calculation tool. 
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15. AI algorithm development – Rapid estimation of patient-specific 

organ doses from thoracic CBCT examinations using a deep learning 

network 

Various approaches have been adopted over the past decades for the estimation of organ doses such as 

direct measurements with different kinds of dosimeters, anthropomorphic phantoms and calculations using 

Monte Carlo methods combined with computational human phantoms. Methods for scanner-specific and 

patient-specific, organ-dose estimation are based on a procedure that combines MC computational 

techniques and patient CT scans. The procedure is usually composed of five steps: (a) collection of suitable 

patient CT scans; (b) determination of scanner parameters; (c) Monte Carlo dosimetric computations; (d) 

three-dimensional (3D) patient-specific dose distribution output and (e) correlation between dose and 

patient characteristics. 

Time consuming dose computations are based on scanner-specific data for x-ray beam spectra, beam 

shaping devices (bow-tie filters) and geometrical specifications. Dose is calculated on a per image voxel 

basis and output comprises of parametric dose images in which every voxel carries the dose normalized to 

CTDI. Moreover, organ dose information must be extracted from 3D dose distributions through laborious 

delineation and segmentation of specific organ/tissue structures (Figure 28).  

 

 

Figure 28: Schematic representation of a MC-based organ estimation methodology. 

 

The dataset included 113 adult patients (44 males and 69 females) who underwent radiotherapy treatment 

planning CT imaging in the thorax region using a 64-slice GE Revolution CT scanner. Delineated contours 

were generated for bones, esophagus, breast (for female patients), heart, skin, and lungs. CBCT acquisition 

was performed using the Elekta XVI R5.0.4. CBCT system, capable of producing spectra within the range of 

80 to 140 kV. The CBCT system does not employ moveable collimators and the field size is specified using 

lead cassettes with a predefined, fixed, opening. All patients treated in the thoracic area, were imaged 

using the M20 protocol, with the bow-tie filter implemented. Specifically, the CBCT acquisition was 

performed with a voltage of 120 kV and a tube current of 20 mA for 13.2 s. The ImpactMC Monte Carlo 
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software, a well-validated software for dosimetric simulations was employed in this study. A 3D dose 

distribution for each patient was generated by the ImpactMC after each simulation.  

For each organ of interest, a separate dataset was generated consisting of a set of five independent 

variables and one dependent variable. An artificial neural network, which functions as a regression model, 

was developed, and optimized, to predict organ doses based on selected features. The independent 

variables were the patient sex, the left-right and anterior-posterior body dimensions on the axial plane, the 

organ volume, and the WED. Data preprocessing and splitting was applied for optimization and testing 

purposes. Each dataset was divided into two parts: the training set (70% of the dataset) and the test set 

(30% of the dataset). The validation of the model was performed using k-fold cross-validation. The metrics 

used to determine training convergence and performance was accuracy (defined as 1-validation loss). The 

networks were trained for 200 epochs using early stopping before reaching the specified maximum number 

of epochs to avoid overfitting to the data, thus improving the network generalization.  

Optimization strategies 

Hyperparameters are configurations that determine the structure of machine learning models and control 

their learning processes. They shouldn't be confused with the model's parameters (such as the bias) whose 

optimal values are determined during training. Hyperparameter optimization is an integral part of deep 

learning as a machine learning project is crucially dependent on the choice of good hyperparameters 

(Figure 29).  

 

Figure 29: Optimization strategy of a neural network architecture. 

 

The two main types of hyperparameters are the model hyperparameters (such as the number and units of 

layers) which determine the structure of the model and the algorithm hyperparameters (such as the 

optimization algorithm and learning rate), which influences and controls the learning process. Standard 

hyperparameters for training neural nets include: 

1. Number of hidden layers 

2. Number of units for hidden layers 

3. The dropout rate - A single model can be used to simulate having many different network architectures 

by randomly dropping out nodes during training. 

4. Activation function (Relu, Sigmoid, Tanh) - defines the output of that node given an input or set of inputs. 

5. Optimization algorithm (Stochastic Gradient descent, Adam Optimizer, RMSprop, e.tc.) - tools for 

updating model parameters and minimizing the value of the loss function, as evaluated on the training set. 

6. Loss function - a measurement of how good your model is in terms of predicting the expected outcome. 
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7. Learning rate - controls how much to change the model in response to the estimated error each time the 

model weights are updated. 

8. Number of training iterations (epochs) - the number times that the learning algorithm will work through 

the entire training dataset. 

9. Batch size - this hyperparameter of gradient descent that controls the number of training samples to 

work through before the model's internal parameters are updated. 

Depending on the performance of the model after initial training, these values are repeatedly adjusted to 

improve the model, until a combination of values that produces the best results is chosen. The process of 

adjusting hyperparameters to obtain the right set of values that optimizes the performance of machine 

learning models is known as Hyperparameter Tuning. Tuning hyperparameters could be challenging in deep 

learning. This is mainly due to the different configurations that need to be rightly set, several trials of re-

adjusting these values to improve the performance and the poor results that arise from setting sub-optimal 

values for the hyperparameters. Manually fine-tuning hyperparameters is often laborious, time-consuming, 

sub-optimal and inefficient for managing computing resources. An alternative approach is to utilize scalable 

hyperparameter search algorithms such as Bayesian optimization, Random Search, and Hyperband (Figure 

30). Keras Tuner is a scalable Keras framework that provides these algorithms built-in for hyperparameter 

optimization of deep learning models ([16], also see Appendix A for parametrization). 

Random Search Optimization Algorithm  

The algorithm sets up a grid of hyperparameter values and selects random combinations to train the model 

where the number of search iterations is set based on time and resources. Random search is much more 

efficient than grid search, where all the possible combinations from the grid are tried until the best 

combination is found. Although grid search finds the optimal values of hyperparameters, the random 

search usually considers a good enough combination in far fewer iterations (Figure 31). 
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Figure 30: Hyperparameter tuning optimization algorithms. 

 

Figure 31: Comparison of grid search and random search for minimizing a function with one important and one unimportant 
parameter (adapted from [17]). 
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Bayesian Optimization Algorithm 

Bayesian optimization is an iterative algorithm with two key ingredients: probabilistic surrogate model and 

an acquisition function to decide which point to evaluate next. In each iteration, the surrogate model is 

fitted to all observations. of the target function made so far. Then the acquisition function, which uses the 

predictive distribution of the probabilistic model, determines the utility of different candidate points, 

trading off exploration and exploitation. Bayesian optimization aims to become less wrong with more data 

inputs done by continually updating the surrogate probability model after each objective function’s 

evaluation epoch. The algorithm builds a surrogate probability model of the objective function and finds 

the hyperparameters that perform best on the surrogate. The hyperparameters acquired are applied to the 

actual objective function, and the algorithm is run till the desired results are not achieved. 

Hyperband Optimization Algorithm 

Hyperband is an optimized variation of random search which uses early stopping to speed up the process. 

The underlying principle of the procedure exploits the idea that if a hyperparameter configuration is 

expected to be the best after a considerable number of iterations, it is more likely to perform after a small 

number of iterations. It allocates resources using a logical early-stopping technique, allowing it to test 

orders of magnitude more configurations than black-box processes such as Bayesian optimization methods.  

The capacity of Hyperband to adapt to unknown convergence rates and the behavior of validation losses as 

a function of the hyperparameters was proved by the developers in the theoretical study. Furthermore, for 

a range of deep-learning and kernel-based learning issues, Hyperband is 5 to 30 times quicker than typical 

Bayesian optimization techniques. In the non-stochastic environment, Hyperband is one solution with 

properties like the pure-exploration, infinite-armed bandit issue. 

To develop more efficient search methods, Bayesian optimization approaches that focus on optimizing 

hyperparameter configuration selection have lately dominated the subject of hyperparameter 

optimization. By picking configurations in an adaptive way, these approaches seek to discover good 

configurations faster than typical baselines such as random search. The goal of an orthogonal approach to 

hyperparameter optimization is to accelerate configuration evaluation. These methods are computationally 

adaptive, providing greater resources to promising hyperparameter combinations while swiftly removing 

bad ones. The size of the training set, the number of features, or the number of iterations for iterative 

algorithms are all examples of resources.  

These techniques seek to analyze orders of magnitude more hyperparameter configurations than 

approaches that evenly train all configurations to completion, hence discovering appropriate 

hyperparameters rapidly. The hyperband is designed to accelerate the random search by providing a simple 

and theoretically sound starting point. 
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Bayesian optimization Hyperband 

A probability-based model A bandit-based model 

Learns an expensive objective function by past 

observation. 

In each given situation, the goal is to reduce the simple 

regret, defined as the distance from the best choice, as 

rapidly as feasible. 

Bayesian optimization is only applicable to 

continuous hyperparameters, not categorical 

ones. 

Hyperband can work for both continuous and categorical 

hyperparameters 

Table 6: Bayesian optimization vs Hyperband optimization algorithm properties. 

 

Data preprocessing and data splitting for training and validation purposes 

#standard data preprocessing for data normanilization 

min_max_scaler = preprocessing.MinMaxScaler() 

X_scale = min_max_scaler.fit_transform(X) 

X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, 

Y, test_size=0.3) 

 

Hyperband Hyperparameters optimization/tuning: 

def build_model(hp): 

  model = tf.keras.Sequential() 

 

   

  for i in range(hp.Int('layers', 3, 6)): 

    model.add(tf.keras.layers.Dense(units=hp.Int('units_' + str(i), 16, 512, 

step=16), 

                                    activation=hp.Choice('act_' + str(i), 

['relu','selu']))) 

 

  model.add(Dense(1, kernel_initializer='normal', activation='linear')) 

  hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4]) 

 

    optimizer = hp.Choice('optimizer', ['adam', 'sgd', 'rmsprop']) 

  model.compile(optimizer=optimizer,loss=msle,metrics=[msle]) 

 

  return model 

 

nEpochs = 40 

 

tuner = kt.Hyperband(build_model, 

    max_epochs=nEpochs, 
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    objective='val_loss', 

    directory='keras_tuner', 

    project_name='keras_tuner_1', 

    #max_trials=15, 

    overwrite = 'false' 

) 

 

tuner.search(X_train, Y_train, epochs=nEpochs, batch_size=2, 

validation_data=(X_val, Y_val)) 

 

Another problem with training neural networks is in the choice of the number of training epochs to use. 

Too many epochs can lead to overfitting of the training dataset, whereas too few may result in an underfit 

model. The model loss v/s Epochs graph shows how the Training loss get reduced with increase in the 

number of Epochs. The losses reduced as the Epochs increases, but they become saturated after a number 

of epochs and a further reduction in loss are negligible. An early stopping method which monitors val_loss 

was used (Figures 32-34).  

However, the first sign of no improvement may not be the best time to stop training. This is because the 

model may get slightly worse before getting much better. We can account for this by adding a delay to the 

trigger in terms of the number of epochs on which we would like to see no improvement. This can be done 

by setting the “patience” argument. 

#evaluation of the best model (model with optimal parameters) 

 

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 

patience=50) 

hist = best_model.fit(X_train, Y_train, batch_size=1, epochs=200, 

validation_data=(X_val_and_test, Y_val_and_test), verbose=1, 

callbacks=[stop_early]) 

 

Figure 32: Training model loss v/s Epochs graph (bone model). 
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Figure 33: Prediction on the train dataset based on the best model (bone model). 

 

Figure 34: Prediction on the test dataset based on the best model (bone model). 

 

16. iDoseAI organ dose prediction module – Prediction of patient-

specific organ doses from thoracic CBCT examinations 

In this iDoseAI module, organ doses from CBCT thoracic scans can be predicted using the fitting parameters 

and dosimetric methodology explained in section 15. 
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Figure 35: iDoseAI organ dose estimation tool navigation panels for AI/ML organ prediction module from radiotherapy thoracic 
CBCT scans. 

 

User input fields are organized into three groups: 

• The ‘Patient Data’ group requires basic demographic input (i.e., age and gender), CT scan region 

(thorax is the only available choice for this AI module), scanning length and WED, which can either 

be directly inserted as a number or calculated using the automatic WED calculation tool. The user 

is presented with default organ volume values for AI model independent variables needed, 

according to patient’s editable BMI value (default BMI value=25). 

• In the ‘Scanner/Protocol Settings’ group, users will select the CBCT scanner model (only Elekta XVI 

available) and corresponding exposure settings (i.e., kV, mAs,). Users will also select the clinical 

indication for the CT scan.  

• In the ‘CTDI Group’, users enter the CTDI type and value for their corresponding scanner.  

Each group can appear or disappear on the screen as an “accordion” implementation based on the 

preference of the user (Figures 30, 31).   

Patient Group submenu requires demographic data such as gender and age to be entered. This data is 

required for organ dosimetry and risk estimation. Water equivalent diameter is needed for correlation 

absorbed organ dose and patient size characteristics. WED is given in millimeters and can be entered as a 

value or calculated from user-uploaded CT data utilizing Image-based WEB tab.  

Scanner Group submenu requires:  

• Selection of CT scanner; Currently only one scanner is available: GE Revolution. 

• Tube Voltage: Currently there is one kV selectable, 120 kV. 

• mA modulation: For the radiotherapy imaging module, mA modulation is set to NO (fixed current), 

for all calculations. 

• mAs/frame: User can manually enter the mAs/frame of the examination. For Elekta XVI, predefined 

values are provided according to table 5. 

• Beam Collimation: 
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• Frames/roatation: User can specify the number of acquired frames per revolution. For Elekta XVI, 

predefined values are provided according to table 5. 

CTDI Group submenu requires the user to enter CTDI type and value they for their corresponding scanner. 

CTDI values can be entered in their CTDI-free-in-air form. 

 

17. Dose and Risk report tab 

Calculated organ doses from all iDose modules (x-ray imaging, Imaging in Radiotherapy and AI-based 

predictions) can be used for the assessment of the risk of exposure-induced cancer. The risk estimates are 

based on the combined absolute and relative risk models of BEIR VII committee (BEIR 2006). The models 

consider the cancer site, sex, age at the exposure and attained age. Age-dependent mortality rates are used 

for subsequent assessment of lifetime cancer risk. Risk models are presented for leukaemia and solid 

cancers in organs that radiation absorbed dose is provided. iDose calculates the risk of exposure-induced 

death (cancer mortality) for leukaemia and solid cancer for those organs. Also, the user may use the risk 

calculation module for estimating the cancer risk (cancer incidence) resulting from a predefined single CT 

exposure. 

Many factors, e.g., limitations in epidemiologic data for radiation-induced cancer, contribute to the 

uncertainty of risk estimation. The BEIR VII committee suggests that the risk estimates should be regarded 

with a healthy scepticism, placing more emphasis on the magnitude of the risk. The committee estimates 

that the excess cancer mortality due to radiation can be estimated within a factor of two (at 95% 

confidence level). For leukaemia the corresponding factor is four. For individual solid cancer sites, the risk 

estimation may have large uncertainties, up to an order of magnitude or more (BEIR 2006). BEIR VII 

committee assumes that solid cancers have a latency period of 5 years. For leukaemia the latency period is 

2 years. 

 

Figure 36: iDose organ dose calculation tool - Dose and risk report calculation tab. 

 

iDose software dose and risk report tab provides a summary of the absorbed dose per organ in mGy for 

each primarily irradiated thorax organ, as well as values of lifetime attributable risk for exposure-induced 
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death (LAR for Lifetime cancer mortality) and lifetime attributable risk for cancer incidence (LAR for 

Lifetime cancer incidence). In addition to the radiogenic risks provided for the specific CT exposures, the 

software provides the corresponding LARs for cancer incidence and mortality for all causes (including 

radiogenic) as presented for the 40 countries in the four United Nations-defined areas of Europe and for 

Europe and the European Union (Ferlay, 2018). 

 

Figure 37: iDose Dose and Risk Report example. 
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19. Appendix - Hyperparameters Optimization Algorithms 

parametrization 

Random Search Algorithm – model constructor parameters 

kerastuner.tuners.randomsearch.RandomSearch(hypermodel, objective, max_trials, seed=None,  

hyperparameters=None, tune_new_entries=True, allow_new_entries=True, **kwargs) 

• • The hypermodel parameter accepts an instance of the HyperModel class or a callable that takes 

hyperparameters and returns a compiled model. An example callable has been created above, which 

will be provided to this parameter. Alternatively, a class can be created that extends the HyperModel 

class and has a build() method that functions similarly to the callable mentioned earlier (taking 

hyperparameters and returning a compiled model). An instance of that class can then be passed to 

this parameter. 

• • The objective parameter accepts either a string value representing an Objective instance that 

specifies the objective function to optimize, or an instance of the Objective class itself. When a string 

value is provided, the Keras tuner will infer whether to minimize or maximize the objective function. 

For example, if 'accuracy' is given as the value, the tuner will attempt to maximize training accuracy, 

while 'val_loss' will be minimized. Any string metric or loss name can be used for this parameter, 

such as 'val_loss', 'loss', 'mean_squared_error', etc. However, when using a custom metric or loss 

and the tuner cannot determine whether to minimize or maximize it automatically, an instance of 

Objective should be provided. The Objective() constructor requires two arguments: 

name: The name of the metric to monitor. 

direction: A string specifying the direction of optimization, where 'min' indicates minimizing and 

'max' indicates maximizing. 

• The max_trials parameter accepts an integer value that specifies the number of different 

hyperparameter settings to try during the optimization process. 

• The seed parameter is a random seed that can be set to reproduce the same results. 

• The hyperparameters parameter is optional and accepts instances of HyperParameters. It can be 

used to override the default settings when creating a function that builds the network. More 

information on its usage will be explained later. 

• The optimizer parameter is optional and allows for the use of optimizers that override the one 

specified in the model creation method. 

• The loss parameter is optional and accepts a loss function that can override the one already specified 

in the model creation method. 

• The metrics parameter is optional and accepts a list of metrics that can override the ones already 

specified in the model creation method. 

• The directory parameter accepts a relative path specifying where the work should be saved when 

the tuner explores various hyperparameter settings. By default, it is set to the current directory. 

• The project_name parameter specifies the name of the project. A folder with this name will be 

created, and all progress during the optimization process will be stored there. If multiple 
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optimizations are being performed simultaneously, a different value should be provided for each 

tuner to ensure separate project folders. Unique names have been given to all our tuners. 

• The overwrite parameter is optional and accepts a boolean value that determines whether to reload 

an existing project with the same name if one exists. The default value is False. 

 

Bayesian Optimisation Algorithm - model constructor parameters 

kerastuner.tuners.bayesian.BayesianOptimization(hypermodel, objective, max_trials, 

num_initial_points=2, seed=None,  

hyperparameters=None, tune_new_entries=True, allow_new_entries=True, **kwargs) 

 

• hypermodel: Instance of HyperModel class (or callable that takes hyperparameters and returns a 

Model instance). 

• objective: String. Name of model metric to minimize or maximize, e.g. "val_accuracy". 

• max_trials: Int. Total number of trials (model configurations) to test at most. Note that the oracle 

may interrupt the search before max_trial models have been tested if the search space has been 

exhausted. 

• num_initial_points: Int. The number of randomly generated samples as initial training data for 

Bayesian optimization. 

• alpha: Float or array-like. Value added to the diagonal of the kernel matrix during fitting. 

• beta: Float. The balancing factor of exploration and exploitation. The larger it is, the more explorative 

it is. 

• seed: Int. Random seed. 

• hyperparameters: HyperParameters class instance. Used to override (or register in advance) 

hyperparamters in the search space. 

• tune_new_entries: Whether hyperparameter entries that are requested by the hypermodel but that 

were not specified in hyperparameters should be added to the search space, or not. If not, then the 

default value for these parameters will be used. 

• allow_new_entries: Whether the hypermodel is allowed to request hyperparameter entries not 

listed in hyperparameters. 

**kwargs: Keyword arguments relevant to all Tuner subclasses. Please see the docstring for Tuner. 

 

Hyperband Optimization Algorithm - model constructor parameters 

kerastuner.tuners.hyperband.Hyperband(hypermodel, objective, max_epochs, factor=3, 

hyperband_iterations=1, seed=None,  

hyperparameters=None, tune_new_entries=True, allow_new_entries=True, **kwargs) 
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• hypermodel: Keras tuner class that allows you to create and develop models using a searchable 

space. 

• objective: It is the loss function for the model described in the hypermodel, such as ‘mse’ or ‘val_loss’. 

It has the data type string. If the parameter is a string, the optimization direction (minimum or 

maximum) will be inferred. If we have a list of objectives, we will minimize the sum of all the 

objectives to minimize while maximizing the total of all the objectives to maximize. 

• max_epochs: The number of epochs required to train a single model. Setting this to a value 

somewhat greater than the estimated epochs to convergence for your biggest Model and using early 

halting during training is advised. The default value is 100. 

• factor: Integer, the reduction factor for the number of epochs and number of models for each 

bracket. Defaults to 3. 

• hyperband_iterations: The number of times the Hyperband algorithm is iterated over. Across all 

trials, one iteration will run about max epochs * (math.log(max epochs, factor) ** 2) cumulative 

epochs. Set this to the highest figure that fits within your resource budget. The default value is 1. 

• seed: An optional integer that serves as the random seed. 

• hyperparameters: HyperParameters instance that is optional. Can be used to override (or pre-

register) search space hyperparameters. 

• tune new entries: Boolean indicating whether or not hyperparameter entries required by the 

hypermodel but not defined in hyperparameters should be included in the search space. If this is not 

the case, the default values for these parameters will be utilized. True is the default value. 

• allow new entries: The hypermodel is permitted to request hyperparameter entries that are not 

mentioned in hyperparameters. True is the default value. 


