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Abstract
Purpose Metastatic neuroendocrine tumors (NETs) overexpressing type 2 somatostatin receptors are the target for peptide recep-
tor radionuclide therapy (PRRT) through the theragnostic pair of 68Ga/177Lu-DOTATATE. The main purpose of this study was to 
develop machine learning models to predict therapeutic tumor dose using pre therapy 68Ga -PET and clinicopathological biomarkers.
Methods We retrospectively analyzed 90 segmented metastaticNETs from 25 patients (M14/F11, age 63.7 ± 9.5, range 38–76) 
treated by 177Lu-DOTATATE at our institute. Patients underwent both pretherapy  [68Ga]Ga-DOTA-TATE PET/CT and four 
timepoints SPECT/CT at  ~ 4, 24, 96, and 168 h post-177Lu-DOTATATE infusion. Tumors were segmented by a radiologist 
on baseline CT or MRI and transferred to co-registered PET/CT and SPECT/CT, and normal organs were segmented by deep 
learning-based method on CT of the PET and SPECT. The SUV metrics and tumor-to-normal tissue SUV ratios (SUV_TNRs) 
were calculated from 68Ga -PET at the contour-level. Posttherapy dosimetry was performed based on the co-registration of SPECT/
CTs to generate time-integrated-activity, followed by an in-house Monte Carlo-based absorbed dose estimation. The correlation 
between delivered 177Lu Tumor absorbed dose and PET-derived metrics along with baseline clinicopathological biomarkers (such 
as Creatinine, Chromogranin A and prior therapies) were evaluated. Multiple interpretable machine-learning algorithms were 
developed to predict tumor dose using these pretherapy information. Model performance on a nested tenfold cross-validation was 
evaluated in terms of coefficient of determination (R2), mean-absolute-error (MAE), and mean-relative-absolute-error (MRAE).
Results SUVmean showed a significant correlation (q-value < 0.05) with absorbed dose (Spearman ρ = 0.64), followed by  TLSUVmean 
 (SUVmean of total-lesion-burden) and  SUVpeak (ρ = 0.45 and 0.41, respectively). The predictive value of PET-SUVmean in estimation 
of posttherapy absorbed dose was stronger compared to PET-SUVpeak, and SUV_TNRs in terms of univariate analysis (R2 = 0.28 
vs. R2 ≤ 0.12). An optimal trivariate random forest model composed of  SUVmean,  TLSUVmean, and total liver  SUVmean (normal 
and tumoral liver) provided the best performance in tumor dose prediction with R2 = 0.64, MAE = 0.73 Gy/GBq, and MRAE = 0.2.
Conclusion Our preliminary results demonstrate the feasibility of using baseline PET images for prediction of absorbed dose prior to 
177Lu-PRRT. Machine learning models combining multiple PET-based metrics performed better than using a single SUV value and using 
other investigated clinicopathological biomarkers. Developing such quantitative models forms the groundwork for the role of 68Ga -PET 
not only for the implementation of personalized treatment planning but also for patient stratification in the era of precision medicine.
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Introduction

The theragnostic principle has been summed up as: “We 
treat what we see, and We see what we treat”1 [1]. This con-
cept of “see and treat” in nuclear medicine therapy has led to 

the development of theragnostic pairs, consisting of an imag-
ing radiotracer for staging and molecular targeting and its 
therapeutic counterpart, usually a beta- or alpha-emitter for 
tumor ablation. Neuroendocrine tumors (NETs) commonly 
express somatostatin receptors (SSTR), predominantly sub-
type 2, which is the basis for the use of SSTR PET imaging 
and peptide receptor radionuclide therapy (PRRT). For the 
management of NET, the theragnostic pair of 68Ga/177Lu-
DOTA-TATE has been widely used since 2018 when  [177Lu]
Lu-DOTA-TATE (Lutathera) was approved by the US Food 
and Drug Administration (FDA) on the basis of NETTER-1 
trial results [2, 3].
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In current 177Lu-PRRT clinical practice, pretherapy 
 [68Ga]Ga-DOTATATE (68Ga-PET) is required for candi-
date eligibility to confirm sufficient tumor SSTR expres-
sion (peformed via qualitative assessment with Krenning 
score). The approved empiric protocol for 177Lu-PRRT is 4 
cycles of 7.4 GBq infusions (~ 2 months intervals). Although 
177Lu-PRRT has been showed to improve progression-free 
survival (65% at 20 months, compared to long-acting octreo-
tide 11%), objective responses are uncommon (20%) and 
complete responses are rare (1–2%). Therefore, to optimize 
177Lu-PRRT outcomes, either patient selection criteria must 
be improved or a personalized treatment approach must be 
developed. Precision nuclear medicine for PRRT has been 
proposed, with pretreatment 68Ga-PET used for patient 
selection and additional posttherapy imaging valuable to 
provide individualized measurements relevant to treatment 
safety and efficacy [4].

Dosimetry-guided personalized 177Lu-PRRT generally 
involves modulation of the number of treatment cycles or the 
administered dose per cycle based on pretherapy biomarkers 
or posttherapy imaging-based dosimetry, which has been 
shown to have a positive impact on treatment response [5, 6]. 
Predictions of therapy delivered absorbed doses from 177Lu-
PRRT have also been performed using pretherapy 68Ga-PET, 
which is particularly desirable for planned alterations in 
the first cycle of 177Lu-PRRT, which has the potential to 
maximize tumor absorbed dose while limiting toxicity to an 
acceptable level [7, 8]. Two previous studies [7, 9] reported 
on the ability to predict renal dose using pretherapy imaging, 
as the kidney toxicity is a limiting factor for 177Lu-labeled 
RPTs [9]. Knowledge of expected renal dose exposure per 
cycle is especially important if escalation of administered 
activity is considered in the first RPT cycle; while not cur-
rently performed routinely in clinical practice, prioritizing 
higher doses early on may be preferable, since there is an 
observed decrease in absorbed tumor dose per administered 
activity (Gy/GBq) in subsequent cycles [10].

According to the principles of RPT and cellular irradia-
tion, the likelihood of tumor response is expected to be cor-
related with the tumor absorbed dose. Various studies have 
shown dose-response correlations in 177Lu-PRRT [3, 5, 11, 
12]. Furthermore, some authors have reported on the corre-
lation of 68Ga-PET uptake with treatment outcome [13, 14]. 
In this context, tumor absorbed dose estimation prior to the 
therapy could provide a quantitative metric for response with 
potential to improve patient-selection criteria. However, the 
relationship between imaging agents of theragnostic pairs 
and therapy delivered dose is not straightforward. Previous 
studies reported on the correlation of pretherapy imaging 
PET metrics alone [15, 16] and combined with clinical bio-
markers [7] with respect to posttherapy absorbed dose. The 
study by Xue et al. [7] used machine learning models in pre-
diction of posttherapy absorbed dose for  [177Lu]Lu-PSMA 

therapy. Compared to simple linear regression, data-driven 
machine learning algorithms by considering multivariate 
correlations of training data can minimize the uncertainties, 
thus improving the predictive power of the model.

We therefore sought to develop models that predict the 
mean tumor absorbed doses delivered by 177Lu-DOTA-
TATE using pretherapy  [68Ga]Ga-DOTA-TATE PET plus a 
comprehensive set of clinicopathological biomarkers. The 
contribution of this work to the field of RPT is threefold: (1) 
using a previously validated Monte Carlo-based dosimetry 
workflow with a patient cohort that includes four-postther-
apy SPECT/CT scans [17], (2) including a complete set of 
clinical biomarkers in addition to 68Ga-PET in the dosimetry 
prediction models, and (3) implementation of interpretable 
machine learning algorithms for dose prediction.

Materials and methods

Patient population

This study comprised of 25 patients with histologically 
proven metastatic NETs, progressive on prior therapy, who 
received at least the first cycle of standard 177Lu-DOTA-
TATE PRRT and underwent four timepoints SPECT/CT 
dosimetry at the University of Michigan Hospital. As part 
of an ongoing research study approved by the Institutional 
Review Board, all patients provided written informed con-
sent to participate in the study, which included serial SPECT/
CT imaging following standard treatment. Patients’ demo-
graphic information is presented in supplemental-Table 1.

Tumor and organ delineation

Up to five index lesions larger than 2 mL were manually seg-
mented by a radiologist (MER) on diagnostic-quality base-
line CT or MRI. The criteria for inclusion of the lesions up 
to five for each patient were mainly based on the anatomical 
size and the clear margins in visualization in order to gain 
confidence in manual segmentation. Thereafter, the deline-
ated index lesions were transferred to the subsequent PET/
CT and SPECT/CT scans using co-registration. The spleen 
was manually segmented by a technologist while kidneys 
and liver were segmented using a deep learning algorithm 
on the CT of the PET/CT and SPECT/CT [17]. The normal 
liver was sampled from uniform uptake regions using three 
sphere volumes-of-interest (8  cm3). The organ segmenta-
tions were verified and adjusted by the radiologist as needed.

68Ga PET/CT imaging and PET‑derived metrics

Patient preparation required PET scans to be acquired 4 weeks 
after any long-acting somatostatin analogue treatment. PET/
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CTs were acquired at  ~ 60 min (range: 54–77 min) post-intra-
venous injection of  ~ 160 MBq of [68Ga]Ga-DOTA-TATE 
(range: 144–196 MBq). Data were reconstructed using ven-
dor-specific recommended parameters. A mean value partial 
volume correction was performed using volume dependent 
recovery coefficients (from a sphere-phantom measurement 
[2]) applied to SUVmean from pretherapy PET images.

Image-derived features, both activity and SUV (standardized 
uptake value) metrics, were calculated for the transferred con-
tours. Tumor SUV metrics including mean, peak, coefficient 
of variation (CoV: standard deviation divided by  SUVmean), 
skewness and kurtosis, and mean activity (Bq/mL) corrected 
to the injection time and normalized by injected activity were 
extracted. In addition,  SUVmean of the spleen, healthy liver, and 
kidneys along with blood pool  (SUVmean in aortic arch) were 
quantified. The relative tumor uptake was calculated as tumor-
to-normal tissue ratios (TNR) using tumor  SUVmean relative to 
the  SUVmean of normal spleen  (SUV_TNRspleen), normal liver 
 (SUV_TNRliver) and blood pool  (SUV_TNRblood). In addition, 
 SUVmean of the total liver volume encompassing both healthy 
tissue and lesions is quantified as  TotLiverSUVmean.

To quantify total lesion burden-related metrics, whole-
body PET-SUV images were segmented using an empiric 
SUV threshold (whole-body SUV-cutoff = 5, liver SUV-
cutoff = 10). The generated mask from thresholding was 
adjusted to add lesions not included in initial segmenta-
tion and removed physiological uptake in organs and then 
verified by the nuclear medicine clinician (KW). Therefore, 
three independent metrics based on the segmented mask 
encompassing total  [68Ga]Ga-DOTA-TATE-avid lesion 
volume were defined: total lesion volume (TLV) in mL, 
average SUV of the total lesion volume  (TLSUVmean), and 
total lesion somatostatin expression (TL-SSE) defined as 
TLV ×  TLSUVmean.

Clinicopathological biomarkers

A total of 25 clinical, pathologic, and laboratory variables 
were included in our study, all of which we believed had the-
oretical potential to influence patient overall health, tumor 
behavior, and treatment response. Clinical patient data and 
lab values were obtained through review of the electronic 
medical record.

The total variable set, including 16 quantitative and 3 
qualitative 68Ga-PET features, 8 treatment history, and 11 
blood-test biomarkers, is detailed in Table 1.

177Lu SPECT/CT imaging and dosimetry workflow

Our patient data regarding dosimetry in patients undergoing 
 [177Lu]Lu-DOTA-TATE comes from an ongoing research 
study that includes serial posttherapy SPECT/CT imag-
ing at  ~ 4, 24, 96, and 168 h after the first cycle. A 25 min 

single-bed SPECT/CT acquisition is performed on a Sie-
mens Intevo using manufacturer-recommended protocol and 
reconstructed with Siemens xSPECT Quant using 48 itera-
tions and 1 subset and no post filtering [18].

For dosimetry, we employed an integrated workflow 
implemented within MIM software that has been elaborated 
in a recent article by Dewaraja et al. [17]. The workflow is 
composed of the following steps:

1. A contour-guided intensity-based registration was used 
to align four posttherapy SPECT images.

2. Time integrated activity (TIA) was calculated by inte-
gration of the time-activity curve, a mono/bi-exponential 
function ( TIA = ∫ ∞

t0
C(e−�1t − e−�2t) ). Here, C scales the 

curve up or down, �1 is the clearance/elimination rate, 
and �2 is the uptake/absorption rate. The term effective 
half-life  (Teff) refers to the slower exponential compo-
nent ( i.e.Teff =

ln(2)

𝜆1

|𝜆1 ≪ 𝜆2).
3. TIA along with the corresponding density map (obtained 

from CT) was coupled with a fast Monte Carlo (MC) 
simulator, developed at the University of Michigan 
[19], to generate the voxel-level absorbed dose map. 
Mean absorbed dose estimates for tumor and organ vol-
umes included partial volume correction using volume 
dependent recovery coefficients (from a sphere-phantom 
measurement [2]).

Statistical analysis and predictive modeling

For the statistical analysis, the Spearman rank correlation 
between predictive features and tumor absorbed dose per 
unit administered activity were analyzed, followed by Benja-
mini and Hochberg p-value correction, where q-value  < 0.05 
considered significant.

To predict tumor absorbed dose using PET-derived 
features and biomarkers, a cross-combination of differ-
ent supervised machine learning algorithms was analyzed 
where random forest outperformed other algorithms. 
Therefore, we presented the comparison between linear and 
supervised random forest regression algorithms through 
univariate, bivariate, and multivariate analysis imple-
mented in MATLAB 2022 (MathWorks Inc., Natick, MA, 
USA). We adopted nested cross-validation (CV), whereby 
the outer-loop CV was repeated 10 times to consolidate 
the results of tenfold inner-loop CV [20]. During inner-
loop CVs, 10% of the whole dataset was considered as 
unseen validation-set and 90% used as training-set. Due 
to the intrinsic heterogeneity and limited size of our data, 
bootstrap aggregation strategy (500 bootstrap samples 
with replacement) was implemented to improve model 
stability and avoid overfitting (algorithm flowchart in 
supplemental-Fig. 1).
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We designed a hierarchical interpretable feature selec-
tion strategy using main-effect analysis to select the most 
important predictors. First, using a univariate linear regres-
sion model, the best variable with the highest coefficient of 
determination (R2) was determined. In the second step, a 
set of bivariate regression models was generated using two 
independent variables, i.e., the selected variable from the 
univariate analysis followed by a second variable from the 

predictor-set. In the third step, the five best bivariate models 
that most increased predictive likelihood (with the highest 
R2) were selected, forming the basis for a set of trivariate 
models. We extended the process up to four-variable mod-
els, but because we saw no further significant improvement 
in predictive likelihood, this process was stopped. In addi-
tion, we employed ElasticNet and Permutation-based Ran-
dom Forest variable-Importance (PRFvI) feature selection 

Table 1  Complete variable set, including PET and clinicopathological features, used in the statistical analysis and the development of a predic-
tive model for tumor delivered dose from 177Lu-PRRT 

Type of feature Name of feature Description

Shape Volume Volume of index tumors (segmented by radiologist)
PET uptake/SUV SUVmean Mean SUV value

SUVpeak Average SUV within a 1  cm3 sphere centered on the site of highest uptake in a tumor
SUVkurt Measure of the shape of the peak of the SUV distribution (kurtosis)
SUVskew Measure of the asymmetry of the SUV distribution (skewness)
SUVBloodPool SUVmean in the aortic arch
SUVSpleen SUVmean of the Spleen contour
SUVLiver Average  SUVmean of three spheres (8 mL) sampled from the normal liver tissue
SUVKidneys Average of  SUVmean from right and left kidney contours
SUV_TNRblood Ratio of Tumor  SUVmean to blood pool  SUVmean

SUV_TNRspleen Ratio of Tumor  SUVmean to  SUVmean of the spleen
SUV_TNRliver Ratio of Tumor  SUVmean to  SUVmean of the liver
TotLiverSUVmean SUVmean of the whole liver including both normal and tumoral tissues
TLV Total lesion volume
TL-SUVmean Average SUV of the entire total lesion volume
TL-SSE Total lesion somatostatin expression (TLV × TL-SUVmean)

Diagnostic Liver metastasis Disease present in liver (based on Dotatate PET)
Bone metastasis Disease present in bone (based on Dotatate PET)
Node metastasis Disease present in lymph nodes (based on Dotatate PET)
Tumor location Anatomical location of the index tumor

Histological Grade Histologic grade (using Ki67 index) of primary tumor from biopsy/surgery
Primary tumor site Primary tumor site

Treatments #Systemic therapy Number of prior systemic treatments (chemotherapy or other)
#Directed therapy Number of prior liver directed treatments (TACE, Y90, cryotherapy)
Y90-SIRT Prior treatment liver with Y90-SIRT
Everolimus Prior treatment with everolimus (systemic MTOR inhibitor)
Capecitabine/temozolomide Prior treatment with capecitabine and temozolomide (Chemo, systemic)
Sunitinib Prior treatment with Sunitinib (multi-kinase inhibitor, systemic)

Blood tests White blood cells White blood cells (K/cmm)
Lymphocytes Lymphocytes
Absolute neutrophil Absolute neutrophil counts (K/cmm)
Hemoglobin Hemoglobin (g/dL)
Platelet Platelet count (K/cmm)
eGFR Estimated glomerular filtration rate (calculated)
Creatinine Creatinine (mg/dL)
Bilirubin Bilirubin (mg/dL)
Albumin Albumin (mg/dL)
Alkaline phosphatase Alkaline phosphatase (ALK, ALP, ALKP, or ALK PHOS) (IU/L)
CgA Chromogranin A (tumor marker) (ng/mL)
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algorithms. The feature-selection algorithms were imple-
mented in a bootstrap ensemble framework as elaborated in 
supplemental-Fig. 2. A maximum of 8 features were selected 
based on the recommended number of at least ten observa-
tions per predictor [21].

We employed the proposed hierarchical feature selection 
algorithm in both linear and random forest algorithms. In the 
linear model, we used a generalized linear regression model 
based on the least square loss function. In the case of random 
forest algorithms, we used a bootstrap aggregation between 
two models including random forest (ensemble tree) [22] 
and generalized additive model [23] (supplemental-Fig. 2). 
To reduce overfitting and improve generalizability, we grew 
a shallow tree by forcing the number of observations per leaf 
to be at least 10 or the number of splits per predictor to be at 
most 5. The number of ensembled trees (= 200) was obtained 
from hyperparameter optimization. We implemented the 
proposed hierarchical feature selection algorithms on both 
linear and decision tree regression models. Additionally, the 
selected features from ElasticNet were fed to a multivariate 
generalized linear model and those selected based on PRFvI 
algorithm were tested in the decision-tree model. The model 
performance was evaluated based on nested CV tenfold R2, 
mean-absolute-error (MAE), mean-relative-absolute-error 
(MRAE), and root-mean-square-error (RMSE) compared to 
ground truth.

We further tested sensitivity and specificity of the best 
model for predicting tumor absorbed dose  > 25 Gy/cycle 
for response. This threshold dose was chosen as it is a previ-
ously reported cutoff for adequate tumor response following 
177Lu-PRRT [24].

Results

A total of 25 patients (M14: F11, age 63.7 ± 9.5, range 
38–76) with 90 neuroendocrine tumors larger than 2 mL 
(mean = 65.6 ± 139.9  mL, range: 2.1–1039  mL) were 
included in this study. The majority of studied tumors were 
found in the liver (75/90), while 11 lesions were lymph node 
metastases. Three primary pancreas tumors and one chest 
tumor were also included. An example of corresponding 
68Ga-PET, post-treatment 177Lu SPECT/CT, and resulting 
time-activity curves of target lesions are given in Fig. 1. 
PET-SUVmean and  SUVpeak measured from the 90 studied 
tumors were 16 ± 6.4 (5.6–34.2) and 26.4 ± 15.5 (6.1–104), 
respectively, while  SUVmean for normal liver, spleen and 
kidneys were 6.9 ± 2.4 (2.2–11.4), 13.1 ± 3.5 (7–19.2), and 
5.4 ± 2.7 (5.4–19.2), respectively. The mean tumor absorbed 
dose averaged 2.68 ± 1.89  Gy/GBq (0.23–10.26  Gy/
GBq), while the average value of  Teff was 91.6 ± 26.6 h 
(27.9–159.5 h). In order to reduce the absorbed dose calcu-
lation uncertainties owing to mis-registrations and partial 

volume effects, we excluded lesions smaller than 4 mL 
(> 4 mL, N = 80) for the statistical analysis.

The total variable set, including 16 quantitative and 3 
qualitative 68Ga-PET features, 8 treatment history, and 11 
blood-test biomarkers, is detailed in Table 1.

The statistical variability of the investigated predictors 
dichotomized based on ANOVA-test of the absorbed dose 
are illustrated in Table 2.

Self and cross-correlation of all baseline features com-
pared to tumor absorbed dose and 4 other dose-related 
parameters (parameters that directly contribute to absorbed 
dose) is presented in Fig.  2 (Spearman-correlation (ρ), 
q-value  < 0.05). The dose-related parameters are the scale 
factor C of the time-activity curve normalized by tumor 
volume ( Cvol), TIA normalized by tumor volume  (TIAvol) 
and  Teff. We expect a physics-informed correlation between 
absorbed dose and  TIAvol, according to the assumption of 
local-energy-deposition for 177Lu-labeled agents [25], and 
hence a correlation with  TIAvol components ( Cvol and Teff ). 
 SUVmean shows a strong correlation with dose parameters 
(dose: ρ = 0.64, TIA: ρ = 0.39, Cvol ∶ ρ = 0.56), followed by 
 TLSUVmean (dose: ρ = 0.45,  TIAvol: ρ = 0.51, C

vol
 : ρ = 0.63) 

and  SUVpeak (dose: ρ = 0.41,  TIAvol: ρ = 0.54, Cvol : ρ = 0.56). 
 TotLiverSUVmean shows a correlation only with  Cvol 
(ρ = 0.44). A significant but moderate correlation between 
 Teff and the pre-PRRT number of systemic treatments (#Sys-
temic therapy) (ρ =  − 0.31), capecitabine/temozolomide 
(ρ =  − 0.35) and bilirubin (ρ = 0.33) is observed.

Figure 3 illustrates the intra-patient variability of the 
index tumor absorbed doses among the study population. 
The intra-patient tumor absorbed dose per unit administered 
activity variability in terms of coefficient of variation (CoV) 
was within the range of 0.04–0.78 (median = 0.38); this is 
comparable to the variation within the whole tumor-set, 
which had a CoV of 0.69.

Also, two lesions with unusually high uptakes (high 
absorbed dose lesions in P_22, P_25 in Fig. 3) were consid-
ered outliers and excluded from model building because of 
their exceptionally high uptake in 177Lu-SPECT, despite 
their 68Ga-PET uptake in a similar range compared to the 
other analyzed lesions in the same patients.

The association of dose and different SUV parameters 
were evaluated using univariate analysis (linear least-
square regression).  SUVmean (coefficient-of-determination: 
R2 = 0.28), compared to  SUVpeak (R2 = 0.07), and SUV_
TNRs (R2 ≤ 0.12) showed a better performance in prediction 
of delivered absorbed dose (Fig. 4). No significant differ-
ences of absorbed doses or SUV-parameters were observed 
based on tumor volume or localization.

We compared the prediction performance of multiple 
machine learning algorithms (linear and ensembled-tree) 
using PET-SUVs and biomarkers, summarized in Table 3. 
According to the proposed hierarchical feature-selection 
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strategies (supplemental-Fig. 5), linear univariate regression 
model picked  SUVmean with R2 = 0.28 and MAE = 1.08 Gy/
GBq.

We compared a cross-combination of all features with 
 SUVmean to evaluate the second and third important fea-
tures in dose prediction (supplemental-Figure 5 and 6). 
 TotLiverSUVmean and  TLSUVmean were the most effective 
predictors in terms of R2 and MAE (R2 = 0.61 and 0.48, 
MAE = 0.82 and 0.88 Gy/GBq, respectively) from Ensem-
bled Tree (Ens-Tree) models. The best prediction perfor-
mance was achieved from a trivariate Ens-Tree algorithm 
consisting of  SUVmean,  TotLiverSUVmean, and  TLSUVmean 
with R2 = 0.64 and MAE = 0.73 Gy/GBq (Table 3). The pre-
dicted absorbed dose compared with the measured absorbed 
dose from different algorithms is illustrated in Fig. 5.

The sensitivity and specificity of the best-performing 
model (trivariate Ens-Tree from Table 3 and Fig. 5), using 
a threshold of 25 Gy/cycle for response, was calculated as 
0.82 and 0.94, respectively (Fig. 6). Again, this threshold-
level was chosen to mirror previously reported dose-cutoffs 
for response following 177Lu-PRRT [24]. A receiver operat-
ing characteristic (ROC) analysis was conducted to evaluate 
the performance of the proposed model with respect to the 
absorbed dose-cutoff. The area under the ROC curve (AUC) 
was 0.92.

Discussion

Accurate and early prediction of therapeutic absorbed dose 
in NETs is important information that can be used to guide 
appropriate patient selection and treatment alterations for 
PRRT, potentially helping to distinguish between patients 
likely to undergo effective versus futile treatments. To 
date, 68Ga-PET derived quantitative metrics have appeared 
promising as a measure of SSTR2 density in neuroendocrine 
tumors [26]; however, studies assessing correlation between 
SUV features and absorbed dose/treatment outcomes remain 
scarce, and further investigation is necessary to establish 
conclusive relationships.

Prediction of tumor and organ-absorbed doses may help 
optimize treatment efficacy prior to therapy by enabling an 
individualized treatment plan, administering variable doses 
of PRRT that maximize tumor irradiation while minimizing 
organ exposure. According to a recent study indicating the 
decline of  [177Lu]Lu-DOTA-TATE tumor uptake over ther-
apy cycles, an individualized dose escalation strategy may be 
more effective in the first cycle [10]. A clinical trial reported 
on personalized  [177Lu]Lu-DOTA-TATE PRRT guided by 
the prediction of renal toxicity based on eGFR and patient-
surface-area prior to the therapy [5]. In our ongoing research 
with standard dose  [177Lu]Lu-DOTA-TATE, we have already 

Fig. 1  Top panel: baseline diagnostic images (contrast-enhanced 
CT/MRI) were used to define target lesions, which were then co-
registered to pretherapy 68Ga-DOTATATE PET/CT and posttherapy 

177Lu-DOTATATE SPECT/CT images. Bottom panel: dosimetry 
pipeline included four timepoints registration of SPECT images to 
generate TIA that is fed into MC-based dose engine
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Table 2  Patients’ clinicopathological biomarkers. The variability of 
the tumor absorbed dose per unit administered activity and  SUVmean 
with respect to the dichotomized predictors is illustrated. The forest-
plot represents the range of dose values in the selected predictor’s 
group while dots represent mean dose values. P value was obtained 
from ANOVA test. The dichotomization cutoffs of the continuous 

predictors were calculated from an iterative process (1000 iterations), 
in which a random number within the range of predictor’s quantiles 
(0.05–0.95) were generated to binarize the predictor values. Then, 
one-way ANOVA test was applied on dose vector according to the 
binarized predictor; thus, the cutoff was selected based on the mini-
mum p value obtained from ANOVA-test

Parameters N (%) Mean ± std SUVmean Dose (Gy/GBq) P_val
Volume
≤52 mL 70 15.07 ± 10.6 20.74 ± 8.6 0.13

>52 mL 30 177.07 ± 217.5 17.93 ± 6.7

SUV_CoV
≤ 45 % 68 0.30 ± 0.1 19.51 ± 7.9 0.02

> 45 % 32 0.55 ± 0.1 20.70 ± 8.7

TLV (mL)
≤ 150 10 60.87 ± 42.6 23.30 ± 8.6 <0.001

> 150 90 624.30 ± 664.4 19.52 ± 8.0

TL-SSE (SUV.mL)
≤ 2864 30 1683 ± 763 16.30 ± 7.5 0.001

> 2864 70 12005 ± 9895 21.44 ± 7.9

White blood cells
≤ 5.4 35 3.57 ± 0.8 21.26 ± 10.1 0.08

> 5.4 65 8.16 ± 2.1 19.16 ± 6.8

Lymphocytes
≤ 1.6 64 0.91 ± 0.4 19.73 ± 8.5 0.04

> 1.6 36 1.95 ± 0.3 20.19 ± 7.5

Absolute neutrophil
≤ 2 18 1.62 ± 0.2 21.91 ± 9.8 0.03

> 2 82 4.54 ± 1.5 19.47 ± 7.7

Hemoglobin
≤ 12 20 11.24 ± 0.9 18.71 ± 10.1 0.01

> 12 80 13.70 ± 1.0 20.20 ± 7.6

Platelet
≤ 190 29 167.81 ± 19.3 19.40 ± 9.4 0.008

> 190 71 255.90 ± 59.4 20.10 ± 7.6

eGFR
≤ 52 12 40.26 ± 10.6 16.47 ± 7.3 0.04

> 52 88 82.46 ± 14.0 20.39 ± 8.2

Creatinine
≤ 1.2 81 0.89 ± 0.2 20.67 ± 8.1 0.03

> 1.2 19 1.39 ± 0.3 16.56 ± 7.5

Bilirubin
≤ 0.9 81 0.49 ± 0.2 20.18 ± 8.0 0.08

> 0.9 19 1.13 ± 0.1 18.67 ± 8.9

Albumin
≤ 4.5 68 4.04 ± 0.3 20.86 ± 7.8 <0.001

> 4.5 32 4.88 ± 0.3 17.91 ± 8.5

Alkaline phosphatase
≤ 88 20 74.57 ± 13.7 23.21 ± 8.2

> 88 80 149.91 ± 40.3 19.07 ± 7.9 <0.001

CgA
≤ 500 28 146.60 ± 140.6 25.91 ± 8.1 0.001

> 500 72 3434.12 ± 7070.4 17.62 ± 6.9

Grade
G=1 33 22.16 ± 9.8 0.3

G ≥ 2 67 18.69 ± 7.0

Bone Met
No 51 20.85 ± 7.5 0.12

Yes 49 18.90 ± 8.7

Nodal Met
No 29 23.22 ± 8.5 0.14

Yes 71 18.56 ± 7.6

# Systemic therapy
0 52 17.90 ± 5.5 0.54

1 or 2 42 20.99 ± 9.2

≥ 2 5 31.56 ± 11.3

Primary tumor site
Midgut 61 19.40 ± 7.8 0.79

Pancreas 28 22.84 ± 9.2

Other 11 15.43 ± 4.0
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developed a predictive model for kidney absorbed dose 
based on pretherapy PET-SUV metrics and biomarkers (i.e., 
eGFR) estimating posttherapy renal absorbed dose within 
18% accuracy [9]. In the current study, we further evaluated 
the predictive power of 68Ga-PET SUV metrics with readily 
available baseline biomarkers to develop machine learning 
models for tumor absorbed dose prediction.

The relationship between baseline PET-derived fea-
tures and delivered absorbed dose is not straightforward. 
First, there are notable differences in the pharmacokinet-
ics and biodistribution of 68Ga/177Lu-DOTATATE ther-
agnostic pairs [2], influenced by variable masses and 

chemical structures of administered radiopharmaceuti-
cals, patient behavior [4], radioactive metabolites [27], 
medication effects, etc. Second, the static 68Ga-PET acqui-
sition (~ 60 min post-injection) potentially only depicts 
the SSTR2 density distribution, while the absorbed dose 
quantity is related to dynamic physiologic circulation and 
accumulation of the radiopharmaceutical. In the other 
word, dose quantity is proportional to the multiplication 
of  Cvol (scale factor of the time-activity curve normalized 
by tumor volume) and  Teff (retention half-life).

In this context, we observed a significant correlation of 
PET-SUV metrics with  Cvol (Figs. 2, 3,  SUVmean: ρ = 0.63), 

Fig. 2  Spearman rank self and cross correlation between absorbed 
dose-related parameters (dose,  TIAvol,  Cvol and  Teff) and PET-SUV 
parameters along with biomarkers. The color code and size of spheres 

show the correlation magnitude. The insignificant correlations 
(q-value  > 0.05) are plotted as faded spheres
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while no correlation with  Teff (Supplemental-Fig. 3-4). 
Therefore, it can be concluded that the observed correla-
tion between PET-SUV parameters and the tumor absorbed 
dose quantity  (SUVmean: ρ = 0.62) stems from the correla-
tion between 68Ga-tumor-uptake and 177Lu-tumor-uptake. 

There is a body of literature that indicated a significant 
correlation between 68Ga-SUV and 177Lu-induced tumor 
absorbed dose [7, 15, 28]. Ezziddin et al. reported a strong 
correlation between 68Ga-DOTATOC SUV-metrics with 
 [177Lu]Lu-Octreotate absorbed dose (SUVmean: ρ = 0.72; 
SUVmax: ρ = 0.71) [28]. Hänscheid et al. showed that PET-
based SUVmax significantly correlates (ρ = 0.76) with the 
maximum absorbed dose delivered to tumor in meningioma 
patients [29]. However, one group, Singh et al. found no sig-
nificant correlation between SUVs and the tumor absorbed 
dose from  [177Lu]Lu-DOTA-TATE therapy in metastatic-
NETs [26].

In previous studies, tumor-to-normal organ ratios (SUV_
TNRs) were suggested as potential factors that might reduce 
the inter-patient and inter-acquisition variability associated 
with tumor SUV by using physiological uptake in normal 
organs as an individualized reference [30–32]. We compared 
the correlation of tumor SUV, SUV_TNRs, and activity 
concentration with respect to absorbed dose, but  SUVmean 
outperformed other metrics in terms of strength of the corre-
lation (Fig. 4 and supplemental-Fig. 4). We have previously 
noted discordance using TNR between the 68Ga PET and 
the 177-Lu-PRRT dosimetry SPECT/CT, with significantly 
higher SUV TNR on 177Lu SPECT compared with 68Ga PET 
[2]. This phenomenon may be related to temporal differences 

Fig. 3  Intra-patient variability of tumor absorbed doses per unit 
administered activity for all patients. The sphere color indicates 
 SUVmean, and background color shows the margins of standard devi-
ation of tumor absorbed dose per unit administered activity values. 
The size of spheres depicts the volume of tumors in logarithmic form 
(4–1039 mL)

Fig. 4  Tumor absorbed dose plotted vs. tumor PET-SUV quantities, where the color shows the tumor location. The size of spheres depicts the 
volume of tumors in logarithmic form (4–1039 mL)
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in DOTATATE uptake and internalization in tumor as com-
pared to normal organs, further accentuated by differences 
in image timing (60 min PET vs.  > 4 h SPECT/CT) [2].

We evaluated the correlation of inter-patient PET-derived 
total lesion burden metrics, including total lesion volume 
(TLV), average SUV of the total lesion volume  (TLSUVmean), 
and total lesion somatostatin expression (TL-SSE = TLV × TL-
SUVmean), all compared to the index tumor absorbed dose 
(Fig. 2).  TLSUVmean showed a strong correlation with dose 
components  (Cvol: ρ > 0.63), while no significant correlation 

was observed regarding TLV and TL-SSE. This associa-
tion is reasonable from a physiologic standpoint, given that 
greater overall PET tracer avidity may correlate to increased 
PRRT binding and dose deposition by a similar theragnostic 
pair. Accordingly, a recent paper notably found correlation of 
 TLSUVmean with survival in NET patients treated by  [177Lu]
Lu-DOTATATE, implicitly showing correlation of  TLSUVmean 
with tumor absorbed dose and accordingly therapy-response 
[33]. Furthermore, we found a strong correlation between 
 SUVmean of the total liver volume  (TotLiverSUVmean) with dose 

Table 3  Model performance of the selected prediction algorithms using 68Ga-PET SUV metrics. The quantitative metrics are reported as mean 
(95% CI) calculated from nested CV. The MAE quantile range is reported based on the averaging over 10-outerloop CV point prediction

*Two outliers are excluded from reported R2

Model Features R2* tenfold Median MRAE MAE (Gy/GBq) MAE quantile 
(0.05–0.95)

RMSE 
(Gy/
GBq)

Univariate Linear
SUVmean 0.28(0.00) 0.38(0.00) 1.08(0.00) 0.14–2.8 1.44

Bivariate Tree_Ens
SUVmean,  TotLiverSUVmean 0.61(0.01) 0.26(0.01) 0.82(0.01) 0.10–2.29 1.33
SUVmean,  TLSUVmean 0.48(0.03) 0.26(0.01) 0.88(0.02) 0.05–2.66 1.35

Trivariate Tree_Ens
SUVmean,  TotLiverSUVmean, 

 TLSUVmean

0.64(0.02) 0.20(0.01) 0.73(0.02) 0.02–2.46 1.28

Fig. 5  Pretherapy predicted 
absorbed dose using univariate 
linear model and random forest 
(RF) bi/tri-variate models of 
Table 2 vs. the delivered dose 
measured from Lu-177 SPECT/
CT (the filled gray dots repre-
sent the 2 outliers)
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components  (Cvol: ρ = 0.45). We used  TotLiverSUVmean as a 
surrogate for extent of hepatic metastatic disease involvement.

(TotLiverSUV
mean

=

correlation between prior-systemic-treatment and bilirubin 
with respect to  Teff, (Fig. 2 and Supplemental-Fig. 4) the 
indirect impact of these two biomarkers on tumor absorbed 
dose that is composed of two components (i.e.,  Cvol and 
 Teff) was not significant. Our linear model, built upon the 
features selected by ElasticNet (7 variables), also showed 
some improvement compared to trivariate linear models 
(R2 = 0.57, MAE = 0.8 Gy/GBq), but due to a higher number 
of model-variables, it is prone to spurious correlations in a 
small-size dataset. The features selected by PRFvI algorithm 
align with those from the hierarchical algorithm; however, 
compared to trivariate decision tree, the model performance 
did not show any improvement (supplemental-Fig. 8).

Tumor absorbed dose in PRRT is likely influenced by 
multiple biological factors, both individual patient char-
acteristics and specific tumor features (i.e., proliferation 
rate, heterogeneity, intrinsic radio-sensitivity). The intra-
patient tumor absorbed dose per unit administered activity 
variability of our dataset is comparable with inter-patient 
variability of the whole set (0.38 vs. 0.69); therefore, we 
treated each individual tumor independently, while the 
biomarkers and some PET features, such as TL-SSE and 
 TLSUVmean were calculated in the patient-level, feeding 
inter-patient information to our models.

The primary limitations of our study are its small sample 
size and lack of independent multi-center validation and 
back-testing of the models, relying instead on nested cross 
validation. Although we followed the recommended rules 
for generalizability and interpretability of the models [21], 
further investigation is warranted. Interpretations of dose 
metrics involving 177Lu-PRRT are challenging due to the 
lack of complete understanding between the dose quantities 
and clinical end points. Currently, dose-response models are 
extrapolated from external beam radiotherapy (e.g., kidney 

Fig. 6  Considering the threshold absorbed dose for responders of 
25  Gy/cycle, confusion matrix of predicted absorbed dose from 
trivariate Ens-Tree model compared to the measured absorbed dose 

(left). Sensitivity ( TP

TP+FN
 ) and specificity ( TN

FP+TN
 ) visualization of the 

predcition model (right). TP true-positive, FP false-positive, TN true-
negative, FN false-negative

(tumor_liver_SUVmean × Tumor_volume)+(healthyliverSUVmean
× healthy_liver_volume)

(healthy + tumor) liver volume

).

By expanding a univariate analysis showing the predictive 
value of  SUVmean, we built bi/tri-variate models to enhance 
prediction accuracy. The best model performance achieved 
by a trivariate model composed of only PET-SUV metrics: 
 SUVmean,  TotLiverSUVmean, and  TLSUVmean. All three met-
rics showed strong correlation with radiopharmaceutical-
uptake-related dose component  (Cvol), illustrated in supple-
mental-Fig. 7. A bivariate model only using  SUVmean and 
 TotLiverSUVmean likewise showed a good predictive per-
formance (R2 = 0.61, MAE = 0.82 Gy/GBq). These results 
illustrate that the extent of liver tumor involvement, via 
 TotLiverSUVmean, is predictive of absorbed dose. The main 
advantage of using this variable is that it is readily calculated 
from PET images without any complicated computation: it is 
merely the  SUVmean of entire liver segmented volume, which 
can be simply performed through machine learning models 
from CT images. According to Figs. 5 and 6, about 17% of 
tumors with low absorbed doses (~ 7 ± 4.8 Gy) are overesti-
mated; while, about 2.5% of tumors with very high absorbed 
doses (> 55 Gy) are underestimated (|MRAE|> 0.5).

In addition to Ens_Tree models, we evaluated bi- and 
tri-variate linear models, where  SUVmean combined with 
bilirubin and albumin improved the prediction performance 
(R2 = 0.47, MAE = 0.87 Gy/GBq). Bilirubin and prior sys-
temic treatment showed significant correlations with  Teff 
(ρ =  − 0.33 and ρ = 0.3, respectively). These findings may 
suggest that prior treatments or underlying hepatic dysfunc-
tion may alter tumor behavior and potentially the degree of 
PRRT tumor uptake and metabolism. Despite the observed 
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dose-limit of 23 Gy or 28 Gy [34, 35]) or other RPTs, both 
with non-negligible radiobiologic differences. An inherent 
limitation of these studies relates to the uncertainties associ-
ated with quantitative imaging (i.e., scatter/attenuation cor-
rection, segmentation, and partial volume correction) and 
multi-timepoint serial imaging to determine kinetics (i.e., 
time-series registration) [17]. In addition, simplification in 
posttherapy imaging such as using SPECT-planar hybrid 
imaging or reduced timepoints or approximation in particle 
transport algorithms can introduce extra uncertainties into 
dosimetry process [36]. To the best of our knowledge, this is 
the first study of predictive dosimetry using complete four-
timepoint posttherapy 3D SPECT/CT imaging, radiologist-
defined lesion contours, and a validated Monte Carlo-based 
dosimetry workflow that reduces some of these uncertain-
ties in the measured absorbed dose and hence help to build a 
more precise model. As post-PRRT imaging is increasingly 
used as part of routine clinical protocols at some centers, we 
expect more data to be available in the future to indepen-
dently validate and improve the proposed model.

Conclusion

We investigated the predictive value of using 68Ga-PET-
based SUV metrics along with biomarkers to estimate the 
tumor absorbed dose with  [177Lu]Lu-DOTA-TATE therapy. 
We showed that tumor  SUVmean,  TotLiverSUVmean, and aver-
age SUV of the total lesion volume  (TLSUVmean) are capa-
ble of predicting the 177Lu-PRRT delivered tumor absorbed 
dose with an accuracy of MAE = 0.71 Gy/GBq (R2 = 0.64) in 
nested cross validation. We hope to further test the proposed 
models on multi-center data, to eventually provide a vali-
dated decision-support tool for clinicians to improve patient-
selection and thus optimize treatment outcomes. Developing 
such precise quantitative metrics establishes a greater role of 
68Ga-PET for patient stratification, as well as prognostication 
and assessment of the therapeutic response modeling.
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