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Summary

The use of ionizing radiation in medical imaging procedures, particularly in diagnostic radiology and nuclear
medicine has significantly increased in the last decade, leading to major improvements in the diagnosis and
treatment of various diseases. UNSCEAR indicated that over 3.6 billion x-ray examinations and 33 million nuclear
medicine procedures are performed annually, worldwide. Although the use of ionizing radiation in medicine plays
a pivotal role in healthcare, it is associated with risks of radiation-induced cancer. Therefore, its use is subject to
standards of safety and stringent optimization procedures. Here, the term optimization refers to limiting the
exposure of patients to the minimum necessary to achieve the required diagnostic or therapeutic objective,
depending on the medical task at hand, the equipment being used, and patient-specific characteristics. To this end,
the first step is the accurate assessment of radiation dose delivered to patients to assist the optimization of the given
procedure.

The work presented in this dissertation and portfolio of published work aimed to establish an accurate and
reliable methodology for monitoring and optimization of the radiation dose, initially from diagnostic imaging, but
later in theranostic nuclear oncology. This research addressed two main questions: first, to establish a framework
for habitus-specific and patient-specific dose monitoring and radiation dose reduction in hybrid PET/CT imaging;
and second, to develop a practical dosimetry workflow to bring the full capacity of theragnostic dosimetry-guided
planning to RadioPharmaceutical Therapy (RPT).

In the first phase of this thesis four works were carried out: i) a comprehensive library of computational
phantom composed of 479 male/female phantoms were constructed representing anthropomorphic and anatomical
diversities in adult population. ii) A framework for Monte Carlo (MC) based dose calculation from both internal
(i.e. PET) and external (i.e. CT) exposure was developed and habitus-specific dose from a PET/CT examination
was simulated. iii) The developed MC-based external dose simulator was benchmarked against experimental
measurements and the dosimetric uncertainties associated with using different scan protocol parameters were
investigated, iv) a methodology for construction of patient-specific computational model for dose estimation in
radiological imaging was developed.

In the second phase, the application of deep learning in dose calculation and optimization was extended. Using
the dosimetry toolkits and methods that have been developed in the first phase; we developed a novel deep
learning-based algorithm for fast MC-based internal dosimetry. Patient-specific absorbed dose calculation using
MC simulation is deemed the gold standard technique for internal dosimetry. However, this method is
computationally expensive. Hence, we proposed a novel method to perform whole-body personalized voxel-level
dosimetry taking into account the heterogeneity of activity distribution, non-uniformity of surrounding medium,
and patient-specific anatomy using a physics-informed deep residual neural network. The proposed model was
evaluated on the diagnostic *®FDG-PET examinations showing a comparable accuracy with MC-based dose maps
while being much faster in terms of execution time. This methodology is extendable to other diagnostic and
therapeutic radionuclides. More specifically, we extended our model on ¥FDG to a betta- emitter therapeutic
agent, Y"Lu-DOTATAE, using transfer learning that outperformed conventional methods, such as local energy
deposition and MIRD formalism in high density regions (i.e. bone metastasis).

Furthermore, we applied the deep learning-based dose reconstruction methodology developed for internal
dosimetry in nuclear medicine into high dose rate brachytherapy. To address the simplifications of TG-43
assumptions that ignore the dosimetric impact of medium heterogeneities, we proposed a neural network algorithm
for reconstruction of MC-based dosimetry from CT images and radiation source characteristics. The results
showed a comparable performance to the MC method while overcoming its computational burden and the inherent
oversimplifications of TG-43 protocol.

Motivated by the dramatic increase of chest computed tomography exams following the global outbreak of
COVID-19 in 2020, we designed an ultra-low-dose CT examination protocol for clinical diagnosis of COVID-19
patients using a deep neural network. In this work, we aimed to use deep learning algorithms on ultra-low-dose
COVID-19 CT images to generate high-quality images with a comparable diagnostic accuracy to full-dose CT
images. In our proposed protocol, the radiation dose in terms of CT dose index was reduced by up to 89% while
the overall scoring to the predicted images assigned by radiologists showed an acceptance rate (score=4.72 + 0.57)
comparable to reference full-dose CT images (score=5).



Using the validated MC code that has already been developed for reconstruction of radiation dose associated
with CT examinations, we developed a deep learning-based model to predict 3D voxel-level absorbed doses from
anatomical density map and acquisition parameters. Through the generation of the dose map from a single source
position, our model can generate accurate and personalized dose maps in few seconds for a wide range of
acquisition parameters.

On the ground of previously developed personalized dosimetry methods, we further studied dosimetry in
theragnostic in connection with targeted molecular radiotherapy. In recent years, the emergence of theragnosticas
a single modality combining diagnostics and therapy, contributed to the current resurgence of interest in
radiopharmaceutical therapy as a multidisciplinary endeavor. In pursuing personalized RPT based on patient-
specific biology, tumor burden and dosimetry, a significant body of literature demonstrated the positive impact of
dosimetry-guided dose planning on treatment efficacy.

Neuroendocrine tumors (NETS) with overexpressing somatostatin receptors provide the basis for peptide
receptor radionuclide therapy (PRRT) through theragnostic pair of %Ga/*"’Lu-DOTATATE. The main purpose of
this study was to develop machine learning models to predict therapeutic tumor absorbed dose using pre-therapy
%Ga-DOTATATE PET/CT and clinicopathological biomarkers. The patients included in this study underwent
both pre-therapy ®Ga-DOTATATE PET/CT and four time-points SPECT/CT at ~4, 24, 96 and 168 hours post
7Lu-DOTATATE infusion. The preliminary results demonstrated the feasibility of using baseline PET images
for estimating tumor absorbed dose prior to Y’Lu-PRRT to enable personalized treatment planning and patient
stratification.



Résumeé

L'utilisation des rayonnements ionisants dans les procédures d'imagerie médicale, notamment en radiologie et en
médecine nucléaire, a considérablement augmenté au cours de la derniére décennie, ce qui a permis d'améliorer
considérablement le diagnostic clinique et le traitement de diverses maladies. L'UNSCEAR indique que plus de
3,6 milliards d'examens radiologiques et 33 millions de procédures de médecine nucléaire sont réalisés chaque
année dans le monde. Bien que I'utilisation des rayonnements ionisants en médecine joue un rdle essentiel dans le
systeme de santé, elle est associée a des risques de cancer radio-induit. Par conséquent, son utilisation est soumise
a des normes de sécurité et a des procédures d'optimisation rigoureuses. Le terme d'optimisation désigne ici la
limitation de I'exposition des patients au minimum nécessaire pour atteindre l'objectif diagnostique ou
thérapeutique requis, en fonction de la tiche médicale a accomplir, de I'équipement utilisé et des caractéristiques
spécifiques du patient. A cette fin, la premiére étape est I'évaluation précise de la dose de rayonnement délivrée
aux patients pour aider a I'optimisation de la procédure donnée.

Le travail présenté dans cette these et les travaux publiés visaient a établir une méthodologie précise et fiable
pour le contrdle et I'optimisation de la dose de rayonnement, initialement en imagerie diagnostique, mais plus tard
en médecine nucléaire thérapeutique ou théranostique. Cette recherche a abordée deux questions principales:
premierement, établir un cadre pour la surveillance de la dose spécifique a la morphologie et apparence du patient
et la réduction de la dose de rayonnement en imagerie hybride TEP/TDM; et deuxiémement, développer un flux
de travail pratique de dosimétrie pour apporter la pleine capacité de la planification guidée par la dosimétrie
théranostique a la radiothérapie métabolique.

Dans la premiére phase de cette these, quatre travaux ont été réalisés : i) Une bibliothéque compléte de fantdmes
computationnels composée de 479 fantdmes masculins/féminins représentant les diversités anthropomorphiques
et anatomiques de la population adulte a été construite. ii) Un cadre pour le calcul de la dose basé sur la méthode
de Monte Carlo (MC) a partir de I'exposition interne (c'est-a-dire TEP) et externe (c'est-a-dire TDM) a été
développé et la dose spécifique au patient lors d'un examen TEP/TDM a été simulée. iii) Le simulateur de dose
externe basé sur la méthode de Monte Carlo a été évalué par rapport & des mesures expérimentales et et les
incertitudes dosimétriques associées a l'utilisation de différents paramétres de protocoles d’imagerie ont été
étudiées. iv) Enfin, une méthodologie pour la construction d'un modele de calcul spécifique au patient pour
I'estimation de la dose en imagerie radiologique a été développée.

Dans la deuxiéme phase de cette thése, l'application de I'apprentissage profond dans le calcul et I'optimisation
de la dose absorbée a été étendue. En utilisant les différents outils et méthodes de dosimétrie qui ont été
développées dans la premiére phase, nous avons développé un nouvel algorithme basé sur I'apprentissage profond
pour une dosimétrie interne rapide basée sur le modéle MC. Le calcul de la dose spécifique au patient par
simulation MC est considéré comme la technique de référence en dosimétrie interne. Cependant, cette méthode
est colteuse en termes de temps de calcul. Nous avons donc proposé une nouvelle méthode pour effectuer une
dosimétrie personnalisée voxelisée du corps entier en tenant compte de I'hétérogénéité de la distribution de
I'activité, de la non-uniformité du milieu environnant et de l'anatomie spécifique du patient a I'aide d'un réseau
neuronal résiduel profond. Le modele proposé a été évalué sur les examens diagnostiques ®FDG-PET montrant
une précision comparable aux distributions de dose calculées par la méthode de MC tout en étant beaucoup plus
rapide en termes de temps d'exécution. Cette méthodologie est extensible a d'autres radionucléides utilisés em
diagnostic et en thérapie. Plus précisément, nous avons étendu notre modele développé initialement pour le ¥FDG
aun agent thérapeutique émetteur béta, le ’Lu-DOTATAE, en utilisant I'apprentissage par transfert qui a surpassé
les méthodes conventionnelles, telles que le dép6t d'énergie local et le formalisme MIRD dans les régions a haute
densité (c'est-a-dire les métastases osseuses).

De plus, nous avons appliqué a la curiethérapie & haut débit de dose la méthodologie de reconstruction de la
dose basée sur I'apprentissage profond développée pour la dosimétrie interne en médecine nucléaire. Pour remédier
aux simplifications des hypothéses TG-43 qui ignorent I'impact dosimétrique des hétérogénéités du milieu, nous
avons proposé un algorithme de réseau neuronal pour la reconstruction de la dosimétrie basée sur le MC a partir
d'images TDM et des caractéristiques de la source de rayonnement. Les résultats ont montré une performance



comparable a la méthode MC tout en surmontant sa charge de calcul et les simplifications excessives inhérentes
au protocole TG-43.

Motivés par l'augmentation spectaculaire des examens tomodensitométriques thoraciques suite a I'épidémie
mondiale de COVID-19 en 2020, nous avons congu un protocole d'examen tomodensitométrique a ultra-faible
dose pour le diagnostic clinique des patients COVID-19 en utilisant un réseau neuronal profond. Dans ce travail,
nous avons voulu utiliser des algorithmes d'apprentissage profond sur des images TDM COVID-19 a ultra-faible
dose pour générer des images de haute qualité avec une précision diagnostique comparable a celle des images
TDM a pleine dose. Dans le protocole que nous avons proposé, la dose de rayonnement en termes d'indice de dose
TDM a été réduite jusqu'a 89 %, tandis que la notation globale des images prédites attribuée par les radiologues a
montré un taux d'acceptation (score = 4,72 £+ 0,57) comparable a celui des images TDM pleine dose de référence
(score = 5).

En utilisant le code MC validé qui a déja été développé pour la reconstruction de la dose de radiation associée
aux examens TDM, nous avons développé un modele basé sur l'apprentissage profond pour prédire les doses
absorbées au niveau du voxel 3D a partir de la carte de densité anatomique et des parameétres d'acquisition. Grace
a la génération de la distribution de dose a partir d'une seule position de la source, notre modéle peut générer des
distributions de dose précises et personnalisées en quelques secondes pour une large gamme de parametres
d'acquisition.

Sur la base des méthodes de dosimétrie personnalisée précédemment développées, nous avons etudié la
dosimétrie en théranostic en relation avec la radiothérapie moléculaire ciblée. Ces derniéres années, I'émergence
du théranostic en tant que modalité unique combinant diagnostic et thérapie a contribué a la résurgence actuelle
de l'intérét pour la radiothérapie moléculaire ciblée en tant qu'effort multidisciplinaire. Dans le cadre de la
recherche d'une radiothérapie personnalisée basée sur la biologie, la charge tumorale et la dosimétrie spécifique
au patient, un grand nombre de publications ont démontré I'impact positif de la planification de la dose guidée par
la dosimétrie sur I'efficacité du traitement.

Les tumeurs neuroendocrines avec surexpression des récepteurs de la somatostatine constituent la base de la
thérapie par radionucléides des récepteurs peptidiques (PRRT) grace a la paire de radionucléides ®Ga/*’"Lu-
DOTATATE. L'objectif principal de cette étude était de développer des modeles d'apprentissage automatique pour
prédire la dose thérapeutique absorbée par la tumeur a l'aide de la TEP/TDM du %Ga-DOTATATE et de
biomarqueurs clinicopathologiques avant la thérapie. Les patients inclus dans cette étude ont subi un TEP/TDM
pré-thérapeutique au 8Ga-DOTATATE et quatre points temporels TEMP/TDM & ~4, 24, 96 et 168 heures aprés
la perfusion de "Lu-DOTATATE. Les résultats préliminaires ont démontré la faisabilité de l'utilisation d'images
TEP de base pour estimer la dose absorbée par la tumeur avant le traitement par Y’Lu-PRRT afin de permettre une
planification personnalisée du traitement et une stratification des patients.
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Chapter 1

Introduction



I. Motivation and background

Medical applications of ionizing radiation have substantially increased over the past three decades, leading to
major improvements in the diagnosis and treatment of human diseases. While the patients gain recognized
benefits from radiation-involved health technologies in medicine, they may also be exposed to unnecessary or
unintended irradiations and be subject to potential health hazards in inappropriate applications. Therefore, it is
essential to assess potential risks for a better management of safety and quality in the use of radiological
medical equipment and protection of patients, health workers and members of the public. Since the beginning
of radiation therapy, a lot of efforts have focused on the optimization of curative principles for maximization
of absorbed dose to tumors while sparing healthy tissues. Although high radiation doses are known to be
correlated with increased risks of cancer (deterministic effects), the effects of low doses, typically encountered
in diagnostic medical imaging, are still a matter of debate (stochastic effects). There is some evidence
indicating the association of increased cancer risks with diagnostic low-dose radiation exposure that raise
concerns about potential carcinogenic harms associated with these examinations [1-4]. However, some
research studies questioned the hypothesis behind the uncertain risk estimation for low dose exposure delivered
by medical procedure (<100 mSv) [5]. Thus, it is considered prudent for public safety to assume that exposure
to ionizing radiation, no matter how small it is, carries small risk of unwanted health effects, including cancer.
In this context, the assessment of radiation dose to patients, as a metric for quantification of either deterministic
or stochastic risks, plays a critical role in the development, clinical use, and optimization of radiation-involved
procedures in both diagnostic and therapeutic applications. Here, the concept of optimization includes
assessment of the risks and benefits of a procedure guiding the amendment of the protocols. To this end,
accurate radiation dosimetry provides the basis for quantification of risk factors. While more accurate risk
quantification leads to a better understanding of risk-benefit association depending on the medical task at hand,
the equipment being used, and patient-specific characteristics. Therefore, the framework of current dosimetry
methods plays a key role in the advancement of both safety and efficacy of medical exposures.

Precision medicine is a new paradigm aiming at improving healthcare while lowering the costs, thus
offering great potential for patient-specific optimal treatment strategies [6]. In the era of precision medicine, it
is time to shift from one-size-fits-all paradigm to personalized approach for dosimetry calculation that is
essential for both diagnostic and therapeutic nuclear medicine procedures.

In recent years, the demand for radiopharmaceutical therapy (RPT) has grown rapidly in clinical oncology
owing to its efficacy and specific theragnostic features. The introduction of theragnostics, as a single modality
combining diagnosis and therapy in RPT, enables not only for therapy verification but also for personalized
dosimetry-guided treatment planning [7]. Currently, RPT is administered intravenously or locoregionally,
where planning is typically designed based on either a fixed dosage or patient’s body weight/surface area,
analogous to chemotherapy. This approach is very much in contrast with external beam radiotherapy where
personalized planning is integrated in clinical routine. Considering advances in quantitative molecular imaging
technologies, computational modeling of the human body, and sophisticated radiation transport techniques, it
is time to shift from the standard fixed dose regimen to a personalized approach in RPT. There is mounting
evidence that personalized dosimetry enables for more rigorous approach in treatment planning aiming at
improving therapeutic outcome and for a better understanding of the dose—response association [8-11].

With respect to radiotracer imaging, i.e. single-photon emission computed tomography (SPECT) and
positron emission tomography (PET), mostly implemented as hybrid imaging modalities integrated with
computed tomography (CT), personalized dosimetry is recommended for optimizing clinical procedures while
minimizing the risks of radiation-induced cancer. The International Commission on Radiological Protection
(ICRP) suggested estimating the radiation dose delivered to patients from medical imaging procedures toward
the optimization rule known as ALARA (As Low As Reasonably Achievable) in order to minimize the risks
through the appropriate use of ionizing radiation [12]. Currently, CT scanning accounts for the primary source
of medical radiation exposure to the population. Despite the technological innovations devised to optimize the
radiation dose associated with CT. Yet, "CT is still not a low-dose imaging modality" [13]. Hence, personalized
dosimetry is of critical importance for effective analysis of the risk-benefits of medical imaging and the design
of radiation dose optimization strategies according to ALARA principle.



In the context of personalized dose calculation, three main components are required:

1. The definition of radiation sources (external or internal);

2. Patient-specific computerized representations of the human body, referred to as computational
models.

3. Radiation transport algorithm and scoring of energy depositions.

The definition of radiation source considers the characteristics of the emitted radiation, including the type
of particle (e.g. photons, electrons, positrons, alpha particles, etc), particle energy and the geometrical
distribution of the source. Computational models are digitized representations of the human anatomy that have
been introduced to represent the spatial distribution of the different tissues in the body. These phantoms were
developed originally for applications in radiation protection and medical imaging instrumentation and
protocols optimization. Computational phantoms have been extended from simple water-filled slabs and
spheres to patient-specific anthropomorphic models with a realistic detailed anatomy and material
compositions. The principle of absorbed dose calculation involves solving the Boltzmann transport equation
which describes the interaction of radiation particles travelling through a medium. There are two main
categories of approaches for solving this equation: deterministic and stochastic algorithms. The Monte Carlo
(MC) technique has been introduced as a stochastic solution for the Boltzmann transport equation through
probabilistic simulation of particle interactions with matter. The main advantage of the MC method compared
to the deterministic approach is its capability to simulate complex problems allowing the definition of either
intricate geometries (i.e. complex heterogeneous medium) or source models. Direct MC simulations are
considered the gold standard for implementation of a reliable dosimetry framework. However, this technique
is computationaly intensive and requires significant expertise in computer programming [14].

Scope and outline of the research

According to the structure of this dissertation, illustrated in Figure 1, we conducted multiple studies in two
distinct parts: the first part focused on advanced methods for dosimetry in diagnostic nuclear medicine imaging
centering mainly around hybrid PET/CT systems, whereas the second part focused on radiation dosimetry in
theragnostic applications.

PART 1: diagnostic nuclear medicine dosimetry

In current clinical radiopharmaceutical dosimetry, patient absorbed dose monitoring is commonly based on
simplified models, such as the Medical Internal Radiation Dose Committee (MIRD) formalism [15]. The
traditional MIRD technique is based on organ-level dosimetry using time-integrated activities and
radionuclide-specific S-values, which represents the mean absorbed dose to a target organ per radioactive decay
in a source organ. These quantitative parameters are modeled based on a reference computational phantom.
This approach assumes a uniform activity distribution within each organ and ignores individual anatomical
characteristics. OLINDA/EXM® software, released at 2004, was the first computer code based on organ-level
MIRD formalism for radiopharmaceutical absorbed dose calculation (OLINDA/EXM stands for Organ Level
INternal Dose Assessment/EXponential Modeling). It calculates radiation doses to different organs of the body
from systemically administered radiopharmaceuticals and performs regression analysis on user-supplied
biokinetic data to support such calculations for nuclear medicine pharmaceutical [16].

To cope with inter-subject variability of anatomical features and heterogeneity of radiotracer distribution
within the source volume, voxel-based dosimetry techniques have been developed, using either dose point
kernels [17, 18] or voxel S-values (VSV) [15] approaches. Dose point kernel is a deterministic approach which
calculates the radial absorbed dose distribution around an isotropic point source in a homogeneous water
medium [19, 20]. The voxel-level MIRD schema is defined as a 3D voxel matrix representing the mean
absorbed dose to a target voxel per unit activity in the central source voxel embedded in an infinite
homogeneous medium using MC simulations. However, voxel-based dose calculation should in principle take
into account non-uniform activity distribution of the radiotracer, the heterogeneity of the medium density
consisting of different tissue compositions, e.g., lung, soft tissue, and bone, in radiation transport calculation
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is ignored. Therefore, MC-based radiation transport algorithms that are capable to simulate either a
heterogenous activity distribution or a complex inhomogenous medium is considered as the gold standard, in
particular for dosimetry in heterogenous medium, such as lung and bone lesions and marrow dosimetry and
also for imaging radiotracers with longer ranges.
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Chapters 11

Computed tomography (CT) is a widely deployed imaging modality in clinical setting. Its natural growth

and widespread adoption, inevitably became a public health concern raising awareness about patients’ exposure
to ionizing radiation (UNSCEAR [21] reported ~ 3-6 billion diagnostic x-ray examinations, annualy). Patient
radiation dose associated with CT examinations is typically reported using exposure indices, such as CT dose
index (CTDI) and dose-length product (DLP). These metrics represent the radiation output of a specific
examination that are useful for quality assurance but do not provide any information on tissue absorbed dose.
The estimation of absorbed doses can be performed using various methodologies. The most straightforward
approach uses conversion factors specific to the scanning protocols, such as size-specific dose estimate
(SSDE). An alternative option is to use dedicated software tools, such as ImpactDose? and Radimetrics [22],
that have been developed based on MC calculations using a general x-ray tube as source model and reference
computational phantoms representing population-based patient anatomy. Both above mentioned software
packages proved to have some discrepancies with organ absorbed doses calculated through patient-specific
MC simulations [23-25]. MC calculations using patient-specific computational models is deemed to be the
most accurate approach in CT dosimetry while its downsides, including computational burden, and required
expertise in computer programming, limit its adoption in clinical setting.

In the context of personalized dosimetry, patient-specific computational model is the key component

2 https://impactdose.software.informer.com/

enabling accurate estimation of organ-level dose. However, detailed segmentation of patient images to
construct personalized models was not feasible for clinical routine applications till recently, where the
emergence of deep learning in the computer vision domain revolutionized the area of patient-specific
computational modelling. In this regard, to cope with inter-subject variability of anatomical features, a potential



alternative for person-specific organ absorbed dose estimation was introduced through developing a library of
computational models where habitus-specific phantoms could serve as alternative models covering various
anthropometric and anatomical characteristics of patients [26]. Several habitus-dependent phantom series have
been developed to perform patient-specific absorbed dose estimation by matching anthropometric
characteristics of patients, such as gender, age, height, and body weight [27, 28]. The construction of patient-
specific models from regional CT images is another alternative for patient-specific dosimetry, which was
adopted in a number of studies and also within Radimetrics™ commercial dose tracking software (Bayer
HealthCare, Berlin, Germany) by mapping the segmented model of patient CT images to a template anatomy
through a simple protocol-based registration of CT scan localizer to predefined anatomical landmarks on
Cristy & Eckerman stylized phantom [29-31].

Since Monte Carlo calculations using patient-specific models are commonly considered as gold standard
for organ absorbed dose estimation from diagnostic imaging procedures, the implementation of an easy to use
and reliable framework enabling to estimate patient-specific organ absorbed doses for individual patients in
clinical setting is highly desirable. This was the focus of Part 1 of this dissertation.

Focusing on public health aspects related to the risks of the use of radiation in medicine, this part considered
hybrid PET/CT scanner as example to establish a framework for personalized dosimetry in molecular imaging.
Patients undergoing PET/CT scanning is exposure to two different radiation sources: the internal radionuclide
source and the external X-ray source. This part includes components linked to patient representation, radiation
dose calculation, radiation dose optimization and application of artificial intelligence (Al) in fast MC-based
dosimetry. The studies conducted in Part 1 were divided in two sub-categories:

A. Develop and validate Monte Carlo simulation code system for personalized dosimetry of a clinical
PET/CT examination.

1. Developing a comprehensive library of anthropomorphic computational models representing the
main anatomical characteristics of the majority of patients at different ages (both genders), and
different anthropomorphic characteristics.

2. Developing a MC simulation code system for clinical PET/CT scanners to incorporate the
geometry of the CT component and the biokinetic data of fluorodeoxyglucose (*®F-FDG) that is
extendable to other radiotracers.

3. Developing a unified methodology for constructing patient-pecific computational models from
CT regional images based on deformable registration algorithms for organ absorbed dose
estimation in radiological imaging.

4. Assessment of uncertainties associated with MC-based personalized dosimetry in clinical CT
examinations, in comparison with experimental measurements.

B. Applications of artificial intelligence, in particular deep learning algorithms, into MC-based
personalized dosimetry. The tools, techniques and data developed in part A, established the foundations
for application of Al in radiation dosimetry.

1. Implementation of deep learning for optimization of acquisition protocols in CT scanning to
reduce patient exposure while recovering image quality in the chest region.

2. Implementation of deep learning in external dosimetry for real-time, acquisition parameter-free,
patient-specific MC dose reconstruction in CT examinations.

3. Implementation of a fast MC-based dose reconstruction in whole-body internal dosimetry using
a physics-informed deep learning algorithm.

4. Extension of deep learning-based fast MC dose simulation in personalized brachytherapy dose
reconstruction.

PART 2: Therapeutic nuclear medicine dosimetry

Radiopharmaceutical therapy involves a biochemical pathway to deliver cytotoxic levels of radiation to a specific
cancer cell type through targeting agents while minimizing damage to normal cells. In recent years, the progress



in radiopharmacology with the emergence of theragnostics, combining diagnostic and therapy, contributed to the
current resurgence of interests in RPT as a multidisciplinary endeavor [32]. The promising clinical outcome of
RPT for the treatment of both local cancers and metastatic malignancies is being approved as an effective treatment
technique with a good safety profile, while economically and logistically viable [33]. Currently, RPT planning is
typically based on either a fixed dosage or patient’s body weight/surface area, analogous to chemotherapy. This
approach is very much in contrast with the new EU directive 2013/59/EURATOM Atrticle 56, indicating that “For
all medical exposure of patients for radiotherapeutic purposes, exposures of target volumes shall be individually
planned and their delivery appropriately verified taking into account that doses to non-target volumes and tissues
shall be as low as reasonably achievable and consistent with the intended radiotherapeutic purpose of the
exposure”. In Chapter II of the above directive, Definitions (Article 5, Definition 81), it is further stated that
“‘radiotherapeutic’ means pertaining to radiotherapy, including nuclear medicine for therapeutic purposes” [34,
35].

Pursuing the concept of precision medicine in RPT, we developed a theragnostic dosimetry workflows for
7Lu-labeled radiopharmaceutical were developed based on patient-specific biology, molecular pathology, and
dosimetry. Lu-DOTATATE has been recently approved by the FDA for the treatment of somatostatin receptor-
positive neuroendocrine tumors (NETS) [36]. While the currently recommended dosage is a fixed administered
regimen (7.4 GBg/fraction), there is mounting evidence that dosimetry-guided adaptation of administered activity
may be beneficial to optimize therapy outcome. The preliminary results indicate wide margins for increasing the
administered activity with tolerable toxicity [9, 37].

In Part 2 we focused on the capacity of theragnostic dosimetry-based planning to RPT setting by developing a
practical dosimetry workflow for Y’lu-Labeled peptide receptor radionuclide therapy (PRRT); and furthere to
develop a decision-support model for Y’Lu-DOTATATE RPT for patient stratification based on quantitative
biomarkers from pre-therapy imaging and pathology to ensure optimal efficacy and economy.
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Abstract

The prevalent availability of high-performance computing coupled with validated computerized simulation
platforms as open-source packages have motivated progress in the development of realistic anthropomorphic
computational models of the human anatomy. The main application of these advanced tools focused on imaging
physics and computational internal/external radiation dosimetry research. This paper provides an updated review
of state-of-the-art developments and recent advances in the design of sophisticated computational models of the
human anatomy with a particular focus on their use in radiation dosimetry calculations. The consolidation of
flexible and realistic computational models with biological data and accurate radiation transport modeling tools
enables the capability to produce dosimetric data reflecting actual setup in clinical setting. These simulation
methodologies and results are helpful resources for the medical physics and medical imaging communities and are
expected to impact the fields of medical imaging and dosimetry calculations profoundly.
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I. Introduction

Human anatomical models have been developed to represent the spatial distribution of different tissues in the body
(human anatomy) [1, 2]. These models were mainly constructed to provide a non-invasive and inexpensive way to
test various diagnostic imaging and interventional/therapeutic procedures [3], such as dosimetric calculations for
ionizing/non-ionizing radiation exposure, optimizing medical imaging facilities, and personalized medicine. An
important category of anatomical models is physical phantoms composed of solid materials with properties
equivalent to human tissues, e.g., homogenized cylindrical water phantoms used for the calibration of radiation
detectors and diagnostic imaging systems [4, 5]. However, these phantoms are usually expensive while reflecting
a crude approximation of the human body. In addition, using physical phantoms for the calibration of advanced
systems can be very costly and time-consuming. As a result, computational phantoms representing a mathematical
model of the human anatomy in a digital format were developed originally for applications in radiation protection
and medical imaging optimization. Recently, the ultimate objective of constructing human computational models
as the ancestor of the digital twins (i.e. computational objects employed in medicine or other fields as surrogate or
replica of the human body to certain process, e.g., to ionizing radiation) is the personalization of medical
procedures within the paradigm of precision medicine [6]. Starting in the 1960s, the development of the
computational models evolved through many generations, and in the 1980s, further efforts were made in this
domain. In this regard, the Visible Human Project led to the creation of the first complete anatomical model for
dose calculation purposes [7]. The first generation of computational phantoms suffered from a variety of
limitations, including lack of anatomical realism, the non-inclusion of tissue characteristics, calculation speed, as
well as their incompatibility with available analytical or Monte Carlo simulation codes. More importantly, these
computational phantoms have not been designed for subject-specific modeling and ignored inter-subject
anatomical variability [8].

Advances in high-performance computing stimulated the development and usage in research of realistic
computational anthropomorphic models. To date, more than 200 computational phantoms have been reported in
the literature [2]. Examples of widely used anatomical models are the NURBS-based XCAT phantom series [9]
and the Virtual Population based on triangle mesh [10, 11]. Advances in medical imaging modalities and
computational algorithms allow fast and construction of personalized computational models through automated
segmentation techniques and enable the incorporation of physiological motion into anatomical models.

Il. The fundamentals of computational models design

Multiple factors should be considered during the construction of a realistic anthropomorphic anatomical model
[12]. These include anatomy (tissues, organs and regions), tissue properties, computational efficiency as well as
compatibility with analytical or Monte Carlo simulation codes.

As a result, the first step in anthropomorphic anatomical model construction consists of defining geometrical
surfaces and tissue properties. This can be done either by using constructive solid geometry (CSG) or boundary
representation (BREP) approaches [13, 14]. In CSG, objects are created using primitives, such as cylinders,
ellipsoids, spheres, ... etc. A number of examples can be found in the literature that fall under this category ranging
from whole organ representation [8] to voxel-based representations [15]. Although whole organ representation
approaches have the advantage that they are computationally efficient and compatible with existing Monte Carlo
radiation transport simulation codes, they suffer from the lack of anatomical realism. Conversely, voxel-based
representation has the advantage of reflecting anatomical realism that can be integrated into simulation codes [15].
However, the geometric fidelity is dependent on voxel size, and the simulations are computationally inefficient,
especially for organ shapes readjustment. In BREP modeling, tissues can be characterized using boundary surfaces,
such as non-uniform rational B-splines (NURBS) or polygon mesh surfaces. As in the case of voxel-based CSG,
the data can be extracted from CT images by contouring organ surfaces followed by modeling to end up with
smooth and continuous boundaries. The BREP representation better reflects anatomical realism compared to CSG,
given that it can model complex anatomical features using an extended set of operation tools.

Although BREP models provide improved realism compared to previous modeling techniques, the
corresponding models are still static. Therefore, a number of additional parameters have to be included to mimic
the reality. There are many reasons behind this as summarized by Neufeld et al. [12]:
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- Slow changes in anatomy during treatment in radiotherapy,

- Inter-subject anatomical variability in anthropomorphic parameters, such as height, weight, age, BMI, etc.

- Need to have personalized models reflecting specific patient‘s anatomy/physiology.

- Voluntary or involuntary motion of organs, such as respiratory/cardiac motion or bowel movement that
may affect quantitative analysis or radiation therapy planning.

Much worthwhile research efforts have been carried out in previous studies to handle some of the above-
referenced limitations. The Visible Korean male phantom [16] is a landmark example where morphing techniques
have been developed in order to modify the volume and shape of static phantoms. The employed methods include
physics-based approaches [12], image registration techniques [17, 18] and geometrical approaches [11, 19, 20].
Finally, organ motion modeling techniques were developed to consider patients’ involuntary respiratory motion.
This led to a new generation of 4D computational models (3D space + time) that became practical tools for
simulation in medical imaging as well as in radiotherapy treatment for oncological applications. Examples include
respiratory motion simulation using rigid or elastic transformations, as adopted in the popular 4-D XCAT phantom
[21], and deformable voxelized phantoms [22] using more sophisticated techniques, such as finite element
algorithms [23].

From mathematical to voxel-based to boundary representation models

Computational human phantoms have been developed to realistically model patients’ anatomy and physiology,
considering the geometry and structures of organs/tissues, material composition, temporal changes, such as
respiratory/cardiac motions, fluid dynamics such as blood flow or contrast perfusion, ...etc [24]. Computational
phantoms have been extended from simple water-filled slabs and spheres to anthropomorphic models with a
realistic representation of the anatomy and material composition. Computational models are typically classified
into three main categories; a) stylized phantoms, b) voxel phantoms and c¢) boundary representation phantoms
(Figure 1).

ICRU sphere

- Deformable (variable posture) and
Image-based rigid 3D model: moving (dynamic) 4D models Person-specific

MIRD anthropomorphic models

Figure 1. The evolution of computational phantoms from simple macro-bodies to detailed personalized models. Adapted with
permission from [25].

The first generation of computational phantoms was constructed for radiation protection purposes in the 1960s.
It was primarily composed of simple macrobodies, easily described based on quadratic equations, such as cuboids,
cylinders, spheres, ellipsoids, ... etc [26]. The first anthropomorphic stylized phantom developed by Fisher and
Snyder comprised only three regions (skeleton, lungs and remainder tissues) [27]. Nine years later, they built an
improved version of their phantom composed of main organs defined by simple geometric primitives [28]. Along
with the technical developments of stylized phantoms, diversities in the target population according to age (from
newborn to adult), gender (male/ female) and pregnancy gestation (fetus models) [29-31] were modeled. For a
long time, mathematical models served as the de facto standard in radiation protection and dose management.
Many upgraded versions of these phantoms have been constructed, such as Adam and Eva [32], precise head and
brain models [33], bone and marrow [34, 35], gastrointestinal tract [36], ... etc. Furthermore, to cover anatomical
diversities of patient/worker populations, a library of stylized phantoms with different statures has been devised
[37]. 4D stylized phantoms representing organ motion were developed based on surface equations, such as
superquadratics [38] and non-uniform rational B-splines (NURBS) [39]. Mathematical models have the
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advantages of easy manipulation of shape and size adjustment or motion simulation [40]. However, this design
lacks anatomical realism as the model represents only a crude approximation of organs’ shape and position. In
addition, the definition of heterogenous tissue composition in macrobodies is not possible.

Through the advent of tomographic medical imaging modalities, such as CT and MRI, the visualization of the
human anatomy in three-dimensions was made feasible. Medical images consist of small elements called pixels in
2D and voxels in 3D representing tissue information. To construct a 3D computational phantom, a label is assigned
to each voxel according to the anatomical region (i.e., liver, brain, bone, etc) and tissue characteristics (material
composition and density) obtained from medical images (i.e., CT or MRI). The segmentation of organs and tissues
from medical images is traditionally performed manually, a labor-intensive and time-consuming process. Although
voxel phantoms provided significant anatomical realism compared to stylized models, they suffer from limitations
attributed to the finite voxel resolution of structural images (in the order of millimeters) and the inherent nature of
voxel element geometry (uneven steps). In fact, tomographic images are not capable of representing fine structures
in micrometer dimensions, such as the skin, eye lens and epithelial tissue in the digestive tract. As a result, the
anatomical fidelity of the developed model depends on voxel size, and most existing voxel models involve some
level of assumptions about the anatomical structures. Furthermore, CT images that are mostly used as reference
structural images do not generally represent soft-tissue contrast and typically cover only part of the body (not total-
body images).

A number of reference anthropomorphic voxel phantoms have been developed mostly based on CT images.
These reference models were first developed for the adult male model and later extended to the adult female,
pediatric and pregnant phantoms. In the late 1980s, Zankl et al. constructed voxel computational models using CT
images of healthy patients that eventually ended up in 12-phantoms family representing different ages, gender and
size [41-43]. In 1994, a head-torso voxel model, referred to as the VoxelMan was developed from CT images to
support imaging physics research in nuclear medicine [44]. In 2000, the VIP-Man phantom was developed by Xu
et al. as the first model constructed based on color photographic images of a cadaver [45]. In 2002, the dose
Calculation task group of the International Commission on Radiological Protection (ICRP) Committee launched
a project focusing on the development of a set of standard voxel phantoms to be released to the public as the ICRP
Reference phantoms (adult male and female) [46]. Bolch et al. created a series of pediatric reference phantoms
from newborn to 15-years old teenager [47]. As the most recent developed pediatric family phantoms, ICRP
publication 143 describes the development of a series of 10 computational models composed of male and female
newborn, 1 year, 5 years, 10 years, and 15 years old phantoms [48].

Computational models based on boundary representation techniques were introduced as a new computational
model generation taking advantage of both mathematical and voxel-based models. BREP phantoms are able to
represent realistic anatomy of the human body while can benefiting from the advantages of mathematical phantoms
in modeling the deformations. Surface-based models, such as non-uniform rational B-splines and polygon mesh
models, are subcategories of BREP modeling. These advanced surface models are capable of realistically
representing the anatomical structures while enabling the simulation of anatomical deformation (posture and
involuntary organ motion) by providing a rich set of mathematical operation tools. In surface-based designs, the
transformations can be simply applied to the surfaces or vertex points to morph the object.

In the BREP or hybrid approach, voxel data are combined with stylized modeling techniques to design a
computational phantom that benefits the advantages of both voxel models in representing the anatomical realism
and stylized phantoms in providing the flexibility for anatomical variations [49]. A series of reference phantoms
(adult and pediatric) in hybrid format has been developed by the University of Florida [50-52]. A series of hybrid
pregnant female phantoms at the end of three gestational periods has been developed by Xu et al. [53] whereas a
family of Iranian BREP phantoms (adult male/female and pregnant reference phantoms) has been
developed at Ferdowsi University of Mashhad [54-56] as illustrated in Figure 2. The Virtual Family, a
series of surface-based computational phantoms, has been developed based on high-resolution MR images [10,
11]. A polygon surface phantom at Hanyang University in Korea extended from the reference voxel model of
VKH-Man was also designed [57]. Recently, mesh-type ICRP reference adult phantoms, which account for
surface-based counterparts of the voxel-type ICRP reference phantoms, have also been developed [58, 59].
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Figure 2. The reference BREP Iranian computational phantoms. Left panel: male/female adult reference computational
phantoms. Right-top panel: the segmented structural/anatomical details and, Right-bottom panel: the reference pregnant
phantom with fetus model at three gestation periods. Courtesy of Dr. Miri and Dr. Rafat, Ferdowsi University of Mashhad.

I11. Extensions of reference phantoms

Motion and posture simulation

Reference computational phantoms are constructed using tomographic images of a single subject, thus lacking
inter-subject anatomical variability. In addition, reference models have been traditionally developed as static
models where the physiological dynamics of the human body behavior is ignored. To address these limitations, a
library of anatomically variable computational phantoms and time-varying 4-D reference phantoms have been
developed.

In digital models, physiological motion is typically captured from gated imaging, where the data acquisition is
synchronized with a physiological signal. This information is used to simulate motion through time-varying
transformations of the body structures. In BREP designed phantoms, the topological transformations are applied
to surface control points. The 4-D NCAT phantom, an extension from the earlier mathematical MCAT phantom
by Segars et al. [39, 60], representing cardiac and respiratory motions, was the first NURBS-based torso model.
In an updated version, the 4-D XCAT phantom family was extended to include a series of 47 phantoms
representing cardiac and respiratory motions of different patients [61]. A number of studies reported on the
extension of 4D XCAT phantoms. For instance, Ghaly et al. [62] developed a population of 4D phantoms by
deforming the 3D XCAT reference model. In addition, Konik et al. [63] simulated non-rigid respiratory and
voluntary body motion based on the XCAT model. The 4-D VIP-Man phantom developed based on polygonal
mesh was employed for external beam treatment planning in the lung region [64]. For CSG design, respiratory
motion transformations are applied to individual voxels by linear interpolation of the deformation vector fields to
generate a series of high-temporal-resolution voxel phantoms [22].

Morphing and changing the posture of reference phantoms is a useful technique to mimic real-world scenarios
in the radiation protection domain [2]. Since building a new posture-specific phantom is challenging and time-
consuming, morphing techniques have been developed enabling the deformation of volumetric and topological
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features of organs and structures from existing reference computational models. Strategies for morphing the
anatomy encompass simple heuristic methods for scaling and transpositions of organs to complex non-rigid
registration techniques [19, 65]. These strategies were exploited to extend a series of computational phantoms with
different anatomical characteristics, such as height, weight, BMI, ...etc, from a reference computational model.
This strategy will be further elaborated in the section below “Libraries of computational human phantoms”. To
simulate physiological motion of anatomical structures, posture-specific phantoms have been devised. The
postures were adjusted based on the information derived from a body motion capture system to realistically
simulate sequence of body movements [20, 66]. Han et al. [67] developed walking phantoms suitable for radiation
dosimetry in external photon exposure scenarios. Another study by Su et al. [68] reported on sitting phantoms
designed for internal radiation dosimetry studies. Recently, mesh type ICRP phantoms were deformed to multiple
non-standing postures using a posture-change method based on a rigid shape-deformation algorithm and motion-
capture technology [69] to measure the radiation dose in specific situations.

Libraries of computational human phantoms

Reference phantoms are constructed according to the anatomical characteristics of a single subject considering
anthropomorphic data of the average population, therefore lacking inter-subject anatomical variability (Figure 3).
The diversity of anthropometric parameters between individuals raises the demand for building patient-specific
computational phantoms. Although personalized phantoms are deemed to represent the ideal digital twins, there
are some limitations associated with the construction of individualized phantoms. This includes the lack of high-
resolution tomographic images for specific patients and the time-consuming procedures for organ/tissue
segmentation. In this regard, habitus-specific phantom series created based upon the deformation of a reference
phantom assembling different anatomical variables for population-based assessments have been introduced.
Deformation algorithms have been typically developed based on morphing the tissues considering hyper-elastic
soft-tissue and stiff joints. Some interactive tools enabling topological morphing and interpolation of tissues, such
as tissue growth (analogous to thermal expansion), to construct a habitus-variable computational population from
a reference model have been developed. A number of studies reported on size-adjustable phantoms representing
the variability of anatomical and anthropomorphic parameters, such as body size, organ volume/shape, ...etc.
Johnson et al. [70] extended the UF hybrid adult phantoms to 25 habitus-specific computational phantoms. Na et
al. [19] reported on the construction of a library of adult phantoms (weight-specific) extended from the RPI
reference models using an automated deformation algorithm implemented on polygon mesh surfaces. In addition,
a number of obese phantoms and a set of age-dependent Chinese computational models in mesh format have been
developed based on the RPI reference phantoms to examine the effect of obesity on CT dosimetry [71, 72]. Broggio
et al. [73] constructed 25 adult phantoms to cover the diversity of heights and weights in the adult male population.
Lloyd et al. [74] developed a non-rigid deformation algorithm to extend the population of the Virtual Family
phantoms using biomechanical finite element methods. Geyer et al. [75] extended the UF reference phantom
family to height/weight-specific phantoms. A Korean library of voxel phantoms has been developed to represent
different body shapes and sizes [76]. More recently, Akhavanallaf et al. [65] developed an automated algorithm to
construct a comprehensive library of phantoms extended from voxel-based ICRP reference phantoms. Choi et al.
[77] extended a body-size dependent family of adult phantoms based on mesh-type ICRP reference phantoms.
Hoseinian et al. [78-80] created a comprehensive series of BREP whole-body phantoms covering statistical
diversities of the Iranian population (Figure 3). Beside the development of total-body phantom families, Erickson
et al [81] established a database of realistic virtual breast models based on breast computed tomography images.
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Figure 3. Series of adult computational phantoms (males and females) developed based on CT images of healthy Iranian
population. The distribution of anthropomorphic indices, height and weight (top panel), along with the structural details of the
developed computational models (left-bottom panel) are shown. As an example, the anatomical deviations of the thyroid gland
in this population is illustrated (right-bottom panel). Courtesy of Dr. Miri and Dr. Rafat, Ferdowsi University of Iran.

IvV. Advances in computational models

Recent advances in computational phantoms design focused on two main aspects: first, realistic representation of
patient-specific anatomy; and second, upgrade of reference phantoms by adding small (micrometer-scale) or
complex anatomical structures. The anatomical fidelity of the developed computational phantoms depends
strongly on the voxel resolution of the reference tomographic images. Current imaging technologies are not
capable of representing complex or fine structures, such as bone marrow, eye lens, alimentary tract structures,
...etc, in micrometer-scale. In this context, Yeom et al. from Hanyang University developed mesh type ICRP
phantoms extended from the reference ICRP voxel models through preserving the original anatomical structures.
Complex structures of the gastrointestinal system have been improved and the fine structures of the alimentary
and respiratory tracts and lung airways were added (Figure 4) [82, 83]. In a recent study, mesh-type skeletal
systems for pediatric population and detailed eye models for children and adolescents of the ICRP reference
phantoms were developed in a fine-structure [84, 85]. Abadi et al. [86] elaborated on the lung architecture of the
XCAT series by modeling the airways and pulmonary vasculature. MIDA is a detailed head and neck model (over
160 structures) constructed from a series of high-resolution multimodal MR sequences [87]. In parallel, advanced
functionalized anatomical models have been developed [12].
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Figure 4. Adult male and female mesh-type ICRP reference computational phantoms. Micron-scale radiosensitive regions of
major organs and tissues are visualized on the left and right sides of the phantoms. Reprinted with permission from [88].

Toward the 4™ generation patient-specific digital twins, semi-automatic segmentation techniques based on
texture patterns or manual delineation along with deformable registration algorithms have been traditionally
employed. In state-of-the-art approaches, this process was labor-intensive and time-consuming which limited the
construction of patient-specific computational models [89]. Recently Carter et al. proposed to use deformable
registration techniques to create individualized phantoms to better support patient-specific dosimetry [90]. Thanks
to recent advances in artificial intelligence algorithms, fully automated segmentation of medical images became
feasible. In this field, machine learning and deep learning techniques proved to serve as useful technigues to
generate patient-specific phantoms. Deep learning algorithms demonstrated their capabilities in image
segmentation [91-95] and image registration [91, 96] that can be integrated into the workflow for the construction
of patient-specific computational phantoms for diagnostic and radiotherapy risk assessment purposes [97, 98]. In
2019, Xie et al. [99] constructed patient-specific pregnant phantoms by means of deep learning anchor organ
segmentation and used them as input for Monte Carlo organ dose calculations. As illustrated in Figure 5, the
generated patient-specific phantoms were utilized to estimate fetal exposure from abdominal CT examinations.

CT images Deep UNET design

b

Computational Phantom

Figure 5. lllustration of the deep learning pipeline used to automatically generate pregnant computational phantoms.

Peng et al. [92] used deep learning techniques to automatically segment CT images and combined it with
accelerated Monte Carlo simulations to calculate patient-specific radiation dose to make the implementation of the
proposed approach in clinical setting feasible. They claimed that the proposed patient-specific phantom
constructed based on automatic segmentation is prone to much less error compared with the selection of a
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computational phantom from available libraries. Recently Fu et al. [91] developed a unified pipeline to create
personalized computational models from radiological images. The proposed pipeline is composed of three main
steps: first, some anchor organs were segmented from CT images using deep learning algorithms; second, the best-
matching reference phantom was selected from a template phantom library using parametrized template matching
approach; and third, a deformable registration between CT images merged with anchor organ masks and the
selected reference phantom was carried out. They registered patient images to one of the phantoms selected from
the XCAT library (Figure 6).

Input: CTimages

Initial target

A. Enhanced and
automated
segmentation of
anchor organs

B. Parameterized
template matching

TRCL LI
commne | SYQUOUIY |
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Phantoms body contour removed for
visualization purpose

Figure 6. The pipeline for automated construction of personalized computational phantoms. Reprinted with permission from
[91].

V. Summary and future perspectives

Advances in high-performance computing and the capabilities offered by deep learning-based algorithms has
triggered important developments toward the 4" generation of human computational models called digital twins
which represent the biological and physical characteristics of the human body from gene information to
anthropomorphic parameters. Recent advances in deep learning-assisted medical image analysis and processing
successfully pushed the borders toward real-time patient-specific computational models. Considering the time-
consuming process of organs labeling and generation of ground truth in the supervised approach, novel
unsupervised models, such as variational auto-encoders or generative adversarial networks, seem promising for
application in this area [100].
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Abstract

Computational phantom libraries have been developed over the years to enhance the accuracy of Monte Carlobased
radiation dose calculations from radiological procedures. In this paper, we report on the development of an adult
computational anthropomorphic phantom library covering different body morphometries among the 20-80 years
old population. The anatomical diversities of different populations are modeled based on anthropometric
parameters extracted from the National Health and Nutrition Examination Survey database, including standing
height, total weight, and body mass index. Organ masses were modified to match the corresponding data. The
ICRP reference male and female models were selected as anchor phantoms. A computer code was developed for
adjusting standing height and percentage of fat free mass of anchor phantoms by 3-D scaling. The waist
circumference and total body mass were further adjusted. The diversity of organ masses due to anthropometric
differences deviates from the mean values by about 3%—21%, while this deviation exceeds 50% for genital organs.
Thereafter, organ-level absorbed doses from both internal and external radiation exposure conditions were
estimated. A total of 479 phantoms corresponding to seven age groups were constructed for both genders, thus
fulfilling the criteria for representing a diverse adult population with different anthropomorphic and anatomical
characteristics.
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I. Introduction

The utilization of radiation-based diagnostic imaging systems is progressively increasing worldwide, raising
concerns about the potential hazards of radiation exposure. Computational phantoms were developed to accurately
model radiation interaction within the human body using Monte Carlo (MC)-based radiation transport software
packages targeting a number of applications, including radiation dose calculations and imaging physics research
[1]. The first generation of computational phantoms were defined by simple surface equations and initially
developed in the 1960s [2]. In the late 1980s, following the advent of tomographic medical imaging technologies,
such as CT and MRI, voxel-based phantoms were developed to represent the anatomical features of the human
body. Voxel-based phantoms were rapidly adopted in Monte Carlo simulations owing to their ability to model
anatomical details and have been continued to be developed over the years taking advantage from advances in
high resolution imaging. The third generation of computational phantoms using boundary representation (BREP)
techniques emerged in the form of Non-Uniform Rational B-Splines (NURBS) or polygon mesh surfaces. They
offer better flexibility in terms of modeling deformation, motion and change in posture [3-5].

From a radiation protection perspective, it is essential to determine and quantify the variability of radiation
dose with respect to variations in anthropometry and anatomy. To this end, anthropomorphic phantoms coupled
with Monte Carlo methods play an important role in radiation dosimetry calculations. Reference anthropomorphic
models were developed based on the average population [4, 6-8] but limited to fixed anthropometric and
anatomical parameters. However, the diversity of anthropometric parameters between reference models and
individuals may introduce significant uncertainties, thus motivating and raise the demand of personalized
computational phantoms. Although, person-specific phantoms added up to an ideal model, some limitations such
as lack of high resolution tomographic images for each person and a time consuming segmentation process drew
the attention of researchers to a more efficient approach of computational phantoms in medical dosimetry. Habitus-
specific phantoms introduced as a size adjustable type of phantoms which were constructed based on deformation
in a reference phantom. These phantoms are neither too individualized like subject-specific phantoms nor
population-averaged as are reference phantoms [3, 9].

A number of studies focused on size-adjustable phantoms to account for variability in body size, organ masses
and other parameters, such as body fat percentage and subcutaneous fat distribution in dosimetry applications.
Johnson et al. [9] built patient-dependent phantom series containing 25 models based on the University of Florida
(UF) hybrid adult male (UFHADM) phantom [10] using anthropometric parameters extracted from NHANES 111
(1988-1994). The phantoms were remodeled considering two classes of target parameters: primary parameters
(body height and weight) and secondary parameters (waist and thigh circumferences). The internal organ masses
of Johnson’s models deviated from reference values due to the 3D scaling during the deformation process.

In another study, an automated algorithm was developed to generate an adult phantom library using polygon
mesh surfaces where the Rensselaer Polytechnic Institute (RPI) adult male and adult female models [4] were
extended into a library representing morphometric diversities in the US population for the 19-year old males and
females. The organ masses were assumed to follow a Gaussian normal distribution [11] according to the mean and
standard deviation compiled from various sources [5].

A study was performed by Broggio et al. [12] to construct a library of 25 adult males using NURBS surfaces
constructed based on full body optical models. The anthropometric parameters were extracted from Civilian
American and European Surface Anthropometry Resource (CAESAR) with 109 identified organs scaled by ICRP
reference data and height-dependent linear formula [13, 14]. Cassola et al. [15] produced a library of 18 phantoms
from FASH and MASH mesh-based anchor phantoms using 3D modeling software where the organ masses were
scaled as a function of height [16].

The first library of 4D phantoms comprising 58 NURBS models was developed by Segars et al. [17]. This
library was extended based on reference XCAT phantoms [18] using real anatomy of chest-abdomen-pelvis CT
data of normal patients having different Body Mass Indices (BMIs). A library of 84 adult phantoms based on the
Chinese Reference Adult Male polygon Surface (CRAM_S) was constructed by Chen et al. [19] where the organ
models were adjusted to match reported Chinese reference data. An extended library of UF family containing 351
computational phantoms has also been developed based on morphometric data from NHANES (1999-2006) [20].
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In previous works, attention was paid to reflect more realistically the distribution of physical properties while
the anatomical diversities were not appropriately considered. Different approaches have been adopted to determine
organ masses representative of the considered population for the design of computational phantoms. For instance,
organ masses can be set to reference values or deviate from reference masses during 3D scaling. Alternatively,
organ masses were linearly correlated to only phantom statures or simply sampled using a normal distribution. A
practical approximation to realistically model the anatomical variability among individuals consists in
implementing multiple correlations of each organ mass with different external anthropometric parameters into the
phantom series.

In this work, a software tool was developed to automatically remodel anchor reference phantoms to match
target morphometric and anatomical characteristics. The developed library of voxel-based models is capable of
representing internal details unlike surface models that cannot represent an inhomogeneous density distribution of
organs or tissues [21]. The diversity of 13 organ masses depending on different morphometric parameters was
considered. ICRP male and female voxel phantoms [22] were selected as reference models. A total of 230 male
and 249 female adult voxel-based phantoms were constructed considering the diversity of anthropometric
parameters from NHANES (2011-2014) [23] and variability in internal organ masses between individuals. As an
application, Monte Carlo-based dosimetry calculations using the developed phantom library were performed for
internal and external radiation exposure conditions.

I1. Material and Methods

ICRP adult reference phantoms

The ICRP phantoms were constructed through modification of the voxel models (Golem and Laura) of a 38-year-
old male (176 cm, 70 kg) and a 43-year-old female individual (167 cm, 59 kg), whose body height and mass
resembled the physical characteristics of the reference male and reference female phantoms. In total, 140 organs
with 53 tissue types were segmented and the organ masses of both models adjusted to the ICRP data of the adult
reference male and female [22, 24]. The main characteristic of these phantoms are summarized in Table 1.

Table 1. Main characteristics of the ICRP adult male and female reference computational phantoms.

Reference Phantom Properties Male Female
Height (cm) 176 163

Mass (kg) 73.0 60.0
Number of tissue voxels 1,946,375 3,886,020
Slice thickness (voxel height, mm) 8.0 4.84
Voxel in-plane resolution (mm) 2.137 1.775
Voxel volume (mm?) 36.54 15.25
Number of columns 254 299
Number of rows 127 137
Number of slices 222 348

Anthropometric data

The field of anthropometry encompasses a variety of human body measurements, such as weight, height,
circumferences and lengths to represent the physical characteristics of a population. According to the trends of
obesity among individuals, an updated database is required to represent a realistic body morphometry distribution.
As shown in Figure 1, the results of anthropometric reference data from 1999 to 2014 reflect the obesity prevalence
in the US population [25]. In the present study, morphometric parameters in seven age groups from 20 to 80 years
old were obtained from the recently published NHANES (2011-2014) database. Height-weight grids obtained from
the combination of height and weight percentile data (10%, 15%, 25%, 50%, 75%, 85% and 90%) and BMI range,
indicating the ratio of weight to squared height, were carefully selected to limit unrealistic physical properties.
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Figure 1. Trends in obesity prevalence among adults aged 20 and over, United States, 1999-2000 through 2013-2014.

Fat free mass and waist circumference target values

Since the extraction of a precise model for calculation of fat percentage and related fat free mass (FFM) percentage
correlated with anthropometric parameters is not straightforward, the average values of different models reported
in the literature were derived. The results show that FFM percent increases by increasing the height and decreases
by increasing BMI [26-28]. Although both BMI and waist circumference measure the level of obesity, waist
circumference may be more important because it is more sensitive to the distribution of body fat than BMI. To
construct a more realistic body shape, waist circumference data extracted from NHANES (2011-2014) was
combined with a linear model of waist circumference proportional with BMI using demographic data obtained
from NHANES (2003) [29, 30].

Correlation between organ masses and anthropometric parameters

One of the most important factors influencing radiation dosimetry calculations is the mass of organs, which
substantially vary between different subjects owing to specific anatomical characteristics. In the absence of person-
specific imaging data, the estimation of organ masses relies on their correlation with external physical parameters.
To this end, organ mass data were extracted from anthropometric parameters including age, standing height, body
weight, and BMI of an individual. A survey of published articles reporting organ masses in correlation with
morphometric parameters is given in Table 2. In this work, 13 organ masses including brain, heart, right and left
lungs, liver, spleen, thyroid, right and left kidneys, pancreas and three genital organs for each gender were derived
from autopsies and diagnostic measurements [13, 31-42]. Information on organ masses from different scientific
publications has been culled in a software to extract the masses of 13 organs based on specific anthropometric
parameters.

Methodology for automated model deformation

In this work, an automated algorithm was developed to remodel the reference phantom into various anthropometric
and anatomical data. Computer software written in MATHEMATICA 7 (Wolfram Research Inc, Champaign, IL,
USA) coupled with MATLAB 8.1 scripts (The MathWorks Inc., Natick, MA, USA) was used to implement the
whole deformation process schematically displayed in Figure 2. In the reference phantoms, the blood vessels were
inwardly replaced in 2D to avoid losing the vessels located in the residual tissue region during the adjustment of
the fat mass for thin phantoms. The first step to reach the target anthropometric parameters consists in adjusting
the height. Once the height is exactly matched, deforming the whole frame of phantoms using FFM percent was
done by rescaling the phantom in 2D. To adjust organ masses, the deformation process was applied on each organ
to fine tune the volume, considering the conservation of organ’s center of mass position. In addition to the 13
organs scaled in association with anthropometric parameters, 4 other organs including gall bladder, stomach,
thymus and urinary bladder were scaled to ICRP reference masses. The scaled organs were embedded into the
body where the centroid position of each organ was kept constant through the phantom. To avoid the overlap of
adjacent organs, a priority was defined for organs to be embedded according to their volume as well as their
sensitivity to radiation. In the next step, for adjusting total body mass, firstly the waist circumference was
considered as the estimation of belly fat. To this end, the outer contour of the phantom was detected, then adding
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or removing fat layer of the trunk was iterated until waist circumference was achieved. Waist circumference was
measured at the uppermost lateral border of the hip crest (ilium) by measuring the perimeter of the outer body
contour. Secondly, by tuning fat mass in the legs and arms, the target total body mass excluding the skin mass was
fixed to within 3% of reference values. Lastly, the whole body phantom was checked for some intersections or
holes and smoothness of outer contour, and the skin layer with a thickness equal to in-plain resolution was coated.
After completion of the deformation process, each deformed phantom was visually analyzed in 2D and 3D to
check the anatomical structures as well as whole body habitus.

Table 2. Summary of the main publications reporting on organ mass estimation based on correlations with anthropometric

parameters.
Anthropometric
c
I -% Organs /Fat free mass/ fat HAlAMEIET %
Reference TS mass/waist 2 B R S Statistical analysis Comments
% & circumference 52 5 = O
o @ Qg © m
< =
Brain, heart, lungs, liver, Higher organ masses in higher BMI
Mandal et al. [31] 300 spleen, thyroid, kidneys, v v M/F Linear correlation (both genders) and younger ages
Uterus/prostate (liver, spleen, kidney)
Brain, heart, lungs, liver, . .
) ) spleen,  thyroid,  kidneys ) ) organ masses increase with body
Sheikhazadi et al. [32] 1222 ancre‘as ' testisy v v v M/F Linear correlation height and BMI values
P ! ! Organ masses decrease with age
Uterus/prostate -
e e except for heart, thyroid and
Grandmaison et al. [13] 684 , ungs, + Spleen, 4 v M/F Linear correlation prostate
thyroid, kidneys, pancreas
Molina & DiMaio [34] 232 Ei:jarzzyslungs‘ liver, spleen, v M Statistical categorization Reference range
Molina & DiMaio [33] 102 Ei:jarzzyslungs‘ liver, spleen, v F Statistical categorization Reference range
. o Strong Linear
Molina & DiMaio [36] 232 Heart v v v M T Reference range/
. heart mass increases linearly with
Molina & DiMaio [35] 102 Heart v v v F Strong Linear increase in body weight
correlation
He etal. [37] 11 Brain, liver, spleen, kidneys v v v M/E Multi-correlation MRI study/ smaller organ masses at
formula higher ages, except heart
" - Exponential Liver scaled with height (power~2)
v v 2
Heymsfield et al. [38] 411 Brain, liver M/F approximation male brain (power=0.83)
Multi-correlation Liver mass increases with weight,
Chouker et al. [43] 728 Liver v v v M/F a—— decreases with age older than 50-60
y
Kelsey et al. [44] 50094  Ovary v E Statistical _categorlzatlon MRI_ study/ 69/0_ of the variation in
/ polynomial ovarian volume is due to age
Perven etal. [39] 140 Ovary v F Statistical categorization S]v:drﬁ?svolume SN Iage
Statistical - o i
Kelsey et al. [40] 1418 Uterus v F categorization/polynomi Age. CLOIENE .Of e variation
al in uterus volumes is due to age
Xiaetal. [42] 1301 Prostate v M Statistical categorization Prostate volume growth with age
Zhang et al. [41] 1000 Prostate v M Polynomial formula Prostate volume growth with age
Heymsfield et al. [28] 13183  FFM v v M/F Exponential FFM scale to height with power ~2
approximation
Meeuwsen et al. [26] 23627 FM v M/F curvilinear relationship FM percent rose compared to an
Schutz et al. [27] 5635 FM, FFM v M/F curvilinear relationship increase in BMI
Bozeman et al. [30] wcC M/F linear correlation NHANES (2003)

M (male), F (female), FFM (fat free mass), FM (fat mass), WC (waist circumference)
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Figure 2. Flowchart of the deformation process.

Monte Carlo calculations-based organ dose assessment

1) Internal dose estimation

The absorbed doses to three morphometrically different computational phantoms from 8F-FDG as PET tracer
were estimated through Monte Carlo simulations using the N-Particle eXtended (MCNPX) code. 8F positron-
emitting source with an average energy of 0.2498 MeV was simulated in 6 source regions according to ®F-FDG
biokinetic data reported in ICRP 106 [45]. A total number of 107 primary particles were generated to reach less
than 1% statistical uncertainty in most cases [46, 47].

In the MIRD formalism, the radiation absorbed dose from any source organ rs delivered to target tissue rr is
given by Equation (1) [48]:

Tp

PGnT) = ) [ 4G 0Gr < m)de = )" A0 SCrp < 1) @
Ts 0 Ts
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where A(r,t) is the time integrated activity in the source organ during the dose-integration period Tp,
S(rp « 1;) is the S-value defining the equivalent dose rate in the target organ per unit activity in the source organ.
Using MCNPX tally card *F8, S-values were estimated per particle. Time-integrated activity in the source organs
were obtained from ICRP 106 [45] and the administered activity of ¥F-FDG was similar to PET/CT acquisition
protocols used in our department (3.5 MBg/kg with a maximum of 350 MBq for patients heavier than 100 Kkg).
The effective dose was calculated based on ICRP definition:

E= Z Wr Z WgDr g 2

where E denotes the effective dose, Wy is the radiation weighting factor, Dy is the absorbed dose in tissue or
organ T, and Wy is the tissue weighting factor.

2) External dose estimation

To benchmark the CT radiation dose calculation using the developed library, the dose report of a female patient
with high BMI who underwent a CT examination in our department under an IRB approved protocol was selected
for comparison of the results with the corresponding phantom in the developed series. The characteristics of the
patient and phantom are tabulated in Table 3.

Table 3. Morphometric characteristics of the patient and Female40y-25h-75w phantom (40-50 years age group, 25th percentile
height and 75TH percentile weight).

Characteristics Patient Femalesoy-25h-75w
Sex Female Female

Age 50y 40-50y
Weight 88 Kg 85.3 Kg

Height 160 cm 158.1 cm

BMI 34.37 34.12

Examination details were extracted from the DICOM header. The study was performed on the Discovery CT
750 HD scanner (GE Healthcare, Waukesha, WI) with a scan range covering the thorax and abdomen using the
following acquisition parameters: a table speed of 55 mm/rot, 0.7 sec revolution time, 1.37 pitch factor, and 40
mm total collimation width. A tube voltage of 120 kVp with tube current modulation (varying between 296 and
495 mA) were applied. CT dose was obtained using Radimetrics Enterprise Platform™, a dose monitoring
software tool using Monte Carlo simulations (Bayer HealthCare) [49]. Radimetrics calculates patient-specific
absorbed dose by adjusting the CT images of a patient with Cristy & Eckerman stylized computational phantom
[50] considering sex, age and size of body (diameter). To estimate the effective dose and absorbed dose in target
organs of Femalesoy-2sn-75w, the CT acquisition parameters, a model of the 750 HD CT scanner and exposed
phantom geometry were used as input to MCNPX [51, 52].

1. Results

Anthropomorphic parameters

The percentile data including 10%, 15%, 25%, 50%, 75%, 85% and 90% of height and weight, extracted from the
recent version of NHANES (2011-2014) database, were combined to provide 49 height-weight grids for each age
group. To restrict unrealistic body morphometries, BMI percentile data varying from 19.8 to 40.7 kg/m? for adult
females and from 20.5 to 36.9 kg/m? for adult males was assigned to the height-weight bins. Once BMI data were
applied on grids, a total of 249 grids for females and 230 grids for males felt within acceptable BMI range. Figure
3 display the height-weight grids of this library in seven age groups for females and males, respectively. Different
categories of weight status include underweight individuals with BMI below 18.5, healthy people with BMI within
the range 18.5-24.9, overweight, obese and morbidly obese within BMI ranges 25.0-29.9, 29.9-39.9 and
exceeding 40.0, respectively [20]. By combining weights and heights in this library, 33.7% of female models fall
into the normal BMI category, 23.2% in overweight, 40.9% in obese and 2% in morbidly obese. For male models,
27.8% of phantoms fall in healthy BMI class, 34.3% in overweight and 37.8% in obese category.
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Figure 3. Targeted grid for female (left)/ male (right) phantoms in seven age groups

The FFM percent and waist circumference were considered in this library as secondary parameters. The BMI and
waist circumference parameters are widely used in the characterization of obesity. As depicted in Figure 4, waist
circumference increases with increasing BMI values, while the FFM is inversely proportional to BMI.

The diversity of organ masses as a function of four morphometric variables is illustrated in Table 4. These data
are sampled based on anthropometric parameters of the phantoms belonging to the current library. The mean values
of organ masses calculated by multiple correlation considering anthropometric variables show a deviation from
ICRP reference organ masses, but still in the same order of magnitude. The difference between calculated organ
masses and ICRP reference data falls within the range 0.4% - 51%.
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Figure 4. plots of waist circumference (left) versus bmi for males (MWC) and females (FWC) and ffm percent (right)
versus bmi for males (MFFM) and females (FFFM).

Table 4. Organ masses correlated with anthropometric parameters for female and male phantoms.

Female organ mass (g) Male organ mass (g)

Organs Mean = SD ICRP  Range Mean = SD ICRP  Range

Brain 1226.9+20.64 1300 1184.46-1265.37 1380.9+20.57 1450 1336.53-1419.57
Lung 491.83+9.2 475 471.32-502.27 621.24+17.17 600 587.15-649.48
Kidney = 126.85+2.2 137 122.4-129.46 159.31+6.57 160 143.63-174.73
Spleen 149.52+12.13 130 127.32-180.99 197.01+22.04 150 153.60-250.99
Pancreas 99.672+3.618 120 92.87-105.97 123.73£3.59 140 114.87-127.55
Liver 1406.1£90.04 1400 1201.13-1601.02 1719.2+112.8 1800 1448.91-1942.58
Heart 595.95+9.618 620 571.42-605.24 879.71+14.80 840 847.05-902.42
Thyroid  17.455+0.8127 17 16.24-18.54 23.911+0.72 20 22.16-25.3
Ovary 3.64+1.988 55 1.872-6.76 - - -

Uterus 69.11+5.787 80 61.54-79.16 - - -

Testes : : B 21.312+0.177 175  20.96-21.51
Prostate - - - 32.289+7.33 17 21.50-42.15
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Figure 5. Frontal and rotated views of the adult female phantoms at 30-40 year age group at 10™ percentile standing height
and 75™ percentile of weight (Femalesoy-10n-7s5w), ICRP voxel adult female phantom, 90" percentile of height and 501
percentile of weight (Femalesoy-gon-sow).

Deformed phantoms

To demonstrate the variability of the morphometry of the developed phantoms, frontal and rotated views of the
ICRP female reference model compared with two female phantoms at 30-40 years age group at 10™ percentile
standing height and 75" percentile of body weight (Femalesoy-10n-75w) and 90" percentile of standing height and
50" percentile of body weight (Femalesoy-oon-sow) are depicted in Figure 5. The male ICRP reference model is
compared in Figure 6 to two male phantoms at 20-30 years age group, at 10" percentile standing height and 75th
percentile of body weight (Maleoy-10n-75w) and 90th percentile of standing height and 50th percentile of body weight
(Malezoy-gon-50w)-

We considered the diversity of internal organ masses between individuals to go one step closer to person-
specific phantoms as standard models.

In this work, an initial database of 13 internal organ masses was culled using the surveyed dependence of organ
masses and anthropometric parameters shown in Table 2. In Figure 7 (left), transaxial slices of two
morphometrically different female phantoms with the same height but at different age groups and weight
displaying obvious differences for the liver are shown.

The total body masses of the developed series were adjusted to target percentile values within 2% and waist
circumference within 3% of target values. Evaluation of phantom anatomies was performed by scaling 17 organ
masses correlated with morphometric parameters to agree within £5% of target values. However, some cases have
shown a larger deviation from the target data because of interpolation errors for small organs and the overlap
correction of adjacent organs. The deformation process was implemented on a PC with Intel® Xeon® Processor
of 2.4 GHz. The computational time required for deforming the internal organs of the phantom is less than 2
minutes. Adjusting all of the anthropometric parameters takes in average about 20 minutes depending on the
amount of fat mass requiring amendment.

Monte Carlo-based dosimetry calculations

1) Internal dose from ¥F-FDG

Absorbed dose to organs was calculated for three anthropomorphically different phantoms in both genders
including female phantoms at age group 30-40 years representing Femalesoy-1on-10w (10" height and weight
percentiles) and Femalesoy-son-oow (90" height and weight percentiles) as well as ICRP female reference phantom
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Figure 6. Frontal and rotated views of adult male phantoms at 20-30 year age groups, at 10" percentile standing height and
75t percentile of weight (Malezoy-10n-75w), ICRP voxel male phantom, 90 percentile of height and 50™ percentile of weight

(Male2oy-gon-s0w).

They were also calculated for male phantoms in age group 30-40 years Malesoy-10n-15w (10" height and 15 weight
percentiles) at age group 50-60 years Malesoy-7sn-sow (75" height and 50" weight percentiles) in addition to ICRP
male reference phantom. The simulation was designed for a whole body ¥F-FDG PET/CT protocol. Absorbed
doses to six phantoms with different sex, age and anthropometric parameters are reported in Table 5. The absorbed
dose per unit administered activity for the ICRP female reference phantom is about 35% higher than that of the
obese female phantom (Femalesoy-son-gow). It is about 8.34% less in comparison with the thin phantom (Femalesoy-
10n-10w). The absorbed dose per unit administered activity for the ICRP male reference phantom is about 14.5%
higher than the male obese phantom (Malesoy.7sn-s0w). It is about 1.5% less than that of the thin phantom (Malesoy.
10n-15w). The total absorbed dose increases by increasing the body weights since the injected activity is proportional
to patient weights (Table 5).

Table 5. Summary of 8F-FDG absorbed doses for female phantom at second age group and 10th-10th height and weight
percentiles, respectively (Femalesoy-10n-10w), ICRP reference female phantom ICRPfemale, and female phantom at second age
group and 90th-90th height and weight percentiles, respectively (Femalesoy-son-sow). Same as above for the male phantom at
second age group and 10™-15" height and weight percentiles, respectively (Malesoy-10n-15w), ICRP reference male phantom
ICRPmale, and male phantom at fourth age group and 75th-50th height and weight percentiles, respectively (Malesoy-7sh-s0w).
The differences between the ICRP reference phantom and other phantoms are also shown.

D £ T Absorbed dose per unit Absorbed
= = > administered activity dose for our
Phantom ID S £ =

5 2 S Difference Bigieeal

2 £ = (MGy/MBaq) ) (MGy)
Femalesoy-10n-10w 54.75 153.8 23.145 1.51E-02 +8.34 2.89
ICRPfemale 60 163.0 22.58 1.39E-02 H 2.92
Femalesoy-9on-sow 106.3 172.5 35.93 9.04E-03 -35.0 3.16
Malesoy-10h-15w 72.2 167.1 25.88 1.20E-02 +1.5 3.04
ICRPmale 73 176.0 23.63 1.18E-02 B 3.02
Malesoy-7sh-50w 89.2 181.3 27.23 1.01E-02 -145 3.16
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The effective doses and absorbed doses per unit administered activity in target organs for female and male
phantoms are illustrated in Figure 8. The five organs receiving the highest absorbed doses in the simulated
phantoms are the heart, bladder, brain, liver and prostate for the male (uterus for female) phantom. The differences
of absorbed doses in target organs between the ICRP female reference phantom and the habitus-dependent
phantoms vary from -39% to 55.8%. They range between -37% and 28.7% for the male ICRP reference phantom.
The differences of organ absorbed dose among phantoms depends on differences in body structures and organ
masses due to the different sex, age, and anthropomorphic characteristics. From the radiation protection standpoint,
the effective dose as a single metric provides a practical information to compare different radiation exposure
scenarios. The effective dose differences (in mSv/MBq) between ICRP female reference model and Femalesoy-gon-
sow IS about -15.6% and about 4.8% with Femalesoy-1on-10w. FOr the ICRP male reference phantom, this difference
is about -3.2% for Malesoy-7sn-sow and 7.6% with Malesoy-10n-15w-

Figure 7. (right) Transaxial views of female phantoms displaying liver volume differences showing (a) 85th percentile of
height and weight at age group 20-30 years and (b) 85th percentile of height and 25th percentile of weight at age group 60-
70 years. (left) Coronal and sagittal views of (a) Female40y-25h-75w phantom and (b) patient CT images.

2) External dose from CT examination
The absorbed dose in target organs of the patient extracted from Radimetrics package were compared with the
results of morphometrically corresponding phantom Femalesoy-ash-7sw (female phantom in age group 40-50 years,
25" percentile of height and 75th percentile of weight) under the same CT scanning conditions. Coronal and
sagittal slices of patient CT images and Femaleaoy-2sn-75w phantom are shown in Figure 7 (right).

The comparison of absorbed doses for 8 important organs and effective doses estimated by Radimetrics and our
Monte Carlo calculations is illustrated in Figure 9. In most organs, the absorbed doses estimated by Radimetrics
agree well with simulated results of Female40y-25h-75w with an average bias of about 16.6% (range 1.35% -
43%). The lungs present the largest deviation (about 43%). Radimetrics reported an effective dose of 17.51 mSv
whereas our simulations using Femaleasoy-2sn-75w resulted in an effective dose of 14.35 mSv.
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Figure 8. Effective doses and absorbed doses per unit administered activity (mSv/MBQ) in target organs for female phantoms
(left) at second age group and 10th-10th height and weight percentiles (Femalesoy-10n-10w), 90th-90th height and weight
percentiles, respectively (Femalesoy-son-oow) and the ICRP reference female phantom (ICRPfemale) and male phantoms (left) at
second age group and 10th-15th height and weight percentiles, (Malesoy-10n-15w), forth age group and 75th-50th height and
weight percentiles, respectively (Malesoy-75n-sow) and the ICRP reference male phantom (ICRPmale).
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Figure 9. Comparison of organ absorbed doses and effective doses between Radimetrics and Monte Carlo simulations using
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Iv. Discussion

The construction of more realistic models representative of the adult population is highly desired for Monte Carlo-
based simulation studies targeting a number of research applications in diagnostic and therapeutic radiology. A
new series of anthropomorphic phantoms extended from the ICRP reference phantoms covering not only the
diversity of anthropometric characteristics but also anatomical diversities are developed in this work. Firstly,
standing height and total body mass were adjusted as the primary parameters of this library. Secondly, FFM percent
was tuned by 2D scaling to make a more realistic proportion with anthropometric parameters between unscaled
organs, such as muscles and bones. Although different body shapes are not defined in this work, tuning the FFM
percent helps to appropriately change the body style of phantoms. In a few cases, such as 10th percentile of weight
in the first age group of male phantoms, FFM percent was not applied on the reference phantom to reach the target
waist circumference. By sampling from derived multiple correlations between organ masses and external
anthropometric parameters (age, standing height, body weight and BMI), organ mass data does not follow a normal
distribution. According to the organ mass values in the library, the brain mass increases with increasing height and
decreases with increasing age. For the lung, kidney, spleen, and pancreas, it can be concluded that their masses
increase by increasing the body weight and BMI without following a meaningful correlation with height and age
variations. The liver and heart masses are strongly proportional to the total body mass and consequently to BMI.
The behavior of the thyroid is a little different since it firstly increases and then decreases with increasing standing
height. Moreover, it has a smooth increase with age and weight. As mentioned earlier, genital organs strongly
depend on the age, except testis mass which increases with weight and BMI. The mass of the ovaries decreases
sharply after 35 years whereas the uterus mass reaches a peak at about 45 years and decreases at higher ages. The
prostate mass increases strongly with age. The masses of remaining organs, such as the muscles, bones, blood
vessels, ...etc. change after 3D scaling as reported by Johnson et al. [9]. The masses of most organs deviate from
the mean value by about 3%-21% while it exceeds 50% for genital organs.

The internal radiation dose was estimated in the context of a whole-body *¥F-FDG PET protocol for
morphometrically different phantoms for both genders. The calculated absorbed doses per administered activity in
target organs are in agreement with those reported by the ICRP 106 [45]. The effective dose for habitus-dependent
phantoms varies between 1.82 and 2.26 (mSv/100MBq) for females, and between 1.67 and 1.85 (mSv/100MBq)
for males, while the ICRP 106 reports an effective dose of 2.31 (mSv/100MBq). As expected, a significant dose
from 8F-FDG is delivered to the heart, bladder, brain, liver, prostate for male and uterus for female. The heart,
brain and liver receive a considerable dose because of their high metabolic rate and hence rapid blood supply. The
accumulation of radioactive urine in the bladder not only causes a significant self-absorbed dose but also leads to
a high cross-organ dose to the uterus and prostate. Overall, thin patients receive a higher internal radiation dose
because the cross-irradiation between internal organs is stronger than other patients. This can be justified by the
lack of subcutaneous and visceral fat which directly influences cross-organ doses.
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The organ-level doses and effective dose for the CT examination calculated for the anthropomorphic fitted
phantom from the developed series show acceptable dose estimation accuracy for radiation protection purposes.
Since each subject has exclusive anatomical characteristics, using an independent phantom library instead of a
patient-specific model may cause a deviation from the actual absorbed dose. However, it definitely provides a
more accurate estimate compared to the calculations using stylized phantoms, such as the Cristy & Eckerman
stylized computational phantoms [50] implemented within Radimetrics software. During the course of this study,
we created a patient-specific model by segmenting a clinical CT study and compared the dose delivered to the
patient-specific model, considered as reference, to results generated using the corresponding anthropomorphic
phantom from our library and Radimetrics. The effective dose for the patient-specific model was estimated to be
11.72 mSv. The discrepancy between the effective dose calculated using the patient-specific model and the best
fitting model from our library was 22.2%, whereas it was up to 49.2% when calculated using Radimetrics. As
reported by Xie et al. [52], in addition to the anthropometric parameters, the organ-surface distance (average
distance from the skin to organs) or body size shows a significant correlation with organ absorbed dose. It appears
that Radimetrics overestimates the absorbed dose in target organs, particularly for the lungs.

In this work, the diversity of organ masses is considered. However, for reliable modeling, a broad database is
required to derive organ masses correlated with anthropomorphic variables. In addition, defining different
somatotypes for the phantoms library makes it more comprehensive. Sheldon et al. introduced three types of main
somatotypes: mesomorphs who are athletically built with a low percent of body fat, ectomorphs who are
underweight with a narrow skeleton frame, and endomorphs who are overweight with a pear-shaped body style
[53]. In the present work, we set the FFM percent for different BMIs to consider body style in addition to the
height and weight. By considering different styles in the future studies, the distribution of fat percent through the
body of phantoms would be more realistic. Although the volume of intra-abdominal adipose tissue encompassed
the organs is an important factor in the calculation of cross-organ dose, adjustment of this type of fat percent called
visceral fat was ignored due to the lack of information, and total body mass was set by adjusting the subcutaneous
fat mass.

Recent advances in deep learning are promoting a number of applications in computer vision and medical
image analysis research that could be useful for constructing patient-specific models through automatic
segmentation of body contours and internal organs. Considering the scarcity of large clinical databases and time-
consuming classification techniques required for organs labeling, generative networks can be used for developing
data-hungry deep learning algorithms. Novel unsupervised models, such as variational auto-encoders [54] or
generative adversarial networks [55] have shown potential in medical image analysis and look promising for
applications involving the generation of synthesized medical images to fulfill the requirement of large training
datasets, e.g. auto-segmentation [56].

V. Conclusion

An algorithm was developed to consider the diversity of organ masses along with the morphometric parameters to
construct a library by automatic remodeling the voxel-based ICRP adult reference phantoms. Data on 13 organ
masses is culled based on information from autopsies and diagnostic examinations. Using the specific
anthropometric data of each individual, it is possible to derive organ masses data and automatically construct
habitus-specific phantoms according to the specific input parameters.

By using habitus-dependent anthropomorphic libraries, the calculation of absorbed doses for individuals
exposed to external or internal radiation is likely to be more accurate by considering the anthropomorphic and
anatomical diversity among the population. The move towards subject-specific phantoms is a major improvement
taking advantage of the availability of habitus-dependent phantoms associated with morphometric parameters and
classified in different somatotypes.
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Abstract

Purpose: Diagnostic imaging procedures require optimization depending on the medical task at hand, the
apparatus being used and patient physical and anatomical characteristics. The assessment of the radiation dose and
associated risks plays a key role in safety and quality management for radiation protection purposes. In this work,
we aim at developing a methodology for personalized organ-level dose assessment in x-ray CT imaging.
Methods: Regional voxel models representing reference patient-specific computational phantoms were generated
through image segmentation of CT images for four patients. The best fitting anthropomorphic phantoms were
selected from a previously developed comprehensive phantom library according to patient’s anthropometric
parameters, then registered to the anatomical masks (skeleton, lung and body contour) of patients to produce a
patient-specific whole-body phantom. Well established image registration metrics including Jaccard’s coefficients
for each organ, organ mass, body perimeter, organ-surface distance and effective diameter are compared between
the reference patient model, registered model and anchor phantoms. A previously-validated Monte Carlo code is
utilized to calculate the absorbed dose in target organs along with the effective dose delivered to patients. The
calculated absorbed doses from the reference patient models are then compared with the produced personalized
model, anchor phantom and those reported by commercial dose monitoring systems.

Results: The evaluated organ-surface distance and body effective diameter metrics show a mean absolute
difference between patient regional voxel models, serving as reference, and patient-specific models around 4.4%
and 4.5%, respectively. Organ-level radiation doses of patient-specific models are in good agreement with those
of the corresponding patient regional voxel models with a mean absolute difference of 9.1%. The mean absolute
difference of organ doses for the best fitting model extracted from the phantom library and Radimetrics™
commercial dose tracking software are 15.5% and 41.1%, respectively.

Conclusion: The results suggest that the proposed methodology improves the accuracy of organ-level dose
estimation in CT, especially for extreme cases (high BMI and large skeleton). Patient-specific radiation dose
calculation and risk assessment can be performed using the proposed methodology for both monitoring of
cumulative radiation exposure of patients and epidemiological studies. Further validation using a larger database
is warranted.
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I. Introduction

The use of x-ray computed tomography (CT) in the clinic has skyrocketed in the last decade and has been
accounted as a major contributor to total radiation exposure of the population in developed countries [1, 2]. As the
workhorse of radiology and medical imaging, CT scans can provide fast and accurate diagnostic medical images,
guide surgical interventions and help planning therapeutic procedures [3]. Despite the overwhelming medical
benefits of CT, there are concerns about potential cancer risks owing to the utilization of ionizing radiation.
Overall, the radiation risks from CT imaging to patients are small as the absorbed doses commonly range from 1
mSv to 30 mSv depending on the CT study type [4]. However, owing to the large humber of CT examinations
performed annually (more than 100 million worldwide) [5], even small risks may translate into a large-scaled
number of future cancers. In light of these risks, accurate estimation of the absorbed dose profile and associated
risk factors for the exposed patients in CT examinations is necessary [6, 7]. Different approaches have been
adopted to estimate the absorbed dose to patients from CT scans, including experimental measurements using
dosimeters embedded witin physical anthropomorphic phantoms and Monte Carlo calculations using
computational models. However, these approaches inherently bear a number of limitations including the difficulty
of matching physical phantoms to the location of internal organs within the patient’s body, the heavy workload
involved for constructing patient-specific computational models and the inherent assumptions in measurements
and simulation setups, which might contribute significant uncertainties to the estimated absorbed dose. A patient-
specific phantom represents a realistic model enabling accurate estimation of organ-level dose; however, the
segmentation of patient images is time consuming and not feasible for clinical routine applications. A potential
alternative for person-specific organ dose estimation is to use a library of computational models where habitus-
specific phantoms could serve as alternative models covering various anthropometric and anatomical
characteristics of patients [8]. Several habitus-dependent phantom series have been developed to perform patient-
specific dose estimation by matching anthropometric characteristics of patients, such as gender, age, height and
body weight [9-11]. Stepusin et al. [12] suggested to match patient’s data to a computational phantom from a
predefined library using height-and-weight matching for patient-specific CT dosimetry. The construction of
patient-specific models from regional CT images is another alternative for patient-specific dosimetry, which was
adopted in a number of studies by mapping the segmented model of patient CT images to a template anatomy
through a deformable registration process [13, 14]. However, this is not practical for routine clinical usage owing
to the labor-intensive manual segmentation process. Kalender et al. [15] proposed to construct patient-specific
whole body models from regional CT images using a simple protocol-based appending of the scan range to a
reference phantom to take out-of direct field-of-view scattered radiation and over-scanning effects into account.
Similar to the above mentioned method, this technique also suffers from time-consuming manual organ
segmentation required for dosimetry calculations. Gao et al. [16] estimated organ doses for a large number of
pediatric patients using patient-specific information implemented into VirtualDose™ CT dose calculation
software. The Radimetrics™ commercial dose tracking software (Bayer HealthCare) [17] calculates patient-
specific absorbed doses by matching CT images of each patient with Cristy & Eckerman stylized computational
phantoms [18], taking into account the physical and anatomical characteristics of the patient. The INPACT CT
patient dosimetry calculator estimates organ-level absorbed doses and effective dose based on spreadsheet tools
and adult stylized phantoms [19]. Although this approach is practical, it is impaired by the dosimetric uncertainties
resulting from the large differences between the anatomy of patients and simulated computational phantoms
(categorized by gender and age) in addition to the inherent uncertainties associated with protocol-based mapping
of the scan location on the computational models [20]. Since Monte Carlo calculations using patient-specific
models are commonly considered as reference for organ dose estimation from diagnostic imaging procedures [21],
the implementation of an easy to use and reliable framework enabling to estimate patient-specific organ dose for
individual patients in clinical setting is highly desirable.

In this work, we propose a methodology for constructing patient-specific computational models based on
deformable registration of patient CT regional images on a habitus-dependent anchor phantom. Unlike previous
works that simply append the scan range to an existing reference anthropomorphic phantom, which requires labor-
intensive and time-consuming manual segmentation or definition of patient’s organs inside the appended region,
we employ the structural deformation of the best-fitting phantom from an existing large library of computational
models through automated registration to estimate the patient-specific model. We adopted three computational
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models for patient-specific CT dose estimation: the regional patient model developed by segmenting a series of
CT images, the best fitting/matching anchor model selected from a phantom library based on sex, age, height-and-
weight and patient-specific computational model constructed through image registration. Patient-specific radiation
doses are calculated using the three computational models used as input to the N-Particle eXtended (MCNPX)
Monte Carlo code. The results obtained using the anchor phantom and registered model are compared to the
regional patient model serving as reference to investigate the influence of the computational model on the accuracy
of patient-specific radiation dose estimation.

11. Materials and methods

Patient’s regional voxel model based on CT image segmentation

The institutional ethics committee approved this retrospective study. Written informed consent was waived. CT
images of four patients with different gender, age and physical characteristics referred to Geneva University
Hospital for diagnostic CT examinations were included in this work. Semi-automated image segmentation was
performed using the 3DSlicer software [22] enabling to identify 10 organs/tissues, including the lungs, heart wall,
liver, kidneys, spleen, stomach wall, pancreas, gall bladder, urinary bladder and skeleton. The segmented organs
were validated by an experienced radiologist and integrated in a voxel matrix to produce a patient regional
computational model. The chemical compositions and material density for each organ were assigned according to
the ICRP report 89 [23].

Patient-specific computational phantom

In previous work, we reported on the construction of a phantom library [24] extended from ICRP reference models
covering different body morphometries, consisting of about 230 male and 249 female voxel adult phantoms scaled
to specific age, height and weight grids based on the NHANES (2011-2014) database [25]. In these series,
anatomical diversity, specifically organ masses, is implemented using a multi-correlation model to estimate organ
masses based on gender, age, height, weight and BMI.Therfore, the best-fitting adult phantom is selected from the
extended library to match the patient’s anthropometric and anatomical characterisitics. For the pediatric models,
the anchor phantoms were generated by scaling the male and female ICRP adult reference phantoms to match the
height and weight of actual patients. Thereafter, anatomical masks for the skeleton, lung and body contour were
generated from patients’ regional CT images using auto-segmentation algorithms. Subsequently, the whole body
anchor phantom is deformably registered to the patient anatomical mask model using automatic affine registration
to produce a new whole body personalized computational phantom with well-defined anatomical structures,
matching patient images obtained from CT examinations. Image registration was performed using the Insight
Toolkit (ITK) [26]. The registration was performed in two steps: In the first step, the voxelized patient regional
model was registered to the anchor phantom through automatic affine registration and the affine matrix warping
the patient’s regional model to the anchor phantom calculated. In the second step, the inverse affine matrix is
applied to the anchor phantom to produce a new personalized computational model. The registration algorithm
uses the regular step gradient descent implemented within the ITK software package and the mean squares metric
between two images. The resulting model after registration is referred to as "patient-specific model" and includes
140 identified organs. Figure 2 shows representative patient-specific computational phantoms along with the
regional model of corresponding patients as well as the selected best-fitting models.

Dosimetry calculations

Computational models are commonly coupled with Monte Carlo techniques for dosimetry calculations through
full simulation of the CT scanner and parameters used by the scanning protocol under which the patients were
examined. The studies were acquired on the GE 750HD CT scanner (GE Healthcare, Waukesha, WI). The
geometry of the system was accurately modelled and validated against experimental measurements as described
in previous work [27]. The patient-specifc acquisition parameters, including the table speed, revolution time, pitch
factor, total collimation width, tube voltage and modulated tube current , extracted from the DICOM headers, were
modeled in this simulation setup. The examined body part was defined automatically through mapping the skeletal
mask obtained from patient CT images to the whole body computational phantoms. Obtaining the complete tube
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current modulation profile was not possible owing to the lack of sufficient information (proprietary data
undisclosed by the manufacturer). We therefore extracted the longitudinal tube current modulation from the
DICOM header file of patient’s CT images and didn’t consider angular tube current modulation [16]. The absorbed
doses to predefined target organs were calculated using a previously validated C++ computer code [27, 28]. The
simulations of each helical CT scan were repeated six times with x-ray tube starting at angles differing by 60
degrees since the actual tube starting angles in the actual examinations was unknown. The effective dose was
estimated according to ICRP report 103 [29]:
ED = ¥r wr Xg WrDgyr, 1)

where E is the effective dose, wp, is the radiation weighting factor for radiation type R, Dy, ; is the contribution
of radiation type R to the absorbed dose, and w1 is the tissue weighting factor for organ or tissue T reflecting its
relative radiation sensitivity.

Subsequently, clinical CT images of the patients were imported into Radimetrics™ dose tracking software [17]
for calculation of organ absorbed doses and effective dose. Radimetrics™ collects CT scans directly from the
hospital’s picture archiving and communication system and matches patient images with Cristy & Eckerman
stylized computational phantoms [18] according to age, gender and body size. The software extracts scanning
parameters (tube voltage, mAs, scan range, etc.) from the DICOM files’ header information and calculates
overnight patient-specific absorbed dose at the organ level through Monte Carlo simulations.

In this work, the results obtained from Monte Carlo simulations of the patient’s regional model were considered
as reference to which dose profiles calculated using computational models and dose monitoring software were
compared.

Quantitative analysis

To investigate the impact of anatomical metrics of computational models on radiation dose estimation, habitus-
dependent parameters of the computational models were compared using established metrics including the
Jaccard’s coefficient for each organ, organ mass, mean body perimeter, organ-surface distance and mean body
effective diameter. The similarity between the patient regional model and patient-specific model and the selected
best-fitting model was evaluated through the Jaccard’s coefficient:

__14anB| _ |ANB|
J(4,B) = |AUB| ~ |Al+|B|-|ANB| )

where A refers to the organ volume of the patient’s regional model whereas B refers to the volume of the same
in the patient-specific model or the selected best-fitting model. This metric enables the assessment of organs
overlap between the two investigated models. The mean body perimeter was determined by the average outer
perimeter of the patient in the scan range. Surface-organ distance is defined as the average distance from the skin
to the organ in all slices. The body effective diameter is defined based on lateral (LAT) and anterior-posterior (AP)
dimentions:

ef fective diameter = VAP X LAT ?3)
I1. Results

Computational models

Figure 1 shows the segmented regional model of the considered patients along with the original CT images. The
best-fitting model for adult patients were selected from the extended phantom library [24] based on age, gender
and height-weight matching, while for the pediatric patients, the best-fitting models were constructed by deforming
the ICRP reference model to reach the height-weight target values. The anthropomorphic characteristics of the 4
patients included in this study are summarized in Table 1. Subsequently, the selected best-fitting model was
registered to the patient’s regional model to generate a patient-specific model. Figure 2 shows representative
patient-specific computational models together with regional computational models of the corresponding patients
and best-fitting phantoms.
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Table 1. Anthropomorphic characteristics of the patients and the best-fitting models (matched by gender, age, height and
weight).

Physical Patients Best-fitting model
parameters #1 #2 #3 #4 #1 #2 #3 #4
Sex AF AM PM PM AF AM PM PM
Age (Y) 50 25 7 3 40-50  20-30 - -
Weight (kg) 88 104 26 13 89.3 105.7 26 13
Height (cm) 160 185 131 93 158.1  184.3 131 93
BMI (kg/cm2) 34.37 30.38 15.1 15 35.77  31.22 15.1 15

Body region Th-Ab Th-Ab Th-Ab Th-Ab WB WB WB WB

AM: Adult Male, AF: Adult Female, PM: Pediatric Male, Th-Ab: Thorax-Abdomen, WB: Whole body

Figure 1. Representative slices showing coronal views of segmented regional patient models for patient case #1 (top left), case
#2 (top right), case #3 (bottom left), and case #4 (bottom right).

The differences in terms of anthropometric metrics between the different computational models are
summarized in Tables 2-6. When the results obtained using the patient’s regional model serve as reference, the
magnitude of the relative difference is reported based on the subtraction of the target metric from the reference
value. The mean Jaccard coefficient, which describes the similarity between models, for the best fitting models
and the patient-specific models are 0.2 £ 0.17 and 0.19 + 0.18, respectively (Table 2). The absolute difference of
organ mass between the actual patient and the best-fitting model ranges from -241.4% to 83.6% while the
difference between the patient and the patient-specific model ranges from -251.8% to 82.2%. The mean body
perimeter in the range of each organ of the patients are in the range 81.6 + 23 cm, while the mean absolute
difference for the best-fitting model and patient-specific model are 10% and 9.8%, respectively. The organ-surface
distances of the patient are in the range 13.5 + 4.1 cm for different organs while the mean absolute difference
between the patient and the best-fitting model and patient-specific model are 7.1% and 4.4%, respectively. The
body effective diameters for each organ of the patient are in the range 24.6 + 7.9 cm, while the mean absolute
differences for the best-fitting model and patient-specific model are 6.6% and 4.5%, respectively.
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Figure 2. Three-dimensional views of, from left to right, patients’ regional models, the corresponding anchor phantoms, and

patient-specific phantoms. Patient case#1 (top left), case#2 (top right), case#3 (bottom left), case#4 (bottom right).

Table 2. Jaccard’s coefficients for organs between the patient regional model and other computational models.

JACCARD COEFFICIENTS

Best-fitting phantom

Patient-specific phantom

Organs #1 #2 #3 #4 #1 #2 #3 #4
Lung 0.345 0.48 0.44 0.54 0.56 0.48 0.47 0.50
Heart 0.054 0.19 0.13 0.17 0.12 0.19 0.16 0.17
Liver 0.346 0.37 0.49 0.52 0.52 0.38 0.35 0.53
Kidney 0.287 0.15 0.15 0.22 0.21 0.16 0.14 0.19
Stomach 0.069 0.04 0.07 0.09 0.05 0.03 0.07 0.07
Pancreas 0.122 0.08 0.07 0.04 0.16 0.07 0.16 0.02
Bladder 0.016 0.04 0.0 0.04 0.01 0.04 0.09 0.05
Spleen 0.306 0.01 0.24 0.16 0.08 0.02 0.02 0.18
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Table 3. Comparison of organ masses between the regional patient models, best-fitting and registered models.

ORGAN MASS DIFFERENCE (%)

Patient vs. best-fitting model

Patient vs. patient-specific model

Organs #1 #2 #3 #4 #1 #2 #3 #4

Lungs 29.9 39.7 46.5 -44.7 -54.0 37.9 46.6 -59.5
Heart -24.5 -22.5 0.9 31.1 -1.9 -26.2 2.1 22.5
Liver 33.1 -51.7 17.3 46.8 0.0 -55.6 17.2 41.3
Kidneys 31 -10.8 -15.3 68.6 -1.0 -14.2 -13.7 65.5
Stomach -20.2  -188.0 -121.8 39.7 0.0 -192.2  -122.0 36.3
Pancreas 15.7 -241.4 -17.5 -225.6 2.8 -251.8 -14.3 -241.1
Bladder -30.8  -233.3 21.5 51.1 -68.9  -2422 20.5 44.6
Spleen 45 27.6 63.3 83.6 1.9 26.4 63.3 82.2

Table 4. Comparison of mean body perimeter at organ longitudinal scan range between the regional patient model and best-

fitting phantom and registered models.

MEAN BODY PERIMETER DIFFERENCE (%)

Organs Patient vs. best-fitting model Patient vs. patient-specific model
#1 #2 #3 #4 #1 #2 #3 #4
Lungs 14.4 -15.5 -12.2 -22.1 -28.8 -19.1 -26.1 -31.1
Heart 20.3 -17.3 -10.7 -20.6 -21.2 -21.2 -24.4 -29.5
Liver 22.1 -5.5 -5.4 -3.5 -17.1 -9.8 -18.7 -11.0
Kidneys 16.4 -0.9 -1.2 -1.9 -25.0 -5.2 -13.9 -9.3
Stomach 18.3 -5.5 -0.6 -1.8 -22.5 -9.9 -13.3 -9.1
Pancreas 16.3 -3.2 -0.1 2.2 -24.8 -7.8 -12.8 -5.1
Bladder -4.3 -7.1 -9.3 -22.9 -52.7 -10.1 -23.0 -31.9
Spleen 214 -7.6 -5.7 -3.8 -18.0 -11.9 -19.0 -11.1

Table 5. Comparison of organ-surface distances between the regional patient model and best-fitting phantom and registered

models.

ORGAN-SURFACE DISTANCE DIFFERENCE (%)

Patient vs. best-fitting model

Patient vs. patient-specific model

Organs #1 #2 #3 #4 #1 #2 #3 #4

Lungs 19.2 -6.2 -0.5 -14.1 -5.2 -9.9 -12.8 -22.7
Heart 22.5 -7.6 -0.7 -11.8 -3.2 -11.8 -13.0 -20.2
Liver 19.9 -1.1 -1.0 0.7 -4.9 -5.0 -13.4 -6.9
Kidneys 17.4 -1.4 0.7 0.5 -8.7 -5.6 -11.3 -7.2
Stomach 16.1 -5.7 4.7 1.5 -9.9 -10.3 -7.0 -6.2
Pancreas 16.6 1.3 2.7 5.8 -9.8 -3.1 -9.2 -1.5
Bladder -2.5 -24 -5.5 -13.6 -353 -6.6 -18.5 -22.4
Spleen 18 -39 -0.5 1.4 -6.3 -7.8 -12.8 -6.1

Table 6. Comparison of mean body effective diameters at organ longitudinal scan range between the different computational

models.

Mean Body Effective Diameter Difference (%)

Patient vs. best-fitting model

Patient vs. patient-specific model

Organs #1 #2 #3 #4 #1 #2 #3 #4
Lungs 20.2 -3.1 2.9 -9.7 -7.0 -7.9 -8.9 -18.1
Heart 24.7 -4.6 3.3 -10.4 -2.1 9.4 -8.4 -18.7
Liver 18.4 1.2 0.6 0.0 -9.5 -3.4 -11.6 -1.7
Kidneys 13.7 4.5 3.0 0.7 -14.7 0.0 -8.6 -7.1
Stomach 16.5 0.8 4.2 1.7 -11.4 -3.8 -7.6 -5.8
Pancreas 12.3 2.9 3.5 3.8 -14.9 -1.6 -8.1 -264.4
Bladder 3.1 2.9 -4.6 -14.5 -29.2 -1.7 -17.3 -233
Spleen 19.3 0.1 0.6 0.4 -7.5 -4.5 -11.8 -7.1
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Organ absorbed dose and effective dose

Organ radiation doses to the studied patients were calculated using the MCNPX Monte Carlo code using three
computational models as input. The results were compared with the values estimated by Radimetrics™ dose
monitoring software. Figure 3 shows the organ absorbed doses from CT examinations for regional computational
models of patients included in this study. The mean absorbed doses to the patients are 9.2 mGy for the lung, 8.78
mGy for the heart, 10.14 mGy for the liver, 10.2 mGy for the kidney, 9.48 mGy for the stomach, 8.7 mGy for the
pancreas, 9 mGy for the bladder and 10.63 mGy for the spleen.

As shown in Figure 4, when the results calculated using the patient’s regional model serve as reference, the
mean absolute discordance of organ doses of the best-fitting model, the patient-specific model and Radimetrics™
are 15.5%, 9.1% and 41.1%, respectively. The effective dose to the patient models are 11.74 mSv, 5.96 mSv, 10.52
mSv and 9.5 mSv for case#1, case#2, case#3 and case#4, respectively. Conversely, the values calculated using the
best-fitting model, patient-specific model and Radimetrics™ are within the range of 9.5 £ 3.3 mSv, 9.2 + 2.14
mSv and 10.5 + 5.5 mSy, respectively. The absolute difference between the effective dose reported for the patient
regional model and the best-fitting model, the patient-specific model, and Radimetrics™ are 15%, 5.7%, and
58.6%, respectively.
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Figure 3. Absorbed doses for segmented target organs.
Iv. Discussion

The patients’ dose profiles from CT scans were calculated using different computational phantoms: the regional
patient model, the best-fitting model selected using height-and-weight matching from previously developed
phantom library and the registered patient-specific model. When the regional patient model is used as reference,
the registered patient-specific model is superior to the selected best-fitting model in terms of error in estimated
organ dose. The results extracted from Radimetrics™ dose tracking software showed a considerable deviation
from the reference even though the morphometric characterisitics of the patient have been taken into account.
Through image registration, the proposed approach allows matching the patient’s data to a whole-body phantom
presenting with similar location and anatomical morphometry. The evaluated metrics, including organ mass, body
perimeter, organ-surface distance and effective diameter increased in patient-specific models owing to the
nonlinear deformation of the best-fitting phantom during the registration process to match the obtained anatomical
masks (skeleton, lung and body contour) of patients to the corresponding anchor phantom. The Jaccard coefficients
do not show a good similarity in some cases owing to the dependency of this index on organs’ volume and the
spatial location of organs for the different computational models (Table 2).
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Figure 4. Relative differences of absorbed doses in segmented target organs for (top-left) best-fitting models, (top-right)
Radimetrics software and (bottom) patient-specifc model with respect to patient regional models.

In this work, we selected a group of patients presenting diverse anatomical characteristics to evaluate our
methodology on a representative patient population: Case #1, a patient with high BMI and large skeleton size,
selected to evaluate our methodology on extreme cases and case #3, a pediatric patient presenting with a large
skeleton structure. In these two cases, there is a noticeable difference in dose estimates between the reference
values and the best fitting model selected from the phantom library, even though matching patient age, height and
weight were carried out. Patient-specific models for these cases improve the dosimetric results by about 15%. Case
#2, is an athletic male with small-sized internal organs whereas case #4 is a morphometrically normal pediatric
patient where the best-fitting model provides organ dose estimates deviating by ~10% from the reference values
without any remarkable improvement in organ dose calculation using patient-specific models.

The habitus-dependent phantom library approach suffers from the limited number of anatomies and
morphometries that cause an uncertainity in dose estimation [30]. This approach provides acceptable organ doses
for anthromorphically and anatomically normal patients. The current methodology building patient-specific
computational models from patients’ CT images demonstrated noticeable improvement in the accuracy of organ
dose calculation for extreme cases. The calculated absorbed dose in the lungs is significantly improved owing to
the excellent matching between the lungs mask obtained from patient CT images and the best-fitting phantom.
Although Radimetrics™ dose tracking software estimates patient size from the scout scan and the examined
anatomical region is determined using image registration methods, the deviation from the reference doses can be
caused by the oversimplified anatomy and body contour of stylized models and the limited number of phantoms
available that do not cover the diversity of different anatomies and morphometries. In addition, implementing the
scan range into the simulation based on predefined CT acquisition protocols (anatomical landmarks) is another
source of errors in Radimetics™.

This study bears a number of limitations, including the construction of the regional patient models for
evaluation of the domestric results and the development of the phantom library. Regarding the regional patient
model, the segmentation of internal organs was performed manually, where prior anatomical knowledge guides
identification of organs and delimitation of their boundaries. This approach is not feasible for routine clinical
application. Fortunately, the body countour, skeleton and lungs can be automatically segmented from CT images
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and used during model registration to produce a patient-specific model. Likewise, assumptions regarding chemical
compositions and density for organs may also introduce errors in dose estimations. Another limitation related to
the selection of the best-fitting model is that the developed library contains a limited number of phantoms and
cannot cover all patient morphometries. This limitation may potentially be addressed by expanding the library in
future work. The limited number of patients included in this study is among the limitations of this work. In addition,
the posture differences of the anchor phantom and patient studies (arms up vs. arms down) may introduce a
displacement of internal organs. The registration of the anchor phantom to regional patient images can be further
optimized to improve the matching of the patient-specific model and patient regional model. The TCM model
adopted in the simulation process didn’t consider the angular modulation owing to the lack of sufficient
information (proprietary raw data format undisclosed by the manufacturer). Other limitations of this work include
the few organs considered and the use of only one CT scanner model. The construction of patient-specific models
for accurate dosimetry calculations remains a challenging issue requiring further research and development efforts
[31]. Deep learning approaches have brought revolutionary advances in the field of medical image analysis that
could be useful for constructing patient-specific models through automatic segmentation of medical images (body
contours and internal organs).

V. Conclusion

The aim of this study is to quantify the dosimetric characteristics of patient-specific computational models in CT
dose estimation. Although using height-weight matching to select the best-fitting model from a comprehensive
phantom library is feasible in clinical setting, the estimated organ dose may differ from the reference by up to 36%
as demonstrated in this study. If, however, patient CT images are available, a reference computational model can
be matched to the patient data to produce a patient-specific computational model for radiation dosimetry
calculations, thus improving the accuracy of organ dose estimation.
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Abstract

The clinical value of x-ray computed tomography (CT) has skyrocketed in the last decade while at the same time
being the main source of medical exposure to the population. Concerns regarding the potential health hazards
associated with the use of ionizing radiation were raised and an appropriate estimation of absorbed dose to patients
is highly desired. In this work, we aim to validate our developed Monte Carlo CT simulator using in-phantom dose
measurements and further assess the impact of personalized scan-related parameters on dosimetric calculations.
We developed a Monte Carlo-based CT simulator for personalized organ level dose calculations, in which the CT
source model, patient-specific computational model and personalized scanning protocol were integrated. The CT
simulator was benchmarked using an ionization chamber and standard CT Dose Index phantom while the
dosimetry methodology was validated through experimental measurements using thermoluminescent dosimeters
(TLDs) embedded within an anthropomorphic phantom. Patient-specific scan protocols extracted from CT raw
data and DICOM image metadata, respectively, were fed as input into the CT simulator to calculate individualized
dose profiles. Thereby, the dosimetric uncertainties associated with using different protocol-related parameters
were investigated. The absolute absorbed dose difference between measurements and simulations using the
ionization chamber was less than 3%. In the case of the anthropomorphic phantom, the absolute absorbed dose
difference between simulations and TLD measurements ranged from —8.3% to 22%, with a mean absolute
difference of 14% while the uncertainties of protocol-related input parameters introduced an extra absolute error
of 15% to the simulated results compared with TLD measurements. The developed methodology can be employed
for accurate estimation of organ level dose from clinical CT examinations. The validated methodology can be
further developed to produce an accurate MC simulation model with a reduced computational burden.
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I. Introduction

Computed Tomography (CT) has become a key diagnostic imaging modality in clinical diagnosis of a wide range
of diseases. The number of CT scans in the US had an average annual increase of 10% between 1995 and 2015 [1,
2]. The sharp utilization trend of CT imaging in clinical setting has raised health concerns regarding potential risks
of ionizing radiation on patients undergoing CT examinations. Although medical exposure brings individual
benefits to the patient, it should still follow the principles of justification and optimization [3, 4]. In this context,
each medical radiological procedure has to be optimized for the specific task and individual patient. Efforts devoted
to designing patient-specific CT scanning protocols depending on the target task, scanner model and patient
anatomy, can greatly benefit from a unified methodology for radiation dose estimation [5, 6].

Direct measurement of energy deposition in the different tissues/organs within the patient’s body is not
conceivable in clinical setting. Therefore, experimental measurements using dosimeters embedded within physical
phantoms and Monte Carlo simulations using realistic anthropomorphic computational phantoms served as
substitutes. Monte Carlo simulation, deemed to be the gold standard technique for dosimetry calculations, should
be carefully validated against experimental measurements because the input parameters related to the imaging
system, patient’s anatomical model and the scanning protocol dictate the accuracy of the obtained results. A
number of studies reported on the use of Monte Carlo programs benchmarked using standard CT Dose Index
(CTDI) and other anthropomorphic physical phantoms [7-10]. The paradigm shift introduced by advances in
personalized medicine and precision medicine stimulated the development of strategies for patient-specific
dosimetry and protocol optimization during the last few years. In this context, Segars et al. constructed
personalized computational models by mapping the segmented model of patient CT images to a template
anatomical model using a deformable registration algorithm [11]. Li et al. developed a Monte Carlo code for
patient-specific dose calculation [12] by constructing patient-specific computational models through manual
segmentation that are fed as input to the Monte Carlo program. Kalender et al. constructed personalized whole-
body phantoms from regional CT images through appending the scan range to an anchor phantom to assess the
effect of scatter and overscanning on organ doses [13]. Xie et al. proposed a methodology for constructing patient-
specific computational models based on deformable registration of patient CT regional images on a habitus-
dependent anchor phantom [14, 15]. They employed the structural deformation of the best-fitting phantom from a
previously developed library of computational models through automated non-rigid registration to estimate the
patient-specific model [16]. They calculated patient’s organ-level radiation dose using the obtained personalized
computational phantom and imaging protocol implemented into the MC simulation. The Radimetrics™
commercial dose tracking software (Bayer HealthCare, Berlin, Germany) provides Monte Carlo-based organ-level
dose profile from patient CT images where the scan parameters are extracted from CT image DICOM header
information [17]. Radimetrics™ simply maps the patient’s regional CT images on Cristy & Eckerman
mathematical computational phantoms categorized by age and gender [18]. It further adjusts the phantom’s
diameter according to the effective diameter of the patient obtained from CT images.

The dosimetric impact of scan parameters (e.g. x-ray energy spectrum, beam filtration, tube current modulation,
tube start angle, over-ranging, etc ) fed into Monte Carlo simulations has been investigated in previous studies [19-
22] and more comprehensively in the recent AAPM report No. 246 [23]. The input data are commonly provided
by CT scanner manufacturers, experimental measurements, or extracted directly from scanner control console or
the generated radiation dose structured report after the examination. However, there are uncertainties associated
with all sources of input parameters. Muryn et al. examined the impact of deviations related to the input parameters
on the simulated dose profiles [24]. They studied the parameters linked to the CT scanner (e.g. x-ray spectrum,
beam filtration, beam width) and the scan setup (e.g. tube start angle, scan length, isocenter position) to address
the uncertainties introduced on the simulated dose when the input parameters deviate from the actual values.
However, in this work, the tube current modulation and the impact of patient’s anatomy were not taken into
account. Lee et al. performed organ-level dose estimation for a large cohort of CT examinations to investigate the
dosimetric impact of uncertainties on patient-related and empirical scan-related parameters [25].

In this work, we aimed to provide a computationally-efficient framework for accurate patient-specific dose
estimation. To this end, we developed a unified methodology for patient-specific dosimetry from CT examinations.
Unlike previous works requiring manual segmentation of CT images to construct patient-specific computational
model, we adopted methodology that automatically builds patient-specific computational models from CT images.

56



Subsequently, the validated CT source model, patient-specific computational phantom and scan parameters were
integrated in the Monte Carlo code to calculate organ-level absorbed dose. Therefore, the dosimetry results were
benchmarked against experimental measurements. To further assess the impact of uncertainties associated with
simulation input parameters on the organ level personalized dosimetry, we compared different scenarios where the
patient-specific scan-related parameters were extracted from the CT image DICOM header file and more detailed
CT raw data, respectively.

11. Materials and methods

Monte Carlo simulations

In Monte Carlo-based CT dosimetry studies, three essential components are incorporated into the simulations. This
includes the CT source model, computational phantom and protocol-related parameters. CT data were acquired on
the Somatom Definition Edge scanner (Siemens Healthcare, Erlangen, Germany). The geometry of the CT system
was realistically modelled by using an x-ray energy spectrum generated using SpekCalc [26] and tuning the
inherent filtration of the scanner’s x-ray tube and half value layer (HVL) associated with the x-ray energy. The
applied inherent filtration and HVL were extracted from system owner manual [27] and were matched with the
results reported by Yang et al. [28]. The Bowtie or shaped filter and beam collimators, including dynamic
collimators as well as fixed collimation components were elaborately modelled based on the information provided
by the manufacturer. The geometry of the gantry (e.g. focal spot size, the distance between focal spot and
isocenter), fan angle, etc. were taken into account in the simulation as shown in Figure 1. This CT source model
was created within the MCNPX general purpose Monte Carlo radiation transport code (version 2.6) [29]. The
computational phantom with its detailed anatomy was constructed using a previously developed methology based
on automated registration of the patient’s CT images to an anchor phantom [5]. The protocol-related parameters,
including scan mode, tube potential, total beam collimation, revolution time, exposure time, table speed, pitch
factor and tube current modulation were extracted from DICOM header information using a MATLAB (The
MathWorks Inc., Natick, MA, USA) function and implemented in the simulation code. The tube current
modulation (longitudinal and angular), tube start angle and over-ranging information were extracted from the
DICOM header information of both CT images and CT raw data and used in the simulation setup.

Validation of the CT scanner model

The conversion of the relative MCNPX dose tallies to absolute dose value was performed by conducting free in
air measurement using a 10 cm RaySafe™ Solo pencil ionization chamber (Unfors RaySafe GmbH, Germany).
The ionization chamber was placed at the isocenter of the CT scanner with its active volume aligned with the axis
of gantry rotation. Free in air measurements were performed in single axial scans where the absorbed dose derived
from simulations was calculated as:

Destimateda = Dsimutatea X N X 2 X mAs X CF (1)

where Dsimuiated 1S the simulated absorbed dose per photon emitted from the source (F6 tally in unit of MeV/g);
N is the number of photons emitted from the source per solid angle per mAs; Q is the solid angle of the fan-beam;
mAs is the effective tube current-time product value; and CF is a calibration factor to correct for uncertainties
introduced in Monte Carlo simulations to calculate the absorbed dose values from simulations in absolute units of
mGy. To validate the developed CT source model, we benchmarked our simulation results against standard CTDI
phantom measurement for both head (16 cm diameter) and body (32 cm diameter) cylindrical phantoms. To this
end, firstly, we performed free in air measurements to estimate the CF as the ratio of the absolute measured dose
to the simulated dose. In Eq. (1), there is a linear relationship between the measured dose and mAs, which is
regularly checked during routine CT scanner quality control procedures. While the factors N and Q depend on tube
potential and total collimation, respectively, the relationship between these factors and the absorbed dose is not
ideally linear [27]. For this reason, we reduced EQ. (1) t0 Degtimated = Dsimutatea X MAs X CF by providing a
unique calibration factor associated with the specific acquisition parameters (e.g. tube potential and total beam
collimation) during CT examinations. Consequently, we measured the absolute dose in the CTDI phantom in
helical mode with the same acquisition parameters used for free in air experiment to compare the simulation results
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against the measurements using the estimated calibration factor. Three million photons were used in this simulation
to achieve a statistical error less than 2%.

Anthropomorphic phantom dose measurements
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Figure 1. CT source model simulated in the MCNPX Monte Carlo code (left) and experimental set-up used to measure
dosimetric metrics in the CTDI phantom (right).

To benchmark the accuracy of the developed Monte Carlo code for patient-specific dosimetry, absorbed doses
were measured in the CIRS ATOM® dosimetry verification phantom (CIRS, Inc., Norfolk, VA, USA). This
anthropomorphic physical phantom, axially sliced in 25 mm thick, consists of three types of materials, including
skeleton, lung and soft tissue. The physical phantom was matched to its corresponding computational twin where
the boundaries of all internal organs were mapped on the physical slice consistent with their delineation in the
corresponding computational model (Figure 2). We used the previously developed program to construct the
patient-specific phantom from CT images through automated deformable registration [5]. CT images of the ATOM
phantom were employed to provide the anatomical masks of the skeleton, the lungs and body contour which
constitute the basis of information used by the registration algorithm. Hence, the computational model of the
phantom with detailed anatomy was constructed using the automated deformable registration algorithm.

TLDs (LiF, Harshaw TLD-100) in the form of 3.2x3.2x0.9 mm? chips were inserted within the tissue
equivalent dosimeter holders embedded within the phantom. TLDs were individually calibrated in terms of
absorbed dose in water for Co-60 radiation. A correction factor was multiplied by the TLD results to account for
the TLDs response for the specific beam quality, i.e. x-ray energy and half value layer of the beam. A total number
of 103 TLDs were distributed in the phantom. Depending on the size of organs, from two to several measurement
points were used enabling accurate volume-averaged organ dose calculation. The background noise was
determined using separate dosimeters that were not exposed. The measured quantity from reading the TLDs is the
absorbed dose in water. Calculation of the absorbed dose in other tissues involved application of a correction
factor, calculated as the ratio of the average mass energy absorption coefficients in the tissue in question per mass
energy absorption in water. The average of the TLD readings for each organ was used as the measured organ
absorbed dose.
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Figure 2. (a) Frontal view of the ATOM physical phantom, (b) phantom CT images, (c) computational model, (d) registered
anatomy on phantom CT images; (e) axial view of the physical phantom (top) and the printed computational model (bottom).

Patient-specific organ-level dose simulation

Validation of the developed methodology in estimating patient-specific organ-level doses from CT examinations
involved the comparison of simulation results with experimental measurements using the anthropomorphic
physical phantom. The CT source model, computational model and scan parameters extracted from DICOM
headers of both CT images and CT raw data were integrated in the MCNPX code. The acquisition parameters,
including tube voltage, total collimation width, table speed, revolution time, pitch factor, and modulated tube
current, start angle and over-ranging length were modelled in this simulation setup. To simulate helical whole
body scanning (90 ¢m length), Monte Carlo simulations were run for 16’854 discrete source positions (576 source
positions per rotation) taking into account the complete tube current modulation (longitudinal and angular
modulation). Considering the linearity of the radiation output or measured dose with the mAs, the obtained energy
deposition tally (Gy/particle) was multiplied by the mAs in each simulation point. To calculate organ doses in
absolute units of mGy, the unique calibration factor that depends on the beam energy spectrum, filtration, and
beam collimation was used. To calculate the specific calibration factor associated with the conducted CT
examination, the value representing scan-specific radiation output (CTDIyo) was simulated according to the 21
CFR 1020.33 guidelines [30]. Thereby, the scan-specific calibration factor was defined as the ratio of the simulated
CTDlyo to the CTDlyq appearing in the dose report of anthropomorphic phantom CT examination. To evaluate the
effect of dynamic collimation on dosimetric results, a correction factor defined as the time-weighted average of
collimator during the scan, divided by the nominal collimator width for the scan was applied to the simulation
results. The absorbed radiation dose associated with the topogram scan was also added to the simulation results.

To evaluate the accuracy of the developed simulation framework, organ-level dose profiles obtained from
experimental TLD measurements were compared with simulation results as well as the doses reported by
Radimetrics™ commercial dose tracking software.

Uncertainties associated with simulation input parameters

The accuracy of results obtained from Monte Carlo radiation transport simulations depends directly on the input
parameters fed into the simulator. In this section, we estimated organ-level doses using the information extracted
from DICOM header information of CT images, referred to as image-based simulation, which basically contains
longitudinal tube current modulation and lacks information about tube start angle and over-ranging length. In the
exact simulation where the detailed input parameters were obtained from CT raw data, the angular component has
been also taken into account in addition to the longitudinal tube current modulation. The complete tube current
modulation was obtained from CT raw data based on CAREDose4D module in the Siemens CT scanner, which
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employs patient size information from the CT localizer scout scan to predict the longitudinal and angular
modulation functions. Overall, the tube current value reported in the DICOM header at each table position is
calculated from the moving average of complete tube current over one rotation while the high frequency
components (i.e. angular modulation) are smoothed (Figure 3). To simulate a helical scan in the image-based
simulation, the source positions were modelled based on fixed intervals in the Z direction, while the angular
position was determined according to the gantry revolution time and table speed obtained from the DICOM header
information. However, it has been reported that over-ranging length is around half of the collimation width. This
parameter is proprietary information for the different manufacturers [31]. Therefore, we extracted over-ranging
length from CT raw data to accurately simulate this feature. In the image-based simulation, the random start angle
was modelled and the over-ranging length was ignored. Here, the dosimetric impact of the tube start angle and
number of simulation points across the entire scan was investigated and the results compared with those obtained
from exact simulations.

Statistical analysis

The comparison between the results obtained from exact simulations and experimental measurements using TLDs,
serving as reference, underwent statistical analysis. Furthermore, the intraclass correlation coefficient (ICC), as a
measure of the reliability of organ dose calculation methods, was considered.
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Figure 3. Extracted tube current modulation profile overlaid on phantom topogram. The solid blue line represents the complete
modulated tube current schemes extracted from the raw projection data. The solid red line represents the longitudinal modulated
tube current (moving average over one rotation). The dashed green line represents the effective time-product tube current (mAs)
across the entire scan (mean mAs/pitch). The orange arrow represents pre- and post-spiral over-ranging.

111. Results

Validation of Monte Carlo simulation model

The CT source model was defined in the MCNPX code based on information provided by manufacturer by
combining simple geometries. The model was validated through comparison with experimental measurements
using the standard CTDI head and body phantoms. The acquisition parameters associated with the examination
and the corresponding calibration factors obtained from free in air measurements are illustrated in Table 1. Table
2 summarizes the central and peripheral CTDI100 and CTDIvol for the protocols specified in Table 1 demonstrating
absolute mean differences between simulations and measurements around 6.4%. The computational model of the
ATOM physical phantom derived from CT images is shown in Figure 2. To validate the developed methodology
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for patient-specific organ-level dosimetry, the experimental CT acquisition illustrated in Table 1 using the physical
phantom was performed (CTDIvol = 4.97 mGy). The results from the in-phantom measurements were considered
as reference and compared with simulation results as well as organ dose profiles reported by Radimetrics™
software. The mean absolute difference between TLD measurements and MC simulations is about 14% (range [-
8.3 - 22%]), while it exceeds 33% for Radimetrics™ (Figure 4). The effective dose obtained from TLD
measurements was about 11.44 mSv while the effective dose calculated from simulation and Radimetrics™ was
about 12.44 mSv and 7.35 mSv, respectively.

Table 1. CT acquisition parameters for experimental measurements performed in the CTDI phantoms and the anthropomorphic
physical phantom.

. Head Head Physical phantom
Acquisition parameters (;g??l?;;?] ) standard Body standard (whole-bodly)

Tube voltage (KeV) 80 120 120 100 KeV
Total collimation (mm) 64*0.6 12*1.2 64*0.6 64*0.6
Tube current (mA) 200 350 252 (ref)/210 (eff) 268 (ref)/126 (eff)
Rotation time (sec) 1 1 0.5 0.5 sec
Pitch factor - - - 0.8
Mode axial axial axial helical
Calibration factor 25.3 67.7 48.7 77.6

Table 2. Comparison between measured and Monte Carlo-based calculations of the CTDIS,, (central),CTDIL,, (peripheral)
and CTDlvol in body and head CT dosimetry phantoms.

Measurements Simulations CTDlval
Acquisition  Voltage it Vo
type (KeV) c P c P LUIEIEES
(mGy) (mGy) (mGy) (mGy) (mGy) (mGy)
Head 80 8.39 8.94 8.76 7.68 8.47 8.21 6.3
standard
(perfusion) 100 16.95 17.61 17.39 14.95 17.57 16.70 4.0
Body 120 7.88 14.71 12.43 6.91 1753 13.99 125
standard
Head 120 7.14 7.34 7.28 7.25 7.62 75 3.0
standard

Uncertainties associated with input parameters

To assess the impact of input parameters on the simulation results, we obtained the input data from two sources:
CT raw data and DICOM header. The complete tube current modulation obtained from CT raw data was compared
with longitudinal tube current modulation obtained from DICOM header (Figure 3). The organ dose resulted from
image-based simulation was compared with reference values and results from exact simulation. The mean absolute
difference between the absorbed dose from the image-based simulation compared with reference organ dose values
is about 29%. The effective dose from the image-based simulation was calculated about 11.68 mSv.
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Figure 4. Comparison between (a) absolute organ absorbed doses and (b) relative differences of organ absorbed doses measured
using TLDs against estimated using Monte Carlo simulations based on raw projection data information (exact simulation) and
DICOM header information (image-based simulation) and Radimetrics™ dose-tracking software.

To illustrate the dosimetric impact of tube start angle parameter on the simulation results, Figure 5 shows the
results from energy deposition tally over one complete rotation around the concerned organs. The absolute
difference of the total deposited energy for the thyroid between simulation results based on exact tube start angle
compared with those produced using 90° and 180° deviated start angle is about 137% and 27.5%, respectively.
For the liver, this difference reduces to 26% and 23%, respectively.

The sources of uncertainties in organ dose simulation studied in this work originated from tube current
modulation, tube start angle and the number of simulation points. To investigate the dosimetric impact of these
factors, organ doses obtained from different simulation scenarios were compared against exact simulations in terms
of percent difference, illustrated in Figure 6. By implementing only the longitudinal modulation scheme to the
simulated dose values the absolute mean difference compared to the organ doses resulted from exact simulation
was about 3.9% while the absolute difference for small peripheral organs like thyroid and testis exceeds 10% and
13 %, respectively. By implementing the reported effective time product tube current as a fixed tube current into
the simulation, the absolute mean difference of estimated organ doses against exact simulation was calculated
about 15.15% while it exceeds 50% for brain and eye lenses.

The dosimetric impact of the number of simulation points on the organ doses was investigated by modelling
the different simulation intervals in the z-direction where the projection angles were conserved according to the
exact tube start angle and fixed table speed. The absolute mean difference between the results from exact
simulation compared to 2 mm interval, 6 mm interval and 10 mm interval is about 11.5, 11.45 and 13%. The mean
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absolute difference between exact simulation against approximate ones starting at 50°, 90° and 180° with 2 mm
interval of simulation points in z direction is about 12%, 13.8% and 14%, respectively.
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Figure 5. Deposited energy per particle over one rotation for different tube start angles in (a) the thyroid and (b) the liver.
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Figure 6. Heat map displaying the relative differences between organ absorbed doses obtained from exact Monte Carlo
simulations (information extracted from raw projection data) and image-based simulations (information extracted from CT
image DICOM header information) considering longitudinal tube current modulation, fixed tube current (effective mAs),
simulation point intervals in Z direction (2 mm, 6 mm and 10 mm) and start angle deviation from the actual angle (50°, 90°
and 180°).

Statistical analysis

The differences between experimental measurements using TLDs and exact simulations were not statistically
significant (P-value=0.53). The ICC showed that the results obtained from exact simulations are in excellent
agreement with experimental measurements with a consistency of 0.98 and absolute agreement of 0.97.

63



Iv. Discussion

We developed a Monte Carlo framework for radiation dose assessment from CT examinations toward patient-
specific organ-level dose monitoring. To this end, we integrated a CT source model, computational
anthropomorphic phantom and protocol parameters into a dedicated Monte Carlo program. Experimental
measurements using an ionization chamber and TLD chips were performed to validate the developed methodology.
Considering the dependency of the calibration factor on CT acquisition parameters, we calculated, for each
scenario, a unique calibration factor associated with scan-specific parameters. Since the CTDlI.o index represents
the radiation output of a specific CT scan, we used this value to benchmark the developed CT source model. The
calibration factor was determined as the ratio of the reported CTDIyo on the scanner control console and CTDl
obtained from simulation. Furthermore, it has been previously reported that the variation of organ doses obtained
from scanner-specific simulations across different scanner manufacturers are close to the variation in scanner-
specific CTDIyo [32]. In this context, calculation of a unique calibration factor associated with a specific CT
examination (scanner-specific and scan-specific) enables to utilize our Monte Carlo program for a variety of
protocols and scanner models.

A reasonable agreement was observed between experimental in-phantom measurements and Monte Carlo
simulations in organ-level dosimetry. The TLD results had an uncertainty of 7% where standard dosimeter
calibration, background noise subtraction, and response correction for specific energy range of x-ray beams has
been taken into account. Likewise, there is a statistical uncertainty associated with Monte Carlo simulation results,
estimated to be less than 2% for all simulations carried out in this work. The simulated organ doses overestimated
the measured ones in most of the cases. These deviations are mainly caused by the differences between the
constructed computational model and the actual physical phantom employed for measurements. These errors are
partly caused by the registration process between the computational model and the physical phantom, partly related
to differences in terms of material composition, since the physical phantom is made of three different tissue
equivalent materials (bone, lung, and soft tissue), while the elemental compositions of the different organs have
been implemented into the simulations according to the ICRP report 89 [33]. For skeleton dose measurements,
most of the TLDs were inserted in the spinal cord while in simulations all bones contributed to skeleton dose,
resulting in 8.3% underestimation. Radimetrics™ software underestimated organ doses compared to TLD
measurements by a mean absolute difference of 26% for most organs, except the brain and eyes. A slight
misalignment of CT images of the physical phantom with the stylized phantom used by Radimetrics™ was
observed in the head region, which explains the overestimation of the absorbed dose to these two organs by about
73%. However, the physical phantom utilized in this work is anthropomorphically similar to the reference man
computational phantom, whereas the stylized computational phantom used by Radimetrics™ doesn’t reflect the
anatomical features of this model. Radimetrics™ provides a simple protocol-based registration of CT scan
localizer or topogram to predefined anatomical landmarks in the stylized phantom without resorting to any form
of deformable registration. The acquisition parameters that Radimetrics™ used in this simulation were extracted
from DICOM header information and may introduce extra errors to the results. Therefore, the results presented in
Figure 4 confirm the good agreement between exact simulations and experimental measurements (within the range
[-8.3% - 22%]). The differences between estimated organ doses obtained from TLD measurements and exact
simulations were not statistically significant (P-value=0.53).

The accuracy of organ dose estimation is directly dependent on the accuracy of the constructed computational
model representing patient’s anatomy and the modelling of exposure conditions [23]. The uncertainty associated
with the construction of patient-specific computational phantoms was investigated in our previous study, where
the mean absolute differences between organ doses estimated from a reference model (manual segmentation) and
those estimated from the constructed patient-specific model were within the range [0.5% - 29%] with a mean value
of 9.1% [5]. In this work, we further analysed the organ dose uncertainties associated with irradiation conditions.
In this context, the patient’s dose profile calculated from exact simulations (input parameters obtained from raw
CT projection data) against image-based simulations (input parameters derived from DICOM header of CT
images) was investigated. The extra errors introduced to the simulation results caused by the smoothed tube current
modulation, lack of knowledge about tube start angle and ignoring the overranging distance were considered. In
the exact simulations, we simulated 16’854 projection points where the mAs values were known for each point.
For the image-based simulation, the number of simulation points was determined based on the intervals in the Z
direction (scan length / Z-interval) and the mAs values were reported in each axial slice of CT images. According
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to Figure 6, using only longitudinal current modulation introduces an extra error within the range [-10% - 13%]
(mean=3.85%) to the simulation results. The value of total tube current time product of the examination obtained
from CT raw data is 6.6% higher than that calculated from CT DICOM images owing to the smoothing of the
angular current modulation. As seen in Figure 6, there are substantial differences between organ doses produced
by exact simulations and the results based on the deviated tube starting angles within the range [-22% - 110%].
The impact of tube start angle on the calculated doses for small and superficial organs (e.g. thyroid and testes) is
significant. The overranging length and dynamic collimation was modelled in this simulation. The dose efficiency
of dynamic collimation has been reported to be in the range of 90% in case of full beam collimation on Siemens
CT scanners, which significantly reduces the dosimetric impact of overranging [27]. The impact of the number of
simulation points on organ doses was investigated in the condition where the start angle was exactly modelled
according to the information extracted from CT raw data and accordingly the angular positions of the simulated
source points were exactly matched to the exact simulation scenario. By increasing the simulation intervals in the
z-direction, the uncertainty for estimation of the organ dose slightly increases. However, the difference between 2
mm interval and 6 mm interval does not show any significant impact on the dosimetric results. For large organs,
the impact of simulation parameters on organ absorbed doses is less than that for small organs like the testis and
thyroid. Since Monte Carlo simulations provide the mean deposited energy per particle for a specific source
position, organ absorbed doses are calculated based on the summation of the deposited energy multiplied by the
tube current time product for all simulated source positions. Therefore, it is expected that for large organs, the
simulation parameters are compensated during this summation while for small organs or partially irradiated organs
in the border of CT examination, the simulation parameters play important roles in organ level dosimetry. We also
anticipate improved modelling accuracy using the new version of MCNP code (version 6.2).

This study bears a number of inherent limitations. First, the experimental measurements using the
anthropomorphic phantom were performed only once using a limited number of TLDs, which might introduce
some statistical uncertainties. Second, this study is limited to a single CT scanner and a single set of acquisition
parameters. Third, a single physical phantom (adult male) was studied while it can be extended to other categories,
e.g. female and paediatrics. Lastly, the personalized computational model was constructed using deformable
registration where the uncertainties associated with the registration algorithm introduced some extra errors to the
simulation results. Thanks to advances in deep learning algorithms, patient-specific dosimetry is becoming feasible
in the clinic. Using deep neural network algorithms, patient-specific computational models can be constructed
from CT images through automated segmentation [15, 34]. Furthermore, the dose map of an individual patient
commonly obtained from computationally expensive Monte Carlo simulations can be directly generated through
deep learning approaches [35].

V. Conclusion

An experimental setup was performed in this work to evaluate the accuracy of Monte Carlo-based personalized
organ-level dosimetry from CT examinations. Individual patient dose profiles can be accurately estimated using
the developed simulation framework. Investigations considering different CT scanners and scanning protocols can
be conducted to optimize CT technologies and scanning protocols. The validated CT scanner model could be
employed in personalized CT dosimetry where the patient-specific computational model is constructed using
different approaches. We also assessed the dosimetric impact of input parameters in organ-level dose simulation.
It can be concluded that, when the information from the CT raw projection data is not available, the simulation
results could be acceptable if the input parameters obtained from CT image DICOM header are correctly employed
in the simulation setup. In this context, the longitudinal tube current modulation should be implemented at least
by averaging simulations with three random tube start angles. The number of simulation points should be defined
appropriately in the Z direction and in case of dynamic collimation, over-ranging length can be ignored. Hence,
the methodology can be further expanded to produce an accurate MC simulation toolkit with a reduced
computational burden.
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Abstract

This review sets out to discuss the foremost applications of artificial intelligence (Al), particularly deep learning
(DL) algorithms, in single-photon emission computed tomography (SPECT) positron emission tomography (PET)
imaging. To this end, the underlying limitations/challenges of these imaging modalities are briefly discussed
followed by a description of Al-based solutions proposed to address these challenges. This review will focus on
mainstream generic fields, including instrumentation, image acquisition/formation, image reconstruction and low-
dose/fast scanning, quantitative imaging, image interpretation (computer-aided detection/diagnosis/prognosis), as
well as internal radiation dosimetry. A brief description of deep learning algorithms and the fundamental
architectures used for these applications is also provided. Finally, the challenges, opportunities, and barriers to
full-scale validation and adoption of Al-based solutions for improvement of image quality and quantitative
accuracy of PET and SPECT images in the clinic are discussed.
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I. Introduction

Artificial intelligence (Al) approaches, particularly deep learning (DL) techniques, have received tremendous
attention during the last decade owing to their remarkable success in offering novel solutions to solve complex
problems. Novel Al/DL-based solutions have created opportunities in clinical and research settings to automate a
number of tasks deemed to depend on human cognition, and hence require his intervention to facilitate the
decision-making process [1]. State-of-the-art Al/DL algorithms have exhibited exceptional learning capability
from high dimensional and/or highly complex data, accomplishing daunting challenging tasks in image and data
analysis/processing in general and multimodality medical imaging in particular.

In the context of medical imaging, challenging tasks, such as image segmentation/classification, data
correction (such as noise or artifact reduction), image interpretation (prognosis, diagnosis, and monitoring of
response to treatment), cross-modality image translation or synthesis, and replacing computationally demanding
algorithms (such as Monte Carlo calculations) have been broadly revisited and evolved ever since the adoption of
deep learning approaches [2, 3]. Al-based solutions have been proposed to address the fundamental
limitations/challenges faced by image acquisition and analysis procedures on modern molecular imaging
technologies. Considering the superior performance of deep learning approaches compared to conventional
techniques, a paradigm shift is expected to occur provided that task-specific pragmatic developments of these
algorithms continue to evolve in the right direction.

Single-photon emission computed tomography (SPECT) and Positron emission tomography (PET) imaging
provide the in vivo radiotracer activity distribution maps, representative of biochemical processes in humans and
animal species. The introduction of hybrid imaging combining functional and anatomical imaging modalities in
the form of combined PET/CT and PET/MRI systems has remarkably thrived the widespread adoption and
proliferation of these modalities in clinical practice. In this light, Al-based algorithms/solutions are developed to
overcome the major shortcomings or to enhance the current functionality of these modalities.

The applications of Al-based algorithms in PET and SPECT imaging ranges from low-level electronic signal
formation/processing to high-level internal dosimetry and diagnostic/prognostic modeling. For developments in
instrumentation, deep learning approaches have been mostly employed to improve the timing resolution and
localization accuracy of the incident photons aiming at enhancing the overall spatial and time-of-flight (TOF)
resolutions in PET. Image reconstruction algorithms are being revisited through the introduction of deep learning
algorithms wherein the whole image reconstruction process or certain critical components (analytical models) are
being replaced by machine learning models. A large body of literature is dedicated to quantitative SPECT and
PET imaging aiming at reducing the impact of noise, artifact, and motion, or to correct for physical degrading
factors, including attenuation, Compton scattering, and partial volume effects. The lack of straightforward
techniques for generation of the attenuation map on organ-specific standalone PET scanners or hybrid PET/MRI
systems inspired active scientists in the field to devise suitable strategies to enhance the quantitative potential of
molecular imaging. High-level image processing tasks, such as segmentation, data interpretation, image-based
diagnostic and prognostic models as well as internal dosimetry based on SPECT or PET imaging have
substantially evolved owing to the formidable power and versatility of deep learning algorithms.

Al/DL-based solutions have been proposed to undertake certain tasks belonging to the long chain of processes
involved in image formation, analysis, and extraction of quantitative features for the development of disease-
specific diagnosis/prognosis models from SPECT and PET imaging. In this review, the applications of AI/DL in
these imaging modalities are summarized in six key sections focusing on the major challenges/opportunities and
seminal contributions in the field. A concise overview of machine learning methods, in particular deep learning
approaches, is presented in section 2. The following section describes Al-based techniques employed in PET
instrumentation, image acquisition and formation, image reconstruction and low-dose scanning, quantitative
imaging (attenuation and scatter corrections), image analysis and computer-aided detection/diagnosis/prognosis,
as well as internal radiation dosimetry. The last section provides in perspective the major challenges and
opportunities for Al/DL-based solutions in PET and SPECT imaging.
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Il. Principles of machine learning and deep learning

Machine learning algorithms are considered as a subset of non-symbolic artificial intelligence, which tends to
automatically recognize a pattern and create/extract a desirable representation from raw data [4]. In machine
learning algorithms, the system attempts to learn certain patterns from the extracted features. Likewise, in deep
learning algorithms, a subtype of machine learning techniques, feature extraction, feature selection, and ultimate
tasks of classification or regression are carried out automatically in one step [5]. Different deep learning algorithms
have been proposed and applied in nuclear medicine [2, 6], including convolutional neural networks (CNNs) [7],
convolutional encoders-decoders (CEDs) [8], and generative adversarial networks (GANS) [5]. Some applications
of machine learning algorithms, such as classification, segmentation, and image-to-image translation, have
attracted more attention [9].

A number of deep learning architectures became popular in the field of medical image analysis, including
CED networks consisting of encoder and decoder parts designed to convert input images to feature vectors and
feature vectors to target images, respectively [8]. In addition, GANs consist of two major components: a generator,
mostly a CED network, and a discriminator, a classifier to differentiate the ground truth from the synthetic
images/data [8]. Different architectures based on these models were developed and applied on medical images for
different tasks, including image segmentation and image to image translation [10]. U-Net [11] is one the most
popular architectures built upon the CED structure via adding some skip connections for context capturing and
for creating a symmetric expanding path, which enables more efficient feature selection. Upgrading networks with
different modules, such as attention blocks/components [12] for highlighting salient features in the input data, and
residual connections [13] to prevent gradient vanishing, are intended to improve the overall performance of the
networks. Conventional GAN architectures have been upgraded in different ways, leading to conditional GAN
(cGAN) [14] and cycle consistency GANs (Cycle-GAN) [15] models, which consist of a CED in the generator
and discriminator components and task-specific loss functions. Cycle-GAN [15] is an unsupervised model for
image-to-image transformation, which does not require paired (labeled) datasets. In the Cycle-GAN model, two
generator and discriminator components are jointly involved in the training process, wherein images from two
different domains are used as input and output within a cycle consistency scheme. In the cycle consistency scheme,
the output of the generator component is used as input and vise versa with the calculated loss between the input
and output acting as regularization of the generator model [15].

Overall, deep learning-based algorithms outperformed conventional approaches in various applications [5].
Al-based approaches, especially deep learning algorithms, do not require handcraft features extraction, specific
data preprocessing, or user intervention within the learning and inferring processes [5]. The major applications of
deep learning approaches in SPECT and PET imaging are summarized in figure 1. Deep learning methods face
many challenges, including the fact that they are data hungry, require high computation burden for the training
process, and their black box nature (which hampers systematic analysis of their operation/performance) [7]. To
reach peak performance, these algorithms require a large number of clean and cured datasets for the training
process. However, data collection remains the main challenge owing to patients’ privacy and complexity of ethical
issues. Moreover, task-specific deep learning algorithms (i.e. for a particular organ/body region or radiotracer)
are able to exhibit superior performance compared to more general models which are commonly more sensitive
variability in image acquisition and reconstruction protocols scanner model, etc. Another challenge faced by the
application of deep learning algorithms in medical imaging is the high computational burden owing to the large
size of clinical data in terms of number of subjects and individual images (large 3-dimensional images or
sinograms) which might cause memory or data management issues.
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Figure 1. Main applications of deep learning-based algorithms in PET and SPECT imaging.

I1. Applications of deep learning in SPECT and PET imaging

Instrumentation and image acquisition/formation

Detector modules play a key role in the overall performance achieved by PET scanners. An ideal PET detector
should have a good energy and timing resolution and capable of accurate event positioning. Energy resolution is
a metric that determines how accurately a detector can identify the energy of incoming photons and as a result,
distinguish scatter and random photons from true coincidences. These parameters affect the scanner’s sensitivity,
spatial resolution, and signal-to-noise ratio (true coincidence versus scatters or randoms). Despite significant
progress in PET instrumentation, there are a number of challenges that still need to be addressed and where
machine learning approaches can offer alternative solutions to complex and multi-parametric problems.
Accurate localization of the interaction position inside the crystals improves the overall spatial resolution of
PET scanners. Since optical photons distribution is stochastic, particularly near the edges of the crystal, and owing
to multiple Compton scattering and reflection, accurate positioning of the interaction within the crystal is
challenging. In comparison with other positioning algorithms, such as Anger logic and correlated signal
enhancement, which rely on determination of the centre of gravity, machine learning algorithms led to a better
position estimation particularly at the crystal edges [16]. In this regard, Peng et al. trained a CNN classifier that
was fed with signals from each Silicon photomultiplier’s channel to the coordinates of the scintillation point for a
quasi-monolithic crystal [17]. Another study applied a multi-layer perceptron to predict the 3D coordinates of the
interaction position inside a monolithic crystal and compared the performance of this positioning algorithm with
anger logic for a preclinical PET scanner based on NEMA NU4 2008 standards [18]. Figure 2 depicts the adopted
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deep learning-based event-positioning scheme in monolithic detectors. To address the challenge of determining
the depth of interaction, a gradient tree boosting supervised machine learning algorithm was used to extract the
scintillation position, resulting in a spatial resolution of 1.4 mm full width half maximum (FWHM) for a 12 mm
thick monolithic block [19]. Recently, Cherenkov-based detectors attracted much attention owing to their superb
performance in terms of time and spatial resolution. Hashimoto et al. studied the performance of a deep learning
model for 3D positioning in this type of detectors through a Monte Carlo simulation study [20]. They demonstrated
that in comparison with conventional positioning methods, such as the centre of gravity determination and
principal component analysis, the deep learning model led to significantly improved spatial resolution.

Time resolution is another crucial factor in PET instrumentation which determines the achievable performance
using TOF imaging as well as the efficiency of randoms and scatter rejection. This factor depends on the physical
characteristics of the scintillator, photodetector quantum efficiency, and electronic circuits that convert the
scintillation light to electrical signals. Considering the physics of photon interactions within a crystal, only a
portion of produced scintillation photons reach the photodetector and contribute to positioning and timing. The
consequence of this is noticeable statistical uncertainty and noise-induced bias. Straightforward approaches, such
as feeding a CNN model with detector signals to estimate TOF information produced promising results. In a recent
study, a training dataset (reference) obtained by scanning a 8Ga point source shifted repeatedly with steps of 5
mm across the field-of-view of the PET scanner was used to train a deep learning algorithm [21]. The authors
reported a TOF resolution of about 185 ps, exhibiting significant improvement with respect to conventional
methods with a resolution of 210 to 527 ps. Gladen et al. developed a machine learning method, referred to as
self-organized map (SOM) algorithm, for estimating the arrival time of annihilation photons in a high purity
germanium detector (HPGe). SOM was able to cluster the TOF bins based on the signal shape and its raising edge
[22].

Recent studies substantiated the applicability of deep learning techniques to reliably estimate the interaction
position, energy, and arrival time of incident photons within the crystal with improved accuracy and robustness
to noise. One of the major difficulties in developing such models is the creation of labelled data (used as reference),
which require extensive experimental measurements. For example, preparing a training dataset for position
estimation requires a precise and reproducible setup of a single pencil beam and several measurements at any
possible spot within the field-of-view. A number of recent studies came up with novel ideas to perform these tasks
for monolithic crystal through using uniform or fan-beam sources or applying clustering to the training dataset
[19]. Likewise, for TOF training dataset, hundreds of point source positionings and data acquisitions are required
to create a realistic range of TOF variations. In this regard, artificial ground-truth data creation was proposed
through switching the PET detector waveforms forward and backward in the time domain [21].

Sophisticated machine learning-based algorithms for event positioning, timing, and/or calibration are
envisioned on next generation SPECT and PET systems on the front-end electronics using dedicated application-
specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAS) [23]. Furthermore, developing
a single model for extracting time, position, and energy simultaneously from photodetector outputs would be an
interesting approach that can potentially improve the overall performance of the nuclear imaging systems.
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Figure 2. Deep learning-based event positioning in monolithic detectors.

Image reconstruction and low-dose/fast image acquisition

Deep learning algorithms have recognized capabilities in solving complex inverse problems, such as image
reconstruction from projections. The process of image reconstruction for CT, PET, and SPECT using deep
learning techniques entails roughly the same procedure. Overall, four strategies were adopted for image
reconstruction using deep learning algorithms. The first approach consists of image-to-image translation in the
image space, wherein a model is trained to convert reconstructed images to another representation to improve
image quality through, for instance, noise removal, supper resolution modelling, motion correction, etc. [24]. The
second approach implements the training of the deep learning model in the projection space prior to image
reconstruction to avoid the sensitivity and dependence on reconstruction algorithms. In the third approach, a model
learns to develop non-linear direct mapping between information in the sinogram and image domains [25, 26].
The fourth approach, referred to as hybrid domain learning, relies simultaneously on analytical reconstruction and
machine learning approaches to reach an optimal solution for the image reconstruction problem [27, 28].

Two companies released Al-based solutions for image reconstruction in CT that were approved by the FDA
[29, 30]. DeepPET is one of the earliest works suggesting direct reconstruction from sinograms to images through
a deep learning approach [25]. Likewise, FastPET, is a machine learning-based approach for direct PET image
reconstruction using a simple memory-efficient architecture implemented to operate for any tracer and level of
injected activity [31].

Decreasing the injected activities is often desired owing to potential hazards of ionizing radiation for pediatric
patients or subjects undergoing multiple serial PET or SPECT scans over time for monitoring of disease
progression or in longitudinal studies. Moreover, decreasing the acquisition/scanning time increases scanners
throughput and enhances patients’ comfort, particularly elderly patients and those suffering from
neurodegenerative diseases where the risk of involuntary motion during scanning is more common.

Reducing the injected activity amplifies Poisson noise, thus impacting image quality, lesion detectability, and
quantitative accuracy of PET images. Devising optimized low-dose scanning protocols that preserve the critical
information in the images is desirable. Although there is a fundamental difference between fast and low-dose
scanning, both approaches have been interchangeably used in the literature. While both strategies produce noisy
images, the content and information collected by these scanning modes are completely different. In a fast scan,
the acquired data reflect the radiotracer kinetics in a short time course. For instance, if the scan starts right after
injection, much information would be missing owing to insufficient and/or slow uptake in some organs. Fast
acquisition protocols are also less sensitive to motion artifacts, though the patient’s effective dose is similar to
standard protocols. Conversely, low-dose scanning is performed with standard acquisition time, with a much
lower injected activity, which obviously decreases the effective dose.

There might be a need to redesign/optimize reconstruction algorithms for low-dose scanning to reach an
optimal trade-off between noise level and signal convergence. In low-dose/fast imaging, much critical information
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would be buried under the increased noise level wherein an efficient denoising algorithm would be able to recover
genuine signals [32].

To address the above-mentioned challenges, a number of denoising techniques to generate full-dose PET
images from corresponding noisy/low-dose counterparts have been proposed. Conventional techniques include
post-reconstruction processing/filtering algorithms [33, 34], anatomically-guided algorithms [35], statistical
modelling during iterative reconstruction [36], and MRI-guided joint noise removal and partial volume correction
[37]. Although these approaches attempted to minimize noise and quantitative bias, they still suffer from loss of
spatial resolution and over-smoothing. By introducing image super-resolution techniques, such as sparse
representation [38], canonical correlation analysis [39], and dictionary learning [40], effective noise reduction and
signal recovery in low-dose images is expected with minimum artifacts or information loss. The widespread
availability of hybrid imaging enabled to incorporate anatomical information in the reconstruction of low-dose
PET images [41].

In the last few years, Al algorithms have been widely used in the field of image reconstruction and
enhancement of image quality [42]. In most previous works, low-dose images were considered as the model’s
input whereas full-dose images were considered as the target to perform an end-to-end mapping between low-
dose and full-dose images [43-46]. Such models with a single input channel (only low-dose images) suffer from
the lack of sufficient information (for instance anatomical structures) to distinguish noise from genuine biological
signals. Therefore, adding anatomical priors into the training procedure would make the model more accurate and
robust. For resolution recovery, high-resolution anatomical information obtained from MR imaging was employed
along with spatially-variant bluring kernels to avoid information loss during image reconstruction [47]. Some
groups devised strategies for deep learning-guided denoising models for synthesizing full-dose sinograms from
their corresponding low-dose sinograms [48].

An elegant study by Xu et al. proposed a U-Net model with concatenation connection and residual learning
for full-dose reconstruction from a single 200" low-dose image [49]. Xiang et al. presented a novel deep auto-
context CNN model for synthesizing full-dose images from low-dose images complementing T1-weighted MR
images. In comparison with state-of-the-art methods, their proposed model was able to generate comparable image
quality while being 500 faster [44]. Another study employed a multi-input U-Net to predict 2D transaxial slices
of 8F-Florbetaben full-dose PET images from corresponding low-dose images, taking advantage of available T1,
T2, and Diffusion-weighted MR sequences [43]. Liu et al. employed three modified U-Net architectures to
enhance the noise characteristics of PET images through concurrent MR images without the need for full-dose
PET images with a higher signal-to-noise ratio [50]. In addition, Cui et al. [51] proposed a 3D U-Net model for
denoising of PET images acquired with two different radiotracers (¥3Ga-PRGD2 and *®F-FDG) where the model
was trained with MR/CT images and prior high-quality images as input and noisy images as training labels. Using
original noisy images instead of high-quality full-dose images makes the training of the model more convenient.
Unsupervised networks are always desirable in medical image analysis due to the fact that data collection with
accurate labels is challenging and/or time-cosuming. A foremost drawback of the above-mentioned models is that
model training was performed in 2D rather than 2.5D or 3D.

The 3D U-Net architecture was able to reduce the noise and PET quantification bias while enhancing image
quality of brain and chest ®F-FDG PET images [52]. To compensate for the limited training dataset, they pre-
trained the model using simulation studies in the first stage and then fine-tuned the last layers of the network with
realistic data. Kaplan et al. [53] trained a residual CNN separately for various body regions, including brain, chest,
abdomen, and pelvis to generate full-dose images from 1/10™ of the standard injected tracer activity. Training and
testing of the model were performed on only two separate whole-body '8F-FDG PET datasets.

GAN networks are widely used for image-to-image transformation tasks, especially image denoising.
Conditional GANs (cGAN) and cycle GANs (Cycle-GAN) are two well-established architectures commonly used
for style and domain transformation. In cGAN, unlike regular GAN, the generator and discriminator’s output is
regularized by an extra-label. For instance, Wang et al. estimated the generator error and used it beside the
discriminator loss to train the generator of a 3D cGAN more efficiently for denoising low-dose brain PET images
[45].

Cycle-GAN models do not necessarily require paired images as the model can learn in an unsupervised way
to map input images from source to target domains. Because of the iterative feature extraction process and the
presence of the inverse path in this architecture, the underlying characteristics of input/output data can be extracted
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from unrelated images to be used in the image translation process. Zhou et al. proposed a 2D Cycle-GAN for
generating full-dose with around 120 million true coincidences (for each bed position) from a low-dose image
with only one million true coincidences [54]. Lei et al. claimed that their Cycle-GAN model is able to predict
whole-body full-dose ®F-FDG PET images from 1/8" of the injected activity [55]. They used a generator with
residual blocks to learn the difference between low-dose and full-dose images to effectively reduce the noise. The
same group presented a similar model incorporating CT images to guide low-dose to full-dose transformation
using a relatively small dataset [56]. Their results revealed that the incorporation of CT images can improve the
visibility of organ boundaries and decrease bias especially in regions located near bones.

More recent studies implemented the training process using deep learning models in the projection space
instead of image space, demonstrating that training a model in the sinogram space could lead to more efficient
learning compared to training in the image space. Sanaat et al. trained a U-Net model with a dataset consisting of
120 brain 8F-FDG PET full-dose studies in the sinogram space [48]. The proposed model predicted full-dose
from low-dose sinograms and demonstrated the superior performance of deep learning-based denoising in the
sinogram space versus denoising in the image space (Figure 3). Furthermore, another study proposed a prior
knowledge-driven deep learning model for PET sinogram denoising [57]. Hong et al. [58] combined Monte Carlo
simulations and deep learning algorithms to predict high-quality sinograms from low-quality sinograms produced
by two PET scanners equipped with small and large crystals, respectively. In whole-body PET imaging, Sanaat et
al. compared the performance of two state-of-the-art deep learning approaches, namely Cycle-GAN and ResNet,
to estimate standard whole-body ®F-FDG PET images from a fast acquisition protocol with 1/8" of the standard
scan time [59]. Cycle-GAN predicted PET images exhibited superior quality in terms of SUV bias and variability
as well as the lesion conspicuity.

Though most of the above-described approaches could be applied to SPECT imaging, few studies dedicatedly
addressed low-dose and/or fast SPECT imaging studies. Recently, a supervised deep learning network was
employed to reduce the noise in myocardial perfusion SPECT images obtained from 1/2t, 1/4", 1/8", and 1/16%
of the standard-dose protocol across 1052 subjects [60]. Similarly, Shiri et al. exploited a residual neural network
to predict standard SPECT myocardial perfusion images from half-time acquisitions [61]. Raymann et al. used a
U-Net architecture and XCAT phantom simulation studies of different regions of the body to reduce noise in
SPECT images [62].

Generalizability and robustness of deep learning models are two significant factors that show how much a
model is trustable and the results robust and reproducible for normal/abnormal unseen datasets. These two factors
are largely linked to the diversity and number of training samples. It is very common to exclude abnormal cases
prior to training or evaluation of a model to create a homogeneous training/test sample. Although this results in
better results, it will reduce robustness to a realistic dataset with a broad range of abnormalities. It is strongly
recommended to use both healthy/normal and unhealthy/abnormal subjects with a realistic distribution of the
samples. Moreover, to avoid overfitting and guarantee effective training of the model, application of relevant data
augmentation techniques is also recommended.

Using recurrent neural networks to decrease the scanning time and/or injected activity, especially in low-count
dynamic PET imaging studies would be an interesting field of research. In addition, applying self-attention
concepts to deep learning models would effectively enhance the performance of these models through indirect
down-weighting/elimination of irrelevant regions and information in low-dose images while emphasizing the
prominent/meaningful properties/information during the training process. Using realistic simulations to produce
gold standard data sets beside clinical images would help deep learning models to learn noise distributions from
a larger representative sample.
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Figure 3. Comparison between full-dose and low-dose brain PET image predictions in the sinogram and image domains.
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Quantitative imaging

A significant number of emitted photons undergo attenuation and Compton scatter interactions before they reach
PET and SPECT detectors. Scatter and attenuation lead to over- and under-estimation of activity concentration,
consequently resulting in large quantification errors [63]. To link the detected photons to the radiotracer activity
concentration, attenuation and scatter correction (ASC) should be performed in SPECT and PET imaging [63,
64]. In hybrid PET/CT and SPECT/CT images, the attenuation maps reflecting the distribution of linear
attenuation coefficients are readily provided by CT images.

The main challenge for ASC arises in SPECT-only, PET-only, as well as PET/MR and SPECT/MR imaging
since MR images are not directly correlated to electron density, and as such, do not provide information about
attenuation coefficients of biological tissues [65, 66]. For SPECT-only and PET-only systems, emission-based
algorithms have been developed to address this issue [67]. The main advantage is the capability to account for
metallic implants and truncation artefacts [65, 66]. Including TOF information and anatomical prior improved the
quantitative accuracy of emission-based algorithms [68-70]. However, application of this methodology across
different radiotracers warrants further investigation.

In addition to emission-based algorithms, MR image-based algorithms, including segmentation and atlas-
based algorithms have been developed to estimate attenuation coefficients from concurrent MR images [66]. In
segmentation-based algorithms, different MR sequences, including T1, T2, ultra-short echo (UTE), and zero-time
echo (ZTE) have been used to delineate major tissue classes followed by assignment of pre-defined linear
attenuation coefficients to each tissue class. In Atlas-based algorithms [71, 72], pairs of co-registered MR and CT
images (considered as template or atlas) are aligned to the target MR image to generate a continuous attenuation
map. The main disadvantage of atlas-based algorithms is the high dependence on the atlas dataset and sub-optimal
performance for subjects presenting with anatomical abnormalities [73, 74].

Deep learning-based algorithms were proposed to address the challenges of conventional ASC approaches in
PET and SPECT imaging [2, 6]. Liu et al. [75] proposed converting non-attenuation corrected (NAC) brain PET
images to synthetic CT (sCT) images. A GAN model was trained using 100 patients (in 2D mode) and tested on
28 patients achieving a relative error of less than 1% within 21 brain regions. Dong et al. [76] applied a similar
approach in whole-body PET imaging using Cycle-GAN [76] reporting a mean PET quantification bias of 0.12%
+2.98%. Shi et al. [77] proposed a novel approach to generate sCT images in *™Tc-tetrofosmin myocardial
perfusion SPECT imaging taking advantage of two images produced using different energy windows providing
different representations of scattered and primary photon distributions. A multi-channel conditional GAN model
was trained using SPECT images reconstructed using different energy windows as input to predict the
corresponding sCT image. This model exhibited a normalized mean absolute error (NMAE) of 0.26+ 0.15%.

Hwang et al. [78] used emission-based generated activity distributions and pu-maps as input to generate high-
quality sCT images for *®F-FDG brain PET studies. They reported less than 10% errors for CT values using CED
and U-Net models. The same group applied the same approach in whole-body PET imaging using U-Net,
achieving a relative error of 2.22 £1.77% across 20 subjects [79]. Arabi and Zaidi [80] proposed the estimation
of attenuation correction factors from the different TOF sinogram bins using ResNet, reporting an absolute SUV
bias of less than 7% in different regions of the brain.

In addition to generating sCTs using PET emission data, direct generation of attenuation and scatter corrected
images from NAC images was reported. Shiri et al. [81] and Yang et al. [82] trained a 2D U-Net network using
brain 8F-FDG PET studies reporting PET quantification bias of less than 5% in different regions of the brain.
Arabi et al. [83] applied this approach to different brain molecular imaging probes, including F-FDG, ¥F-DOPA,
8F-Flortaucipir, and 8F-Flutemetamol and reported SUV bias of less than 9% in different brain regions (figure
4). Shiri et al. [84] trained 2D, 3D, and patch-based ResNets on 1000 whole-body ®F-FDG images and tested the
proposed models on unseen 150 subjects. They performed ROI-based and voxel-based assessments and reported
a relative error of less than 5%. Dong et al. [56] trained a 3D patch-based Cycle-GAN for whole-body F-FDG
images and reported a mean relative error of less than 5% calculated on malignant lesions. Emission-based ASC
approaches using deep learning algorithms are summarized in Table 1.

The generation of sCT from MR images using deep learning-based regression approaches were reported in a
number of studies. Li et al. used a 2D CED model to generate a 3-class probability map from T1-weighted images
for 8F-FDG brain images and reported an average bias of less than 1% in different brain regions [85]. Arabi et
al. reported on the development of a novel adversarial semantic structure GAN model using T1-weighted MR
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images to generate synthetic CT images for brain PET studies [86]. They reported a relative error of less than 4%
in 64 anatomical brain regions. Leynes et al. used ZTE and Dixon MR sequences in a multi-channel input
framework to train a U-Net model [87]. The network was trained on 10 subjects using a patch extraction strategy
and tested on 16 subjects consisting of the external validation set, reporting a quantification bias less than 5% in
different ROIs defined on bones and soft tissues of ®F-FDG and %8Ga-PSMA-11 PET images. Ladefoged et al.
evaluated 3D U-Net architectures with UTE MR sequence as input and reported a mean relative error of -0.1% in
brain tumours [88]. The main contributions of deep learning-assisted MRI-guided attenuation and scatter
correction in emission tomography are summarized in Table 2.

Most deep learning-based ASC studies focused on brain imaging, which is less challenging compared to
whole-body imaging where the anatomical structures are more complex with juxtapositions of various tissues
having diverse attenuation properties and irregular shapes. There is obviously a need to evaluate these algorithms
in more challenging heterogeneous regions, such as the chest and abdomen [84]. Moreover, the majority of these
studies were performed using only one radiotracer (mostly 8F-FDG) which raises questions regarding the
generalizability of the models and the need for retraining and reevaluation on other tracers [83]. The size of
training and evaluation sets is another limitation of deep learning-based ASC as the performance of these
algorithms depends on the training sample. To the best of our knowledge, only two studies, one focusing on brain
imaging [89] and the other on whole-body imaging [84], which used a large number of training sets. Most deep
learning-based ASC studies were performed in PET imaging with a limited number of works reported for SPECT
imaging [77, 90].
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Figure 4. Comparison of PET images corrected for attenuation using CT-based, segmentation-based (containing background
air and soft-tissue) (SegAC), and deep learning-guided (DLAC) approaches together with the reference CT image for 18F-
FDG, 8F-DOPA, 8F-Flortaucipir, and 8F-Flutemetamol radiotracers. Difference SUV error maps are also presented for
segmentation- and deep learning-based approaches.
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Table 1.Summary of studies performed for emission-based ASC using deep learning algorithms.

Authors Modality Radiotracer Approach Algorithm Bo_dy Training Training/Test Input Output Evaluation Outcome LOS.S
region Function
Average PET
Liuetal. " 21 VOIs + quantification
[75] PET 18F-FDG NAC to sCT CED Brain 2D (200x180) 100/28 NAC sCT whole brain bias L2
—0.64+1.99
< 5% Average
Armanious . 7 VOlIs + PET
etal. [91] PET 18F-FDG NAC to sCT GAN Brain 2D (400x400) 50/40 NAC sCT Whole brin quantification Perceptual
bias
7VOls in 0.12% +2.98% | Adversarial
Dong et al. ! . Whole- Patches 5 Mean PET loss + cycle
[76] PET 18F-FDG NAC tosCT | Cycle-GAN body (64x64x16) 80/39 NAC sCT drleffei:(r)?]r;t quantification  consistency
i bias loss
SUV not
Colmeiro et Whole- 3D reported
al. [92] PET 18F-FDG NAC to sCT GAN body (128x12832) 108/10 NAC sCT MAE 889 +
10.5 (HU)
Photo peak
Shi etal. SPECT somre- — nactoscT . OON Cardiac ~ °D(16x16 4025 ﬁ(lez\?)igg sCT Voxelwise NMAE  L2+LGDL
[77] tetrofosmin Conditional x16) 0.26%= 0.15%
(114-126
keV)
. 2D (168x200) attenuation < 7% absolute
Arabi et al. . TOF - .
[80] PET 18F-FDG NAC to ResNet Brain 7 input 68/4 CV sinogram correction 63 praln PET L2norm
ACF channels and 1 bins factors regions quantification
output channel (ACFs) bias
PET
g'\eflnl_e'r:l'to;-d quantification
Hwang et PET 1gr-Fp-cit | MLAATo CAEand Brain 2D (200x200) 40/5cV activity sCT 4VOlsof  biasranging o
al. [78] sCT U-Net A brain from —8% to
distribution
—4%
and p-map
PET
quantification
MLAA- - -
Hwang et MLAA to Whole- Patches generated bone lesions Blz)lr?s Ibelsaif)ofs
al. [79] PET 18F-FDG SCT U-Net body (64x64x16) 80/20 activity sCT + soft- 299 +1.77% L1 norm
distribution tissues Soft-tissue
and p-map lesions: 1.31%
+ 3.35%)
MLAA-
. . generated Line-integral
[S;g]et all PET 18F-FDG MI;é_IA_\ LY U-Net V\ég(éle (3;:t3c2h:§2) 80/20 activity sCT Region-wise NMAE 3.6% | projection
Y distribution loss
and p-map
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PET

Shiri et al. NAC to . quantification
181] PET 18F-FDG MAC U-Net Brain 2D (256x256) 111/18 NAC AC 83 VOlIs bias — 0.10 + MSE
2.14
el Mean
g el PET 18F-FDG WA U-Net Brain 2D (256x256) 25/10 NAC AC 116vols | quantification o oo error
[82] MAC bias 4.0% + 121
15.4% (or 0SS)
18F-FDG
18F-DOPA < 9% Absolute
Arabi et al. 18F- NAC to . 7 brain PET
83] PET Flortaucipir MAC ResNet Brain 2D (128x128) 180 NAC AC regions quantification L2norm
18F- bias
Flutemetamol
25 leave-one-
out + 10 . ME 2.85 + .
Dong et al. PET 18F-EDG NAC to Cycle-GAN Whole- Patches patients x 3 NAC AC 6 VQIs in 501 Wasserstein
[56] MAC body (64x64x64) . lesions loss
sequential
scan tests
2D (154x154)
L Patch Voxelwise
Shiri et al. PET 18F-FDG NAC to ResNet Whole- (64x64x64) 1000/150 NAC AC and region- = RE%<5% | L2norm
[84] MAC body ;
3D wise
(154x154x32)
Input: p-
map + Projected
Xiang et al SPECT DCNN Chest + Phantom + attenuation Estimated
190] 9 : SPECT 90Y projections, (VGG and Abdomen 2D (128x80) 6 patients map scatter Voxelwise NRMSE 0.41 = MSE
Output: ResNet) P SPECT projections
scatter projection

projections

CED: Convolutional Encoder Decoder, GAN: Generative Adversarial Network, NAC: Non-Attenuation Corrected, sCT: Pseudo CT, VOI: Volume of Interest, HU: Hounsfield Unit, MAE: Mean Absolute Error, ACF:
Attenuation correction factor, CV: Cross-Validation, TOF: Time of Flight, ME: Mean Error, RE: Relative Error, NRMSE: Normalized Root Mean Square Error

81



Table 2. Summary of studies performed on MRI-guided synthetic CT generation using deep learning approaches.

Authors  Modality Radiotracer Approaches Algorithm Organ Training Training/Test Input Output Evaluation Error Fu%]?:ifon
Bradshaw PET BF-EDG MRI to tissue DeepMedic Pelvis Patch 12/6 T1T2 réigt?islsi‘t 16 soft-tissue MSE 4.9% Cross-entropy
et al. [94] labeling P (25%25x25) P map Y lesions ’ loss

Pretraining: 30
. MRI, Training 6 Multi-class
Jang etal. PET F.FDG MRIto tissue | go0 Nt Brain | 2D (340 x340) MRI UTE sCT 23 VOIs+ <1% soft-max
[95] labeling I whole brain e
Evaluation: 8 classifier
MRI
3-class Average error
Liu et al. 181 MRI to tissue 5 30/10 MRI to T1- AR 23 VOlIs + <1% in _
[85] 3 B labeling CER el ) () label 5 PET/MRI weighted pro?s:lllty whole brain the whole S
P brain
Arabietal. | per F_FDG MRI to tissue GAN Brain | oD (224 x224 40/2¢CV T rg[ggislsit 63 brain lessthan 4% | Cross-entro
[86] labeling x 32) P map y regions 0 Py
Mecheter 18p. MRI to q 2D (256%256) : _ _ _
etal. [96] PET F-FDG Segment SegNet Brain 12/3 TUT2 3 Tissue Cross-entropy
L1-loss,
S FDG ZTE and 30 bone RMSE 2.68% gi'?fde'riwce s
Leynes et PET | ®GaPSMA- = MRItosCT UNet | Pelvis Patch 10/16 Dixon scT  lesionsand60 | inboneand - qp) ) oy
al. [87] 1 (32x32x16) (fat/water) soft-tissue 4.07% in soft- Laplacian
multi-input lesions tissues difference loss
(LDL)
Camg) Gl PET BF-FDG MRI to sCT U-Net Brain | 2D (144x144) 40/5CV Bl sCT R MRE3%  L1norm
[97] ZTE whole brain
3D (192 . Mean relative
Ladefoged PET BE-FET MRI to sCT U-Net Brain x192x16) 79/4 CV UTE sCT 36 brain difference | Viean squared-
et al. [88] tumor VOlIs 0.1% error
gl:rr;%-d et PET BE-FDG MRI to sCT U-Net Brain I 23/47 ZTE sCT OVIOIBe || (EEEDENES || U ERIEE
al. [98] (64x64x16) whole brain -0.2% error
PET
quanitifaction
error within
HC-WAY- 20 brain VOls
if’”[g';]r et PET 100635 MRI to sCT U-Net Brain 2D2(§§)6 X 56/11 T sCT regions ~049+1.7% L1 error
’ 1C-DASB (VOls) 11C-WAY-
100635
—1.52+0.73%
11C-DASB
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Gong et al.
[101]

PET

1CPiB
9F-MK6240

MRI to sCT

U-Net

Brain

2D (160%160)

Multichannel

input of 5 and
35

35/5CV

1UTE
image
and 6
multi-echo
Dixon with
different

TEs

sCT

8 VOlIs

<2%

L1-norm

Ladefoged
et al. [89]

Pozaruk et
al. [104]

PET

F-FDG

MRI to sCT

U-Net

Brain

3D (192x 192
x16)
Multichannel

732/305

sCT

16 VOlIs

<1%

Ga-PSMA- GAN, U- ROlIs on the
) " i 0
PET 11 MRI to sCT Net Pelvis 2D (192x128) 18/10 Dixon sCT prostate <3%

CV: Cross-Validation, ROI: Region of Interest, VOIs: Volume of Interest, HU: Hounsfield Unit.

Mean squared
error

mean absolute
error
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Image interpretation and decision support

Image segmentation, registration, and fusion

Computer-aided tools for the analysis and processing of medical images have been developed to improve the
reliability and robustness of the extracted features. Advanced machine-learning techniques are being developed to
learn 1) effective similarity features, 2) a common feature representation, or 3) appearance mapping, in order to
provide a model that can match large appearance variations [106, 107].

Accurate organ/tumor delineation from molecular images is mainly used in the context of oncological PET
imaging studies for quantitative analysis targeting various aspects, including severity scoring, radiation treatment
planning, volumetric quantification, radiomic features extraction, etc. However, this is challenging owing to the
poor spatial resolution and high statistical noise of molecular images. In current clinical practice, image
segmentation is typically performed manually, which tends to be labor-intensive and prone to intra- and inter-
observer variability. A number of recent studies explored the potential of DL-based automated tumor segmentation
from PET or hybrid PET/CT examinations [108, 109]. Zhao et al. used a U-Net architecture for tumor delineation
from ¥F-FDG PET/CT images within the lung and nasopharyngeal regions [110, 111]. Blanc-Durant et al.
demonstrated the feasibility of 8F-fluoro-ethyl-tyrosine (**F-FET) PET lesion segmentation using a CNN model
[112]. Leung et al. developed a modular deep-learning framework for primary lung tumor segmentation from
FDG-PET images with a small-size clinical training dataset, generalized across different scanners, achieving a
Dice index of 0.73. They addressed the limitations of the small size of the training dataset as well as the accuracy
and variability of manual segmentations used as ground truth by using a realistic simulation dataset [113]. Wang
et al. proposed a deep learning-assisted method for automated segmentation of the left ventricular region using
gated myocardial perfusion SPECT [114].

Roccia et al. used a DL algorithm to predict the arterial input function for quantification of the regional cerebral
metabolic rate from dynamic ®F-FDG PET scans [115]. Park et al. developed an automated pipeline for
glomerular filtration rate (GFR) quantification of *™Tc-DTPA from SPECT/CT scans using a 3D U-Net model
through kidney segmentation [116].

Al-assisted diagnosis and prognosis

Al algorithms have been employed to build models exploiting the information extracted from medical images to
perform a specific clinical task, e.g. object detection/classification, severity scoring, clinical outcome prediction,
treatment planning, and monitoring response to therapy [117]. Numerous works reported on automated detection
and classification of various pathologies (e.g. malignant vs. benign) in nuclear medicine [118]. For benign diseases,
cardiovascular SPECT and brain PET imaging were the main focus of Al applications [119]. Xu et al. developed
an automated pipeline using two cascaded V-NETSs for lesion prediction and segmentation to detect multiple
myeloma bone lesions from %Ga-Pentixafor PET/CT [120]. Togo et al. demonstrated the feasibility of cardiac
sarcoidosis detection from ¥F-FDG PET scans using Inception-v3 network (83.9% sensitivity and 87%
specificity), which outperformed conventional SUV max- (46.8% sensitivity and 71.0% specificity) and coefficient
of variance (CoV)-based (65.5% sensitivity and 75.0% specificity) approaches [121]. Ma et al. modified a
DenseNet architecture for the diagnosis of thyroid disease using SPECT images into three categories: Graves’
disease, Hashimoto, and subacute thyroiditis [122].

18F-FDG PET is extensively used as a diagnostic tool in neurodegenerative disorders, especially Alzheimer
Disease (AD) to improve diagnosis and monitor disease progression. The role of Al in AD diagnosis has been
recently reviewed by Duffy et al. [123]. Lu et al. developed an Al-based framework for the early diagnosis of AD
using multimodal *¥F-FDG PET/MR and multiscale deep neural network (82.4% accuracy and 94.23% sensitivity)
[124]. Choi and Jin proposed a straightforward deep learning algorithm based on only ®F-FDG PET images for
early detection of AD (84.2% accuracy) that outperformed conventional feature-based quantification approaches,
e.g. Support-Vector-Machine (76.0% accuracy) and VOI-based (75.4% accuracy) techniques [125]. Machine
learning algorithms have shown promising results in the classification of AD using brain PET images. Liu et al.
proposed a classification algorithm of FDG PET images composed of 2D CNNSs and recurrent neural networks
(RNNs) [126]. The CNN model was trained to extract the features in 2D, while the RNN extracted the features in
3D mode (95.3% accuracy for AD vs controls and 83.9% for mild impairment vs controls). In a follow-up work,
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they proposed a cascaded CNN model to train the multi-level features of multimodal PET/MRI images. First, a
patch-based 3D CNN was constructed, and then, a high-level 2D CNN followed by a softmax layer was trained to
collect the high-level features. Finally, all features were concatenated followed by a softmax layer for AD
classification [127]. The flexibility of Al algorithms enables learning the characteristics from heterogeneous data
that have meaningful correlations but not obvious for the human interpreter. Zhou et al. developed a deep learning
model for AD diagnosis using genetic input data, e.g. single nucleotide polymorphism in addition to radiological
brain images that outperformed classification performance relative to other state-of-the-art methods [128].

Radiomics and precision medicine

Radiomics refers to a quantitative set of features, e.g. intensity, texture, and geometrical characteristics obtained
from radiological images to discriminate quantifiable phenotypes that cannot be extracted through qualitative
assessment of images. A radiomics model is commonly built through 4 steps: i) image acquisition/reconstruction;
ii) VOI segmentation; iii) quantification/nand-crafted feature extraction; iv) statistical analysis [129]. While data-
driven deep learning approaches are different from feature-driven approaches, deep learning has the ability to
directly learn discriminative features from data in their natural raw form without the necessity to define VOIs or
extract engineered features [130].

SPECT and PET images represent biological and physiopathological characteristics that can be quantitatively
expressed using radiomics. Most studies focused on ®F-FDG PET images for prognosis (staging) or outcome
prediction using handcrafted radiomics [131-133]. Delta radiomics, as a metric for treatment outcome, has been
developed based on multiple time-point images [134]. Some studies investigated the advantage of using hybrid
images, e.g. PET/CT and PET/MR [135], extending the feature extraction to non-primary tumor volumes, such as
bone marrow and metastatic lymph nodes [136], and deriving features from parametric PET images [137].
Application of radiomics in SPECT has also been recently investigated by Ashrafnia et al. for prediction of
coronary artery calcification in [**™Tc]-sestamibi SPECT myocardial perfusion scans [138]. Rahmim et al.
evaluated the extraction of radiomic features from longitudinal Dopamine transporter (DAT) SPECT images for
outcome prediction in Parkinson’s disease [139]. DL-based radiomics was compared with feature-driven methods
to highlight the advantages of CNNs compared to handcrafted radiomics for response prediction of chemotherapy
in oesophageal cancer [140]. Wang et al. reported that CNNs did not outperform traditional radiomics in the
classification of mediastinal lymph nodes of non-small lung cancer. Yet, it was preferred, since it was more user-
friendly and required less data handling, and was less prone to feature selection bias [118].

Internal radiation dosimetry

Al has significantly impacted other fields of nuclear medicine through developing methods for radiation dose
monitoring, dose reduction strategies, building theranostic decision trees, and dose limit compliance. In the era of
precision medicine, personalized dosimetry is increasingly used in nuclear medicine. Targeted Radionuclide
Therapy (TRT) has been recently merged with the concept of theranostics, a promising technique in radiation
oncology. Despite the growing interest in dosimetry-guided patient-specific TRT, the one-fits-all approach is still
used in routine clinical practice. In the context of individualized dose profiling, the construction of patient-specific
computational models is the first step toward this goal [141]. Numerous works focused on the development of
pipelines for the construction of patient-specific computational models applicable in personalized dosimetry in
either therapy or diagnostic procedures [142-144]. Fu et al. developed a framework for automated generation of
computational phantoms from CT images [145]. They used cascaded modules consisting of i) registration of
patient CT images to an anchor phantom, ii) segmentation of organs using UNet structure, and iii) registration of
segmented organs inside the deformed anchor phantom to generate an individualized computational model that is
applicable for personalized dosimetry in both diagnostic and therapeutic procedures. Besides, the automatic
segmentation of organs at risk for various application sites of TRT has been extensively studied. Jackson et al.
developed a framework for automated monitoring of absorbed dosed in the kidneys of patients undergoing *"’Lu-
PSMA therapy [146]. They used a 3D CNN architecture for kidney segmentation to provide organ-level dosimetry
from post-treatment SPECT imaging to estimate renal radiation doses from TRT. Tang et al. proposed a CNN-
based algorithm for liver segmentation for personalized selective internal radiation therapy [147]. Kidney
segmentation has been conducted using a 3D UNet architecture on Y’’Lu SPECT images for uptake quantification
and dosimetry [148].
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MC simulations using patient-specific anatomical and metabolic features constitute the current gold standard
for internal dosimetry calculations. However, the approach suffers from exhaustive computational burden.
Recently deep learning approaches have been employed in patient-specific dosimetry for monitoring or treatment
plan optimization using molecular images (SPECT and PET). Akhavanallaf et al. developed an Al-based
framework based on ResNet architecture for personalized dosimetry in nuclear medicine procedures [149]. They
extended the key idea behind the voxel-based MIRD (Medical Internal Radiation Dose ) approach through the
prediction of specific S-values according to the density map derived from CT images followed by calculation of
the cumulated activity map from the predicted specific kernels (Figure 5). A physics-informed deep neural network
(DNN) was designed to predict the energy deposited in the volume surrounding a unit radioactive source in the
center of the kernel. The input channel was fed with a density map whereas the output was MC-based deposited
energy maps of the given radiotracer, referred to as specific S-value kernels. Lee et al. proposed a methodology
employing deep learning for the direct generation of dose rate maps from ¥F-FDG PET/CT images [150]. Gotz et
al. used a modified U-Net network for dose map reconstruction of patients receiving ’Lu-PSMA [151]. They
further extended their work for patient-specific dosimetry of Y’’Lu compounds by predicting specific dose voxel
kernels using Al algorithms [152]. Xue et al. developed a GAN model to predict post-therapy dosimetry for 7Lu-
PSMA therapy using pre-therapy ®#Ga-PSMA PET/CT examinations [153].
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Figure 5. Schematic representation of the voxel-scale dosimetry procedure. The top and bottom panels show the deep learning-
based specific S-value kernel prediction and MIRD-based voxel dosimetry formalism. Adapted from Ref. [149].

Despite the substantial growth and widespread adoption of patient-specific TRT, the “one-size-fits-all”
approach is still commonly used in the clinic. Del Prete et al. reported that in TRT, organs at risk rarely reach the
conservative threshold dose while most tumors receive submaximal doses, thus leading to undertreatment of
patients [154]. Therefore, retrospective studies involving patients receiving TRT allows the evaluation of the
treatment response to the one-dose-fits-all approach and would demonstrate the critical nature of the transition to
adaptive dosimetry-guided treatment planning. This technique requires a tool incorporating a module for automatic
segmentation of tumors/organs at risk along with a fast and accurate personalized dosimetry module.
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IvV. Challenges/opportunities and outlook

Over the past decade, there have been significant advances in deep learning-assisted developments which have
impacted modern healthcare. The potential of Al-based solutions in various molecular imaging applications has
been thoroughly explored in academic and corporate settings during the last decade. This article may, therefore,
be viewed as an early album covering some of the many and varied snapshots of this rapidly growing field. At this
time, these tools are still available only to experts in the field but there are many reasons to believe that it will be
potentially available for routine use in the near future.

The proposed Al-based solutions in PET and SPECT imaging can be divided into two groups: (i) Techniques
solely proposed to replace the current algorithms/frameworks due to their superior performance and (ii) approaches
that have rendered previously impractical/unfeasible scenarios/frameworks using conventional methods feasible.
In the first category, the promise of deep learning approaches consists in providing even slightly better
functionality/performance compared to existing methods rather than undertaking an unprecedented functionality
previously inconceivable. For example in PET instrumentation, Anger logic is used to determine the location of
the interaction within the detector modules. Novel approaches based on deep learning methods tend to solely
replace the Anger logic to achieve better localization and energy resolution. In this regard, novel deep learning
approaches play the same role and compete with existing methods.

Likewise, in MRI-guided synthetic CT generation, deep learning approaches serve as alternative to atlas- or
MRI segmentation-based techniques, whereas in the domain of noise reduction, current analytical
models/algorithms are being replaced by deep learning methods. In this regard, the proposed deep learning
methods would not revolutionarily alter the current frameworks or produce a paradigm shift, though they hold the
promise of providing more accurate outcomes or requiring less human intervention, and easy adaptability to new
input data. In this light, this category of Al-based solutions are more likely to be fully employed in clinical practice
or on commercial systems since less standardization, protocols and frame redefinition, and staff retraining is
required. For instance, deep learning-guided CT image reconstruction developed by GE Medical Systems obtained
FDA approval [30].

Conversely, the extraordinary power of deep learning approaches has rendered many previously
impractical/nonfeasible scenarios/frameworks feasible. This includes tasks, such as attenuation and scatter
correction in the image domain, estimation of synthetic CT images from the non-attenuation corrected emission
images, object completion of truncation date, image translation, and internal dosimetry. These processes are
inherently ill-posed and in many cases, there is a lack of a mathematical framework associated with these problems.
Such Al-based solutions, though offering unprecedented opportunities in PET and SPECT imaging, face
thoughtful challenges with respect to their deployment in clinical practice as they require extensive validation
using large clinical databases and a wide range of conditions.

Overall, a clear distinction should be made between the applications of Al-based solutions as processing or
decision support tools or the replacement of experts or clinicians in clinical practice. Considering the superior
performance of deep learning approaches, some algorithms are sufficiently mature and robust to be deployed in
clinical practice as decision support tools. These algorithms are supposed to replace conventional methods owing
to their superior performance or robustness. In this regard, any possible failure of the Al-based solution would be
treated in a similar way to existing approaches. Conversely, Al-based solutions deemed to fully replace the experts
are still considered as fantasy or science-fiction. Such algorithms still require additional development and
remarkable evolution to be independently employed in clinical setting. Nevertheless, these algorithms could play
a significant role in the short run as decision support tools to create a synergy between the capabilities of Al and
human expertise.

It is gratifying to see in overview the progress that Al has made, from early developments in neural networks
to complex deep learning architectures, and more recently towards continuous learning Al in radiology [47].
Challenges remain, particularly in the areas of clinical validation and liability towards wider adoption, ethical and
legal aspects and a number of other issues that need to be settled [155].
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Abstract

Obijectives The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning
approach suitable for clinical diagnosis of COVID-19 patients.

Methods In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as
input/output as training, test and external validation set, respectively, to implement the full-dose prediction
technique. A residual convolutional neural network was applied to generate full-dose from ultra-low-dose CT
images. The quality of predicted CT images was assessed using root mean square error (RMSE), structural
similarity index (SSIM) and peak signal-noise ratio (PSNR). Scores ranging from 1 to 5 were assigned reflecting
subjective assessment of image quality and related COVID-19 features, including Ground-glass opacities (GGO),
Crazy Paving (CP), Consolidation (CS), Nodular Infiltrates (NI), Bronchovascular thickening (BVT) and Pleural
effusion (PE).

Results The radiation dose in terms of CT dose index (CTDIvo) was reduced by up to 89%. The RMSE decreased
from 0.16+0.05 to 0.09+0.02 and from 0.16+0.06 to 0.08+0.02 for the predicted compared to ultra-low-dose CT
images in the test and external validation set, respectively. The overall scoring assigned by radiologists showed an
acceptance rate of 4.72+0.57 out of 5 for reference full-dose CT images, while ultra-low-dose CT images rated
2.7820.9. The predicted CT images using the deep learning algorithm achieved a score of 4.42+0.8.

Conclusions The results demonstrated that the deep learning algorithm is capable of predicting standard full-dose
CT images with acceptable quality for the clinical diagnosis of COVID-19 positive patients with substantial
radiation dose reduction.
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Abbreviations

SARS: Severe acute respiratory syndrome
COVID-19: Coronavirus disease 2019

CT: Computed tomography

GGO: Ground glass opacities

RT-PCR: Real-time reverse transcription-polymerase chain reaction
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
WHO: World Health Organization

DLP: Dose-length product

ED: Effective dose

SNR: Signal-to-noise ratio

CNR: Contrast-to-noise ratio

GAN: Generative adversarial network

CNN: Convolutional neural network

AEC: Automatic exposure control

FBP: Filtered backprojection

ADMIRE: Advanced modeled iterative reconstruction
CP: Crazy Paving

CS: Consolidation

NI: Nodular Infiltrates

BVT: Bronchovascular thickening

PE: Pleural effusion

CTDI: CT dose index
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I. Introduction

The emergence of novel coronavirus in December 2019 in Wuhan, China, known as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was recognized as a global public health concern by the World Health
Organization (WHO) [1]. SARS-CoV-2 disease 2019 or COVID-19 is an infectious disease that affects the upper
and lower respiratory tract and induces mild to severe respiratory syndromes, including pneumonia [2]. Real-time
reverse transcription-polymerase chain reaction (RT-PCR) is considered the standard method for COVID-19
diagnosis but is prone to a number of limitations, including the time of preparation and false-positive and false-
negative rates in different clinical samples [3]. Conversely, early studies confirmed that computed tomography
(CT) is a feasible approach for COVID-19 diagnosis [4]. Until recently, a wide range of clinical studies have been
conducted on the feasibility of CT findings in the early detection and management of COVID-19 patients.
However, there are still considerable knowledge gaps in the recognition of CT features linked to COVID-19 [4,
5].

As CT examinations account for the major cause of radiation exposure to the general public from diagnostic
medical imaging procedures, the development of low-dose CT imaging protocols is highly desirable. A recent
study demonstrated that DNA double-strand breaks, and chromosome aberrations increased in patients undergoing
a standard-dose CT examination while no effect on human DNA was detected in patients undergoing low-dose CT
scans [6]. Although a plethora of hardware and software technological advances in CT dose reduction have been
reported, including high-sensitivity detectors, new automatic exposure control (AEC) systems, adaptive x-ray tube
voltage and new image reconstruction algorithms, CT is still not a low-dose imaging modality [7]. Therefore, the
level of radiation exposure from this modality is still a matter of concern [8]. Task-specific low-dose imaging
protocols devised in both academic and corporate settings were adopted in clinical setting [9]. Zhou et al. [10]
suggested a low-dose CT protocol enabling to significantly reduce the dose-length product (DLP) and effective
dose (ED) without sacrificing signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Nevertheless,
converting from conventional full-dose to low-dose CT imaging protocols is not a simple task owing to the fear of
increasing the false positive rate due to the elevated level of noise and missing anatomical structures.

A number of professional societies, scientists and clinicians proposed appropriate low-dose CT protocols for
COVID-19 [11-14]. However, these protocols are not widely deployed in clinical centers for the same above
mentioned reasons. Clinicians and radiologists often tend to use established protocols employing full dose CT
imaging and often lack time or are reluctant to develop or adopt new protocols, especially during emergency
situations, such as during the COVID-19 outbreak.

In addition to conventional denoising approaches [15, 16], a number of deep learning algorithms have been
proposed for medical image analysis [17-19], PET [20] and SPECT [21] denoising as well as CT image denoising
and enhancement of image quality [10, 22-25]. Yang et al. [22] applied a generative adversarial network (GAN)
with Wasserstein distance and perceptual loss to denoise low-dose CT images. In another study, Kim et al. [23]
investigated the effect of different loss functions on convolutional neural network (CNN)-based image denoising
performance using task-based image quality assessment for various signals and dose levels. Shin et al. [24]
compared image quality of low-dose CT images obtained using a deep learning-based denoising algorithm with
low-dose CT images reconstructed using filtered-backprojection (FBP) and advanced modeled iterative
reconstruction (ADMIRE). They reported that deep learning techniques achieved better noise properties compared
to FBP and ADMIRE reconstructions of low-dose CT images. In this work, we aimed to use deep learning
algorithms on ultra-low-dose COVID-19 CT images to generate high quality images for a comparable diagnostic
accuracy with full-dose CT images.

1. Materials and Methods

Data acquisition

This retrospective study was approved by the ethics committees of the participating centers. Written consent was
waived with approval. We included 1141 volumetric chest CT exams from 9 medical centers, among which 312
volumetric CT images were from PCR-positive COVID-19 patients. COVID-19 patients were collected from three
centers and various scanner models, including Emotion 16 (Siemens Healthcare), NeuViz Dual (Neusoft Medical
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Systems) and Optima CT580 (GE Healthcare). All CT images were acquired in each center using the same protocol
and were reconstructed using a filtered back-projection (FBP) algorithm (Table 1).

Table 1. Acquisition parameters of full-dose and low-dose chest CT protocols.

Parameters Full-dose CT Low-dose CT
CTDI , (mGy) 6.5 (4.16-10.5) 0.72 (0.66-1.03)
Voltage (kVp) 100-120 90

Tube current (MA) 100-150 20-45

Pitch factor 1.3-1.8 0.75

Ultra-low-dose CT simulation

Based on Beer-Lambert law (I =I,exp (— [ u(e, x)dx)), the incident flux level of the ultra-low-dose scan (I,) can
be calculated by adequately scaling the incident flux level of the corresponding full dose scan. According to the
physics of CT transmission data (Eg. 1), we simulated ultra-low-dose CT projection data from full-dose projections
in the sinogram domain by adding a statistically independent Poisson noise distribution and a Gaussian noise
distribution.

I = Poisson(l,)+ Gaussian(m,, 62) (1)

where T is the measured noisy signal recorded in the detector channels, I, is the mean number of photons
passing through the patient determined based on a linear relationship with tube current (mAs). me and o2 are the
mean and variance of the electronic noise, respectively. The whole procedure is as follows:

1. Converting Hounsfield Units (HUs) to linear attenuation coefficients according to tube voltage in the full-

: _ HUX(uwater—Hair)
dose Image (:utissue - M{goi)r A+ .uwater)!

2. Generating projection data (pg,) from the attenuation map (g;sse) USiNg the Radon transform on the
full-dose image with the following setups: parallel beam geometry and 1080 projection angles in one
rotation,

3. Converting projection data to the transmission data, i.e. Tyg=exp (—psq),

4. Generating ultra-low-dose transmission data by multiplying ultra-low-dose scan incident flux by full-
dose transmission data, i.e. T,y = I&*¢ X Tyq,

5. Simulating the noise in ultra-low-dose scan by adding Poisson noise and Gaussian noise to the
transmission data, i.e. I,;; = Poisson(T,,,) + Gaussian(m,, 62),

uld
6. Calculating ultra-low-dose projection data in the sinogram domain, i.e. p,,;4 = log (i"—),
uld

7. Reconstruction of the ultra-low-dose images using FBP algorithm,
8. Converting the reconstructed attenuation map to HU using the equation in step 1.

In the above-mentioned steps for simulating ultra-low-dose scan, three parameters should be determined,
namely, the ultra-low-dose scan incident flux (I¥'4), the mean (me) and the variance (c2) of electronic noise. In
modern CT scanners, these parameters can be determined during routine calibration procedures. However, this is
not practical for multi-centric clinical database. Hence, these parameters were set based on fitting noise level of
the simulated ultra-low-dose CT images with a real ultra-low-dose CT image-set serving as reference. The
reference ultra-low-dose CT images were acquired under a task-specific ultra-low-dose protocol for the diagnosis
of COVID-19 on the MX 16-slice CT scanner (Philips Healthcare) with a reduced CT dose index (CTDl) of
about 0.72 mGy. The acquisition parameters of the protocol were as follows: tube potential of 90 kVp, tube current
range of 20-45 mA, 0.5 sec rotation time, and pitch factor of 0.75 with the FBP image reconstruction procedure.
To quantify the noise level of the simulated ultra-low-dose CT images, the noise index was produced based on the
method proposed by Christianson et al. [26]. The incident flux level (I1¥¢) was determined when the magnitudes
of noise levels in soft-tissue and lungs between simulated ultra-low-dose images were within 10% interval
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compared to that in the reference images. In electronic systems, me is usually calibrated to be zero whereas the
variance of electronic noise was initialized based on the method proposed by Zeng et al. [27] for the Definition,
Edge CT scanner (Siemens Healthcare). Subsequently, an observer study was performed to evaluate the quality of
simulated ultra-low-dose images against the full-dose images. Three physicists took part in this study to visually
score the apparent Poisson noise and streak artifacts owing to statistical errors originating from low photon
scanning and Gaussian noise. We categorized our dataset into multiple groups according to the scanner model and
imaging protocol used. Consequently, three image-sets were randomly selected from each group for the evaluation
process. Two ROIs (5x5 ¢cm?) were drawn in the soft-tissue (upper part of the liver) and lung regions without
including adjacent anatomic structures. The average standard deviation (STD) across the ROIs was calculated. The
simulation parameters were updated to obtain the same STD in two ROIs drawn on soft-tissue and lungs, while
the visual similarity between simulated ultra-low-dose image and full dose image was preserved.

Deep learning algorithm
Network architecture

We applied a deep residual neural network (ResNet) for image to image transformation in an attempt to predict
full-dose from ultra-low-dose CT images [28]. The residual model proposed by Wengi et al. [28] for image
classificaltion was modified for regression application in this study. Figure 1 presents the architecture of ResNet
employed in the current study. This network combines 20 convolutional layers, including two seven and one six
convolutional layers for low, medium, and high-level features extraction. For effective feature extraction, the
ResNet architecture adopts a dilated convolution with factors of 2 and 4 for seven intermediate and six last layers.
In this combination, every two convolutional layers are linked to a residual connection where a leaky rectified
linear unit (LReLU) acts as an activation function. The ResNet implemented in TensorFlow (version 1.12.1) was
utilized to transform ultra-low-dose to full dose chest CT images.

In this work, a 3x3x1 kernel was applied for all convolutions .The ResNet network has residual connections
that bypass the parameterized layers through combining the input and output of a block to render a smooth
information propagation, thus enhancing the training speed/quality. The ResNet architecture benefits from 9
residual blocks that proved efficient for improving the feature extraction process. This work avoids a large number
of trainable parameters. More detail of ResNet architecture is presented in Figurel.

Implementation details

In this study, 800 (112 COVID-19), 170 (100 COVID-19), and 171 (100 COVID-19) pairs of ultra-low-dose and
full-dose CT studies were used as input/output as training, test and external validation set, respectively, to
implement the full-dose prediction technique. The ResNet model with an architecture of a 2D spatial window equal
to 512x512voxels was employed (CT images were cropped to eliminate the bed and background air). To train the
network, Adam optimizer and L2norm loss function were adopted. The training of the network for full-dose
prediction took about 50 hours using a 2080T1 GPU, Intel(R) Xeon 2.30 GHz 7i CUP, and 64 GB RAM. After ten
epochs, the training loss reached its plateau.

Input

Output

Predicted high-dose CT
.3x3><1 Convy, 16 Kernel Batch Normalization LRelLU .Batch Normalization LReLU  3x3x1 Conv, 16 Kernel

Batch Normalization LReLU 3x3x1 Conv, 32 Kernel, 2 Dilation . Batch Normalization LReLU 3x3x1 Conv, 64 Kernel, 4 Dilation
[ = §
- SoftMax = = &= Residual

Conv: Convolution, LReLU: Leaky ReLU,
Figure 1. Architecture of the deep residual neural network (ResNet) along with details of the associated layers. Red color layer:

layer with dilation 1, yellow color layer: layer with dilation 2, brown color layer: layer with dilation 4. Conv: convolutional
kernel; LReLu: leaky rectified linear unit; SoftMax: Softmax function; Residual: residual connection.

100



Quantitative evaluation

Our qualitative and quantitative evaluation of the framework was performed on 170 tests and 171 external
validation set. To this end, ultra-low-dose and predicted images were compared to reference full-dose images. The
quality of CT images was assessed using voxel-wise root mean square error (RMSE). Moreover, the structural
similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were used as quantitative measures of the quality
of the predicted CT images.

Clinical evaluation

All patient chest CT images were categorized into three groups, including full-dose, ultra-low-dose and predicted
by lung windowing. Blind qualitative assessment of CT images was performed by a radiologist with ten years of
experience. The radiologists’ clinical evaluations were based on qualitative assessment, including appraisal of
lesion density, shape, position, and margin in addition to the analysis of lesion type. For the qualitative assessment,
scores ranging from 1 to 5 were assigned to each image as follows: excellent: 5, good: 4, adequate, 3, poor: 2 and
uninterpretable: 1. This scoring scheme was separately used for overall assessment of image quality, i.e.margin,
shape, and density as well as for lesion type. Lesion types included Ground-glass opacities (GGO), Crazy Paving
(CP), Consolidation (CS), Nodular Infiltrates (NI), Bronchovascular thickening (BVT) and Pleural effusion (PE).
To categorize lesions based on their location, they were attributed to any of the following anatomical regions in
the lung: left lung, right lung, upper zone, lower zone, middle zone, superior segment, posterior segment, central
and peripheral areas.

111. Results

The mean value of CTDIyo for the ultra-low-dose protocol based on which the simulation parameters are
determined is about 0.72 mGy (range 0.66-1.02 mGy) (Table 1). In contrast, this index ranges from 4.16 to 10.5
mGy with an average of 6.5 mGy for the full-dose protocol. According to the adopted methodology, the incident
flux was determined in the range 3.5- 4x108 for different scanner models.

The quantitative metrics, including RMSE, PSNR and SSIM for predicted full-dose and ultra-low-dose CT
images in the test and external validation sets are plotted as box plots in Figure 2 and summarized in Table 2. The
RMSE in units of normalized HU decreased from 0.16+0.05 to 0.09+0.02 and from 0.16+0.06 to 0.08+0.02 for
predicted full-dose images from ultra-low-dose CT images in test and external validation set, respectively. The
SIMM and PSNR increased from 0.89+0.07 to 0.97+0.01 and from 29.40+4.94 to to 33.60+2.70 for predicted full-
dose images in external validation set, respectively.

Table 2. Mean and STD of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and root mean square error
(RMSE) for the predicted and ultra-low-dose CT images in the test and external validation sets and statistical difference
between preicted and ultra-low-dose images.

Parameters Images Test External Validation

Predicted 0.09+0.02 0.08+0.02

RMSE
Ultra-Low-Dose 0.16+0.05 0.16+0.06
P-Value P <0.0001 P < 0.0001
Predicted 32.97+2.60 33.60+2.70

PSNR
Ultra-Low-Dose 28.44+3.87 29.40+4.94
P-Value P <0.0001 P < 0.0001
Predicted 0.97+0.02 0.97+0.01

SSIM
Ultra-Low-Dose 0.89+0.07 0.89+0.07
P-Value P <0.0001 P <0.0001
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Figure 2. Mean and STD of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and root mean square error
(RMSE) for the predicted and ultra-low-dose CT images in the test (top) and external validation (bottom) sets.

Overall results associated with assessment of image quality are shown in figure 3a wherein high image quality
variations can be observed in ultra-low-dose scans, while the predicted full-dose images are mostly scored good
or excellent. Overall scoring shows that the full-dose images received the highest score (4.72+0.57) whereas the
ultra-low-dose images were rated with the lowest scores (2.78+0.9). In figure 3b, the frequency of occurrence of
each lesion type in the different series of images is shown. As can be seen, GGO has the highest occurence in all
images, whereas mixed (all) had the same occurence for all images. Changes in the essence of features are as
follows: in the ultra-low-dose group, GGO is shifted to normal feature whereas consolidation is turned to GGO.

Lesion detectability scoring results are shown in figure 4. The excellent score (score=5) for CS in full-dose
images is in about 60% of the cases while it exceeds 90% in predicted full-dose CT images. CP, NI, and PE
achieved an excellent score (100%) in predicted images is more than 40%, 70%, and 40% of the cases, respectively.
The overall image quality scores assigned by human observers for different lesions are summarized in Table 3.
Table 4 presents the visual scoring of different images for different aspects of CT findings, including lesion status,
margin, shape, and density.
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Figure 3. Image quality scoring of different images (a), Lesion type frequency in different images (b). Ground-glass opacities
(GGO), Crazy Paving (CP), Consolidation (CS), Nodular Infiltrates (NI), Bronchovascular thickening (BVT), and Pleural
effusion (PE). Scores (excellent: 5, good: 4, adequate, 3, poor: 2 and uninterpretable: 1)

Figure 5 and supplemental figures 1 and 2 presents a representative example of a full-dose, ultra-low-dose, and
predicted full-dose CT images. The predicted CT images improved image quality, thus enabling most lesions to
be easily classified. Figure 6 and supplemental figures 3 and 4 shows an example of an outlier in which image
quality was improved; however, some relevant anatomical details were missing. Hence, the network failed to
recover the full detail of images and GGO lesion converted to CS. For an outlier in the predicted group, GGO was
shifted to consolidation.

Table 3. Image quality scores assigned by human observers for different lesions. Ground-glass opacities (GGO), Consolidation
(CS), Crazy Paving (CP), Nodular Infiltrates (NI), Bronchovascular thickening (BVT) and Pleural effusion (PE). Scores
(excellent: 5, good: 4, adequate, 3, poor: 2 and uninterpretable: 1).

Lesions Full-dose Ultra-low-dose Predicted
GGO 4.70+£0.47 2.67+0.61 3.90+1.09
CS 4.52+0.87 3.36+0.64 4.92+0.28
CP 5.00+0.00 3.00+0.00 4.50+0.71
NI 5.00+0.00 3.25+0.50 4.75+0.50
BVT 4.79+0.41 2.44+1.11 4.44+0.56
PE 5.00+0.00 2.50+1.05 4.50+0.55
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Table 4. Image quality assessment through visual scoring of different images documenting different aspects of CT findings.
Scores (excellent: 5, good: 4, adequate, 3, poor: 2 and uninterpretable: 1).

CT findings Full-dose Low-dose Predicted
Left Lung 4.66x0.55 3.14+0.69 4.52+0.51

Laterality -
Right Lung 4.70+0.53 3.12+0.65  4.52+0.51
Upper 4.44+0.63 2.94+044  4.25+0.45
3 Cephalocaudal distribution ~ Lower 4.68+0.54 3.10+0.60 4.48+0.51
g Middle 4.71+0.53 3.23+£0.56 4.48+0.51
.5 Central 4.67+0.58 3.33%£1.15 5.00£0.00
§ Peripheral 4.76x0.44 3.12+0.70 4.71+0.47
Location Superior 4.65+0.59 3.25+0.64 4.60+0.50
Posterior 4.68+0.54 3.23+0.62 4.65+0.49
Central & Peripheral 4.63+0.62 3.19+0.54 4.44+0.51
Margin 11l Defined 4.48+0.75 2.30£0.91 4.19+0.56
Well Defined 4.67+0.55 3.15+0.60 4.93+0.27
Shape Nodular 5.00+0.00 4.00+0.00 5.00+0.00
Wedged 5.00+0.00 3.33+0.82 5.00+0.00
Elongated 4.00+1.41 2.00+1.41 4.50+0.71
Confluent 4.54+0.66 3.00+0.66 4.54+0.51
Density Part Solid 4.83+0.41 2.40+1.14 3.60+1.52
Solid 4.60£1.26 3.40+0.70 4.80+0.42
Pure GGO 4.63+0.49 2.79+0.66 3.96+£1.27
GGO and CS 5.00+0.00 2.80+0.84 4.40+0.55

Iv. Discussion

Despite the controversies and heated debates around the potential haphazardous effects of low-levels of ionizing
radiation and the linear-no-threshold theory [29], concerns from radition exposure are still current [30]. Since CT
imaging is widely used in clinical diagnosis, prognosis, and assessment of response to treatment and follow-up of
a number of diseases, it is an incremental source of radiation dose to patients in modern healthcare [7, 31]. With
respect to the current COVID-19 crisis, chest CT imaging is the fastest diagnostic approach. However, it remains
a high dose imaging modality, and as such, developing a ultra-low-dose protocol enabling to maintain optimal
image quality is clinically relevant in public health management. Therefore, as a reponse to this outbreak and the
subsequent demand for CT imaging for mass population, an ultra-low-dose imaging approach was proposed to
minimize radiation exposure of the population. This is achieved through a deep learning approach introduced for
COVID-19 patients diagnosis by generating high-quality full-dose from ultra-low-dose CT images. It was shown
that although the simulated ultra-low-dose CT images were diagnostically compromised, the generated full-dose
images were appropriate for the task at hand. The proposed ultra-low-dose approach based on deep learning
algorithms succeded to reduce the CTDIo by up to 89%, reflecting a substantial reduction of the radiation dose
associated with diagnostic CT examinations.

A number of studies have assessed the role of low-dose CT for COVID-19 management [11-14]. Agostini et
al. [12], evaluated the feasibility and diagnostic reliability of a low-dose, long-pitch dual-source chest CT protocol
for COVID-19 patients in terms of signal-to-noise and contrast-to-noise ratio and Likert scales. They reported that
their low-dose CT protocol achieved significant dose reduction, lower motion artifacts with optimum signal and
contrast-to-noise ratio. However, this protocol is only applicable on third-generation dual-source CT scanners, and
as such, it not applicable on older CT imaging systems. Dangis et al. [14] examined the accuracy and
reproducibility of low-dose sub-millisievert chest CT for the diagnosis of COVID-19. They demonstrated that low-
dose CT has excellent sensitivity, specificity, positive predictive value, negative predictive value, and accuracy
for diagnosis of COVID-19 with a mean effective dose of 0.56+0.25 mSv. In the current study, the simulated ultra-
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Figure 4. Image quality scoring of different images. Ground-glass opacities (GGO), Crazy Paving (CP), Consolidation (CS),
Nodular Infiltrates (NI), Bronchovascular thickening (BVT), and Pleural effusion (PE). Scores (excellent: 5, good: 4, adequate,
3, poor: 2 and uninterpretable: 1).

low-dose CT images represent the outcome of a protocol with a significant reduction of CTDlyo (up to 89%)
compared to the corresponding full dose CT images, which is a good metric for comparing patient effective dose
and risks of ionizing radiation [32]. This is a commended effort in view of the current recommendations in radiation
protection [33], particularly for the diagnosis and follow up of sensitive population, such as pediatric patients and
pregnant women.

The results of this study demonstrated that by using CNNs, we could generate images with a significantly lower
dose and acceptable image quality. Although image quality in the predicted images was not exactly identical to
full-dose CT images, most COVID-19 features, including nodular infiltrate, consolidation, and crazy paving
features obtained high scores, almost similar to full-dose CT images.

We also demonstrated that the texture of COVID-19 lesions could be erroneously altered in the predicted CT
images, which would skew the diagnosis/scoring. We observed that in the ultra-low-dose group, GGO was shifted
to normal feature, whereas consolidation was shifted to GGO. In the low-dose group, the shift of GGO to normal
features might be due to closeness of mean HU value of GGO to normal. In addition, as the differences between
the HU value of GGO and consolidation lesions are located in the normal neighborhood, they may be depicted and
diagnosed as similar features. Likewise, in the predicted group, GGO was shifted to consolidation owing to the
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local induced bias noise pattern in ultra-low dose images, heterogeneity of lesions, and smoothing effect of deep
learning in some outlier cases. The low-dose simulation would result in overall zero bias (zero-mean noise signal)
with elevated noise variance depending on the underlying signals/textures and level of simulated low dose
scanning. Due to the fine texture as well as relatively low density (low CT numbers) of GGO lesions, the streak-
like noise patterns led to mostly positive bias and rougher textures in these lesions. As such, the likelihood of
misinterpretation of GGO with CP increased in the resulting synthetic standard-dose CT images. In addition, the
minimum widely used learnable kernel employed in the current study is (3x3), which would slightly smooth the
structures of the resulting synthetic images. The local positive noise-induced bias alomg with the smoothness of
the structures in the resulting CT images led to the misidentification of some GGO lesions with CP.

Although ultra-low-dose CT can be equally effective in COVID-19 detection and diagnosis as the full-dose
CT, it suffers from a number of limitations, particularly the increased noise level caused by photon deprivation.
One of the limitations of the present study was that during the clinical assessment, the ultra-low-dose images could
be easily identified by radiologists because of the high of noise present. This might have led them to be
subconsciously biased, hence assigning lower scores to these images. We reported outliers originating mostly from
the low quality of the simulated ultra-low-dose CT images (high noise level and/or noise-induced artifact) caused
by photon starvation in simulated corpulent patients. Application of the current method in COVID-19 imaging
warranted a thorough investigation of outliers owing to inter/intra-patient variation and noise variability.

Full Dose Ultra-Low Dose Predicted FD

£l

Figure 5. Representative full-dose
image and corresponding ultra-
low-dose and predicted full-dose
images.
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Full Dose Ultra-Low Dose Predicted FD

Figure 6. Outlier report: CT
images of a patient where the deep
learning algorithm improved image
quality but changed the patchy
lesion to consolidation in predicted
images. The red arrows pinpoint
chanaes in the identified lesions.

V. Conclusion

Ultra-low-dose CT imaging of COVID-19 patients would result in loss of critical information about lesion types.
However, the results presented in this work indicated that ResNet is an optimal algorithm for generating ultra-low-
dose CT images for COVID-19 diagnosis. Nevertheless, the deep learning solution failed to recover the correct
lesion structure/density for a number of patients and as such, further research and development is warranted to
address these limitations.
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Supplemental material

Full Dose Ultra-Low Dose Predicted FD

Supplemental Figure 1. Representative full-dose image and corresponding ultra-low-dose and predicted full-dose images
case-2.
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Full Dose Ultra-Low Dose Predicted FD

Supplemental Figure 2. Representative full-dose image and corresponding ultra-low-dose and predicted full-dose images
case-3.
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Full Dose Ultra-Low Dose Predicted FD

Supplemental Figure 3. Outlier report: CT images of a patient where the deep learning algorithm improved image quality but
changed the patchy lesion to consolidation in predicted images case 2.
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Full Dose Ultra-Low Dose Predicted FD

Supplemental Figure 4. Outlier report: CT images of a patient where the deep learning algorithm improved image quality but
changed the patchy lesion to consolidation in predicted images case 3.
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Abstract

Purpose: Computed tomography (CT) is among the most widely used medical imaging modalities in clinical
setting. Estimating patient-specific radiation dose and associated radiation risks is critical in optimization
procedures. We propose a deep learning-guided approach to generate voxel-based dose maps from whole-body
CT acquisitions.

Methods: Sixty-three whole-body CT images were converted to density maps with 5 mm? isotropic voxel size.
The voxel-wise dose maps corresponding to each source position/angle were calculated using Monte Carlo (MC)
simulations considering patient- and scanner-specific characteristics (SP_MC). The dose distribution in a uniform
cylinder was computed through MC calculations (SP_uniform). The density map and SP_uniform dose maps were
fed into a residual deep neural network (DNN) to predict SP_MC through as an image regression task. The whole-
body dose maps reconstructed by the DNN and MC were compared in the 11 test cases scanned with two tube
voltages through transfer learning with/without tube current modulation (TCM). The voxel-wise and organ-wise
dose evaluations, such as mean error (ME, mGy), mean absolute error (MAE, mGy), relative error (RE, %), and
relative absolute error (RAE, %), were performed.

Results: The model performance for the 120 kVp and TCM test set in terms of ME, MAE, RE, and RAE voxel-
wise parameters was -0.0302 = 0.0244 mGy, 0.0854 = 0.0279 mGy, -1.13 £ 1.41 %, and 7.17 £ 0.44 %,
respectively. The organ-wise errors for 120 kVp and TCM scenario averaged over all segmented organs in terms
of ME, MAE, RE, and RAE were -0.144 + 0.342 mGy, and 0.23 + 0.28 mGy, -1.11 + 2.90 %, 2.34 = 2.03 %,
respectively. The performance of our model was almost similar in the external test set, considering the fixed tube
current and tube current modulation scenarios.

Conclusion: Our proposed deep learning model is able to generate voxel-level dose maps from a whole-body CT
scan with reasonable accuracy suitable for organ-level dose estimation. Through the generation of a dose
distribution from a single source position, our model can generate accurate and personalized dose maps in few
seconds for a wide range of acquisition parameters.
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Abbreviations

CT: Computed Tomography

TCM: Tube Current Modulation

DL: Deep Learning

ICRP: International Commission on Radiological Protection
MC: Monte Carlo

SP_MC: Single Point Monte Carlo Dose

SP_DL.: Single Point Deep Learning Dose

SP_uniform: Single Point Monte Carlo Dose in a Uniform Material
WBCT: Whole-Body Computed Tomography

WBDM: Whole-body Dose Map

ME: Mean Error

MAE: Mean Absolute Error

RE: Relative Error

RAE: Relative Absolute Error
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I. Introduction

The capability of visualizing inside the human body through non-invasive medical imaging examinations is a
tremendous opportunity to diagnose various pathologies. X-ray Computed Tomography (CT) is one of the
prevalent imaging modalities used in the initial clinical diagnosis, follow-up, staging, radiation therapy planning
and in emergency departments to provide valuable information for a wide range of indications [1]. In addition, CT
is also commonly attached to nuclear medicine instrumentation, such as single-photon emission computed
tomography (SPECT) or positron emission tomography (PET), for concurrent SPECT/CT [2] or PET/CT [3]
imaging on hybrid imaging devices. At the same time, CT, one of the high-dose examinations, is responsible for
a significant part of ionizing radiation exposure of patients [4, 5]. The International Commission on Radiological
Protection (ICRP) [6] suggested estimating the radiation dose delivered to patients from medical imaging
procedures toward the optimization rule known as ALARA in order to minimize the risks through the appropriate
use of ionizing radiation.

The recent emphasis on personalized medicine and patient-specific justification/optimization substantiates the
critical demand to calculate specific parameters related to radiation risks [7-10]. The organ dose is a requirement
for patient-specific dose calculation and has a good correlation with radiation risks [9]. On the other hand, it has
been shown that the radiation dose delivered to specific organs can reach the deterministic dose levels, especially
in serial CT examinations, which is common practice in patients follow-up, e.g., in the recent Covid-19 pandemic
[11-13].

The estimation of organ doses can be performed using multiple methodologies. The most straightforward
approach uses conversion factors specific to the scanning protocols. An alternative option is to use dedicated
software tools, such as ImpactDose® and Radimetrics [14]. Both above mentioned software packages proved to
have a low correlation with organ doses calculated by more accurate Monte Carlo (MC) simulation tools using
patient-specific or reference computational models [15, 16], particularly when the Tube Current Modulation
(TCM) system is activated [17-19]. While MC calculations using patient-specific computational models is deemed
to be the most accurate approach and is often regarded as the gold standard technique, its downsides, including
computational time, high computational burden, and required expertise in computer programming, limit its
adoption in clinical setting. Exploiting the parallel computational power of GPUs enabled MC calculations to be
faster and more suited for adoption in clinical setting [20, 21]. Yet, the complexity associated with the technique
remains a significant hurdle. Deep learning-based algorithms are currently used in various medical imaging
applications, including image regression [22], registration [23], segmentation [24], radiation dosimetry calculation
[25, 26], and optimization [27, 28]. This study aimed to develop a fully automated method to estimate patient-
specific MC-based dose maps associated with whole-body (WB) CT examinations in real-time using deep neural
network algorithms.

1. Materials and methods

Study population

This study included 63 patients (35 male and 28 females) who underwent whole-body PET/CT imaging on a
Biograph mCT scanner (Siemens Healthineers, Erlangen, Germany). All CT scans were performed in helical mode
using 120 kVp tube potential, and Siemens CareDose4D TCM was activated. Images were reconstructed with the
extended 70 cm field-of-view option, voxel size equal to 1.523 mm in the axial plane, and 1.4 mm slice thickness
using filtered-back projection algorithm. Figure 1 shows the flowchart of the different steps followed in this study
protocol.

! https://fimpactdose.software.informer.com/
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Figure 1. Flowchart summarizing the different steps involved in the implementation of the whole process. The blue dashed
line shows the 90 kVp generalizability test. DL: Deep learning. MC: Monte Carlo.

Monte Carlo simulations

CT HU values were converted to density maps using linear multi-regression models for the segmentation of CT
images into different tissue densities, as proposed by Schneider et al. [29]. Subsequently, the resulting density
maps were resampled to 5 mm?® cubic isotropic voxel size. The essential components incorporated into MC
simulations, including accurate source model and protocol-related parameters, were adopted from our in-house
MC simulation code developed and validated in a previous study [30]. The acquisition parameters, including tube
voltage, collimation width, table speed, rotation time, pitch, and tube current modulation, were implemented in
this simulation. This simulator is based on the MCNPX general-purpose Monte Carlo radiation transport code
(version 2.6) [31].

The output of MC simulations is a 3D dose map for a single source position (SP_MC) with limited axial
coverage. Monte Carlo simulations were run for multiple discrete source positions to simulate helical whole-body
CT scanning. A random starting location was generated for the source owing to the lack of information about the
tube start angle in the DICOM header. Accordingly, a spiral motion of the source position in 2 mm axial intervals
along the Z-axis (craniocaudal axis) was modeled. Finally, considering the longitudinal tube current modulation
(extracted from the DICOM header for TCM), simulated dose maps for each source position was multiplied by
the corresponding tube current and were superimposed to construct the complete voxel dose distribution.
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Data preparation

MC calculations were performed for a total number of 63 patients with 120 kVp tube voltage. Then, by keeping
all parameters similar, except kVp, MC calculations were repeated with 90 kVp tube voltage for patients in the
test group (11 cases) plus 20 cases randomly selected from the train and validation groups to perform the fine-
tuning process described later in the text. The cases from the train and validation were used for performing transfer
learning and fine-tuning.

Monte Carlo calculation of radiation dose in a uniform cylinder at 90 and 120 kVp

A uniform water-filled cylinder with a 715 mm diameter located within the CT gantry was simulated, and the dose
map for a single source position (zero degrees, located at the anterior point) was calculated for a large number of
simulated events (4x10%° particles) tracked by the MC simulator. This dose map, referred to as the single-source
position uniform map (SP_uniform), was calculated for two tube voltages, namely 90 and 120 kVp for a single
source. It should be mentioned that the 90 kVp uniform dose maps were used for testing the network
generalizability through fine-tuning.

Generation of single-source position images and corresponding density maps

The body contour was automatically segmented on all CT images utilizing analytical image processing methods.
All body contour segmentations were reviewed and confirmed visually. The MC output images (SP_MC) having
a size of 96x144x17 voxels were saved, and the density map for the same axial coverage range cropped to the
same size. The SP_uniform images were cropped to the same axial coverage body contour and normalized to a
conversion factor (CF) calculated by Eq. (1) to compensate for the effect of attenuation taking place in the
SP_uniform dose calculation on the large cylinder.
CE = e(dsp.mc = dsp_uniform)_ Eq. (1)

where e is Euler's number, dgp . is the distance from the edge of the body contour to the x-ray tube source in
a specific source position. dsp yniform 1S the distance from the edge of a large cylinder simulated to the source in
a specific position. Since the cylinder size was larger than the size of our largest patient, the CF was always greater
than 1. Figure 2 shows the examples of SP_MC, SP_Uniform, and the corresponding CT slices, when the source
is in the right lateral position. The two images of SP_uniform and SP_MC were normalized by all voxel intensities
by a fixed value. Each source position was saved in a separate image and used for training the neural network.
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Figure 2. Examples of axial and coronal slices of CT, SP_Uniform, and SP_MC dose maps corresponding to a single source
position/angle. In these cases, the x-ray tube is in the right lateral position.
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Network architecture and training details

From all 63 WB CT images (27,632 source positions), 11 cases (4792 source positions) were used as the untouched
test set. Figure 1 shows the steps performed in this study and examples of mentioned three images of SP_uniform,
SP_MC and density maps. The SP_unifrom in a unique source position/angle and the density map images were
fed as input to the neural network to predict the SP_MC image as the output in the corresponding source
position/angle. A deep residual network (ResNet) was trained in Python (TensorFlow) to generate the SP_MC
images from the two mentioned inputs. The ResNet is composed of 20 convolutional layers (19 layers with kernel
size 3x3x3 and the last layer with kernel size 1x1x1) where the image size is kept constant through the different
layers (no down or up pooling was applied). Different feature levels, including low, medium, and high, were
extracted by using dilation of 0 (first seven layers), 2 (six middle layers) and 4 (six last layers), respectively, in a
convolutional kernel. Every two layers were connected using a residual connection to avoid gradient vanishing or
exploding. The training was continued for 100 epochs using the "Adam™ optimizer and L2 loss function. The initial
learning rate of 10~ was reduced in a piecewise method every five epochs. The trained network was tested on the
external group datasets, and the deep neural network output was named SP_DL.

Generalizability evaluation on 90 kVp data (Fine-tuning)

To test the generalizability of the proposed model for kVps other than 120 kVp, we performed MC simulations to
calculate the voxel dose maps by considering the 90 kVp spectrum on the untouched test group (11 cases) and 20
patients selected from the train and validation group. The same pre-processing steps mentioned earlier were
followed to derive SP_MC, SP_uniform, and density maps at 90 kVp. SP_uniform and density maps were fed to
the trained network on 120 kVp data, and the process of fine-tuning continued for 50 epochs by body fine-tuning
approach, i.e., the weights from the trained network on 120 kVp data served as the initial weights for 90 kVp fine-
tuning. SP_uniform and density maps were fed to the fine-tuned network on 90 kVp training datasets, and SP_DL
images at 90 kVp were generated for the same test group (11 cases). These SP_DL images were compared to
SP_MC images at 90 kVp.

Dose map reconstruction from single source positions

The dose maps from the single source position were corrected by factors related to the tube calibration described
in a previous study [30]. The tube current was extracted from the DICOM header. Then, the dose maps
corresponding to a single source position/angle were superimposed to reconstruct the whole-body dose maps
(WBDM) using both SP_MC and SP_DL dose maps, referred to as WBDM_MC and WBDM_DL, respectively.
The final WBDM was a matrix of 96x144xZ voxels, where Z is the image size along the Z-axis, and the voxel
value is the absorbed dose in that voxel in units of milli-gray (mGy). We have considered two strategies for WBDM
calculation, fixed 100mA tube current (FTC) and TCM activated according to the actual tube current recorded
from the DICOM images.

Evaluation metrics

1) Voxel-wise quantitative dose evaluation

The WBDM_DL images were compared with WBDM_MC images serving as the standard of reference
(ground truth) at the voxel level. VVoxel-wise parameters, including structural similarity index (SSIM), mean error
(ME, mGy), mean absolute error (MAE, mGy), relative error (RE, %), relative absolute error (RAE, %), and
gamma pass rate were calculated. Gamma pass rate, as described earlier by Low et al. [32] with 1 mm and 1%
criterion, was considered.
2) Organ-level dose evaluation

In addition to voxel-wise errors, eight organs, including the Liver, Heart, Bone, Kidneys (both), Spleen,
Bladder, Lungs (both), and brain, were segmented manually on the test WBCT images. The organ doses were
estimated by calculating the mean voxel value on WBDM images inside the organ segmentations. The organ
absorbed doses calculated on WBDM_DL and WBDM_MC were compared for each organ in terms of mean error
(ME, mGy), mean absolute error (MAE, mGy), relative error (RE, %), and relative absolute error (RAE, %). These
voxel-wise and organ-wised metrics were calculated for both 90 kVp and 120 kVp external datasets, considering
both FTC and TCM scenarios.
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3) Statistical analysis

The Kolmogorov-Smirnov test was used to check the normality of distributions. The mentioned organ-wise
evaluation metrics were compared between the two groups of 90 and 120 kVps using the Mann-Whitney test. P-
values less than 0.05 were considered statistically significant.

I1. Results
The age of included patients was 58.9 + 17.2 years. The average patients' water equivalent diameter was 26.6+2.7

(range 16.45 - 32.95) cm. The average tube current implemented by TCM was 140.7 £48.71 (56 to 306) mA. Table
1 summarizes the demographic information of patients.

Table 1. Demographic description of the test and train & validation groups

metric Train & Validation Test

sex 29 male, 23 female 6 male, 5 female
age 60.1 £16.9 53.2+£17.9
kVp 120 120

Pitch 0.8 0.8
CTDlvol 5.74+2.70 8.33£4.00
Patient Height 169+ 12 167+ 12
Patient Weight 75.1+£15.8 76.4+17.4
Tube Current 135.5+45.4 167.6 + 67.8

Voxel-wise error metrics

Table 2 summarizes the results of voxel-wise metrics for two external validation groups acquired at 90 and 120
kVp. The model performance for the 120 kVp and TCM test set in terms of voxel-wise parameters, including
SSIM, PSNR, Gamma, ME, MAE, RE, and RAE, was 0.997 + 0.002, 46.69 + 1.98, 98.47 + 0.81, -0.0359 + 0.0244
mGy, 0.1091 £ 0.0279 mGy, -1.16 = 1.41 %, and 7.13 + 0.44 %, respectively. All voxel-wise parameters were in
the same range for 120 kVp, TCM and FTC test sets. The voxel-wise evaluation results after performing transfer
learning and fine-tuning on 90 kVp data were also comparable to 120 kVp, except RAE, which was almost 1.5%
higher in the 90 kVp test group compared with 120 kVp results (8.63 vs. 7.17). Considering the FTC and TCM
scenarios, the performance of our model was almost similar in the 90 kVp test set.

Table 2. Voxel-wise metrics for two external validation groups acquired at 90 and 120 kVp.

120 kVp 90 kVp
Metrics FTC TCM FTC TCM
SSIM 0.997 £ 0.002 0.997 + 0.002 0.994 + 0.005 0.994 + 0.005
(0.993 to 0.998) (0.993 to 0.998) (0.981 to 0.998) (0.981 to 0.998)
PSNR 46.69 + 1.98 47.68 +£1.98 45.11 + 3.85 46.18 £5.08
(44.95 t0 50.17) (44.95 t0 50.17) (37.51 t0 48.77) (37.48 t0 51.66)
Gamma Value 98.47 £0.81 98.91 +0.81 98.26 +1.29 98.64 +1.41
(96.73 10 99.72) (96.73 10 99.72) (95.28 t0 99.08) (95.28 to 99.68)
ME (mGy) -0.0359 + 0.0244 -0.0302 + 0.0244 -0.0167 +£0.0149 -0.0126 +0.0124
y (-0.0826 to 0.0025) (-0.0826 to 0.0025) (-0.0372 t0 0.0161) (0.0326 to 0.0133)
MAE (mGy) 0.1091 +0.0279 0.0854 +0.0279 0.1088 +0.0308 0.0892 + 0.0462
y (0.0513 to 0.1401) (0.0513 to 0.1401) (0.0776 to 0.1626) (0.0471 t0 0.1713)
RE (%) -1.16 +£1.41 -1.13+1.41 0.27 £1.33 0.28 +1.33
(-3.72 t0 1.39) (-3.72t0 1.39) (-1.99 to 2.00) (-2.00 to 1.98)
RAE (%) 7.13+0.44 7.17+0.44 8.58 +1.83 8.63+1.82
(6.57 to 7.89) (6.57 to 7.89) (6.15 to 10.80) (6.19 to 10.82)
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Figure 3 shows the joint histogram comparing WBDM_DL and WBDM_MC doses at the voxel level. The
high correlation depicted in figure 3 (R?>0.999) indicates the excellent agreement between MC and DL results.

Figure 4 shows two examples of WBDM_DL and WBDM_MC and their corresponding bias maps displayed
in a coronal view for a combination of two kVps (90 and 120) and two TCM and FTC scenarios. The bias map
shows excellent agreement between MC and DL results. The highest differences in terms of RAE (%) are depicted
in the lung/chest wall interval and soft tissue/skull (bony tissue), where there is a gradient in density and chemical
composition characteristics of biological tissues and, consequently, radiation interaction properties with tissues.
The average RAE for all organs was always less than 4.5 % for both kVps and TCM and FTC scenarios.
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Figure 3. Joint-histograms comparing the voxel-wise doses of WBDM_DL and WBDM_MC at 90 kVp, FTC (top left), 120
kVp, FTC (top right), 90 kVp, TCM (bottom left), and 120 kVp, TCM (bottom right). The white dashed line shows the fitted
line and the regression line equation. The correlation coefficient (R?) is also shown for each histogram.

122



Case #1 Case #2

Blas Map, 90kVp, FTC

Bias Map, 90kVp, TCM

Bias Map, 90kVp, TCM

Figure 4. Coronal slices of WBDM_DL, WBDM_MC and the corresponding bias maps for two cases from the external test
sets. The caption for each study displays the kVp and tube current scenario (TCM or FTC). Case #1: 74 y/o male, patient height
=172 cm, patient weight = 85 kg, average water equivalent diameter [1] = 28.4 cm, the effective diameter at the largest slice
=32.9 cm. case #2: 65 y/o female, patient height = 158 cm, patient weight = 87 kg, water equivalent diameter = 29.5 cm, the
effective diameter at the largest slice = 35.6 cm. The voxel value here is mGy, and the color bar is shown beside each image.

Organ-wise error metrics

The organ-wise error for 120 kVp and TCM scenario averaged over all segmented organs in terms of RE (%),
RAE (%), ME (mGy), and MAE (mGy) was -1.11 +2.90, 2.34 + 2.03, -0.144 £ 0.342, and 0.23 + 0.28 respectively.
Supplemental-Table 3 and 4 summarize organ-wise metrics calculated on 120 kVp and 90 kVp test sets,
respectively. There was no statistically significant difference between the metrics calculated in organ-wise
evaluations between the FTC and TCM performance in either the 90 and 120 kVp test sets (Mann-Whitney,
p>>0.05). The highest average errors were observed in the heart, bone, and brain regions, where there is a higher
gradient in density and surrounding tissues. Figure 5 compares organ doses measured on DL and MC reconstructed
dose maps. The violin plots show overall good agreement between the distributions of DL and MC organ doses.
Figure 6 shows the boxplot of RE and RAE (%) between the calculated organ doses.
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Figure 5. Violin plots of organ dose distributions calculated by MC (orange) and DL (blue) at 90 and 120 kVp for both FTC
and TCM scenarios.

Iv. Discussion

In this work, we proposed a novel method for dose map calculation using deep neural networks through two input
channels. The model estimates the radiation voxel dose map by combining the attenuation and source
angle/position information from the SP_uniform image with the attenuation characteristics from the density map
image (Figure 2). This model predicts the dose distribution corresponding to a single source position/angle around
the patient's body, which can be an excellent option to calculate the absorbed doses with a lower interval in the
source position movements, which proved to be more realistic [30]. Other acquisition parameters, such as pitch,
scan mode (spiral, sequential), rotation time, and other parameters, such as tube current, could be modeled by
providing single-source position dose maps. This capability of calculating single source position and angle enables
the calculation of whole-body dose maps in more complicated acquisition settings, such as organ-based TCM
algorithms where the tube current is reduced in anterior arcs. The model's generalizability was examined through
transfer learning to a different kVp dataset and fine-tuning the model. The results in terms of organ-wise dose
metrics demonstrated the robustness of the developed model. Our model’s performance was similar when
considering FTC and TCM techniques in both voxel-wise and organ-wise metrics. Besides, the dose map
calculation is feasible for an acquisition performed using dual-source CT scanners or single source dual-energy
mode by considering the source from each kVp (x-ray tube) as a single source position/angle.

The patients included in the training and test datasets covered a wide range of body shapes and BMIs. As
shown in figure 4, the model is robust against patient size and composition changes. Wang et al. [33] proposed
analytic linear Boltzmann modeling of the radiation dose in an anthropometric phantom. They reported errors of
less than 3 %, but their model was specific for a single phantom and didn't consider variability in the human body.
Although performed independently, our study bears some similarities with the study published by Maier et al. [25]
in the sense that we used two channel inputs to our model to predict the voxel dose maps. We used whole-body
CT images covering a larger axial field-of-view range from the skull to mid-thigh and trained a single general
model for the full coverage. The single general model applicable to all scan protocols is easier to implement. They
introduced multiple models by changing the parameters, while the generalizability is more practical in daily
clinical routine by accessing single source dose maps. Besides, our proposed methodology is capable of
reconstructing the dose maps directly from CT images without additional time-consuming deterministic methods
for solving the Boltzmann transport equation.
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Figure 6. Boxplots of the RE and RAE (%) comparing organ doses calculated by DL and MC methods for eight segmented
organs and a combination of 90 and 120 kVps and TCM/FTC scenarios.

Tzanis et al. [26] used DL to generate voxel dose maps calculated by Monte Carlo simulations by converting
the image into a long vector and introducing scan parameters, such as tube current and scan mode, as additional
columns. They included 343 head & neck scans and reported organ doses delivered to three tissues/organs,
including the brain, cranial bones, and eye lens, with average errors less than 6% (range 0 -19%) in terms of organ
RAE. Our proposed model provides more accurate results in terms of organ-wise RAE (average 2.74). Besides,
they only used 120 kVp acquisitions and a scan range limited to the head & neck region.

Organ masks is a critical requirement for calculating organ doses. We segmented multiple organs to evaluate
the performance of our model in organ-level dose calculation. The labor-intensive and time-consuming
segmentations are important limitations of using dose maps in radiation risk estimation. Despite the presence of
voxels with a higher error than the average in terms of voxel-wise RAE (%), the organ dose errors were negligible,
especially for large organs, such as the liver. The slightly higher error in some organ doses and voxels could be
attributed to methodological limitations, such as coarse image matrix size (voxel size of 5 mm), that we adopted
to reduce the computational time. The large voxel size can also cause higher errors in voxel-wise metrics. The
excellent performance achieved by our model in organ-level doses is much better than pre-tabulated software
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outputs. Moreover, we used only a single scanner to train our DL network using a limited number of patients. Still,
the main bottleneck was the high computational time required to generate the Monte Carlo dose maps as ground
truth. In addition, in our method, the radiation dose delivered to organs out of the scan reconstruction axial range
is missing.

V. Conclusion

Our proposed deep learning model can generate whole-body dose maps from a CT scan acquisition with reasonable
accuracy at the voxel level and excellent performance at organ-level dose estimation. The whole process, including
pre-processing and model inference on a new dataset, can be performed within seconds, which makes personalized
dosimetry with an acceptable accuracy a possible option in clinical routine. Conversely, by generating a dose
distribution from a single source position, our model can generate accurate and personalized dose maps for a wide
range of acquisition parameters.
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Supplemental material

Supplemental-Table 3. the results of the organ-wised evaluation of the results for the 120 kVp dataset.

FTC TCM
Organ RE % RAE % ME (mGy) MAE (mGy) RE % RAE % ME (mGy) MAE (mGy)
Liver -0.27 +1.54 (-2 1.26 +0.84 -0.023 +0.158 0.128 + 0.086 -0.27 + 1.54 1.26 +0.84 -0.023+0.16 0.13 +0.09
t0 3.32) (0.42103.32)  (-0.244100.32)  (0.05510 0.32) (-2t03.32) (0.42103.32)  (-0.244100.32)  (0.05100.32)
Heart -3.09+1.77 3.16+1.63 -0.331+0.19 0.338+0.175 -3.09 +1.77 3.16+1.63 -0.33+0.19 0.34 £0.17
(-6.02 to 0.36) (0.36t06.02) (-0.6581t00.041)  (0.041t00.66) (-6.02t00.36) (0.36t06.02)  (-0.66 to 0.04) (0.041 to 0.66)
Bone -1.31£198 186+1.41 -0.146 £ 0.24 0.227 £0.156 -1.31+£1.98 186+1.41 -0.146 £ 0.24 0.23+0.16
(-4.58 10 2.9) (0.12t04.58)  (-0.482t00.427) (0.017t00.48)  (-4.58t02.9) (0.12t04.58)  (-0.481t00.43) (0.02 t0 0.48)
Kidneys -0.56 + 1.88 12+151 -0.037 £ 0.132 0.097 +0.093 -0.56 + 1.88 12+151 -0.037 £0.132 0.1+ 0.09
(-5.311t0 1.37) (0.07t05.31) (-0.284100.109)  (0.005t00.28)  (-5.31t01.37) (0.07t05.31) (-0.284t00.11)  (0.01t00.28)
Spleen -0.05+2.3(-5.15 16+157 0.011+0.188 0.138£0.12 -0.05+2.3 16+157 0.011+0.19 0.138+0.12
to 3.85) (0.11t05.15)  (-0.337t00.356)  (0.009t00.36)  (-5.15t03.85) (0.11t05.15)  (-0.34t00.36)  (0.009 to 0.36)
Bladder 2.39+£3.73 3.11+31 0.229 £0.328 0.282£0.28 239+£3.73 3.11+31 0.229 £ 0.328 0.282 £0.28
(-2.89t0 11.6) (0.48t011.6) (-0.221t01.05)  (0.06t01.05)  (-2.89t011.6) (0.48t011.6) (-0.221t01.05)  (0.06 to 1.05)
Lungs 242+13 242+13 -0.275+0.135 0.275+0.135 242+13 242+13 -0.275+0.135 0.275+0.135
(-4.34t0-045)  (045t04.34) (-04710-0.046) (0.0461t00.47)  (-4.34t0-0.45) (0.45t04.34) (-0.47t0-0.046)  (0.046 to 0.47)
Brain -3.52+3.25 4.15+2.29 -0.587 + 0.525 0.681 +0.38 -3.52+3.25 4.15+2.29 -0.587 + 0.525 0.681+0.38
(-7.87 t0 3.05) (0.43t07.87)  (-1.198t00.45)  (0.07t01.198) (-7.87t03.05) (0.43t07.87) (-1.1981t00.45)  (0.066 to 1.2)
All Organs -1.10 £2.89 234201 -0.144 + 0.348 0.270 £ 0.261 -1.11+£2.90 2.34+£2.03 -0.144 £ 0.342 0.23+0.28
(-7.87t011.63)  (0.07t011.6) (-1.198t01.049)  (0.005t01.2)  (-7.84t011.8) (0.08t011.8) (-1.497t00.765)  (0.01to 1.49)
Supplemental-Table 4. the results of the organ-wised evaluation of the results for the 90 k\Vp dataset after fine-tuning.
FTC TCM
Organ RE % RAE % ME (mGy) MAE (mGy) RE % RAE % ME (mGy) MAE (mGy)
Liver -0.41+1.83 137+1.22 -0.04 £0.155 0.112 £0.109 -0.5+£1.81 137+£1.22 -0.036 £0.114 0.08 £0.085
(-3.3t03.76) (0.14 t0 3.76) (-0.305 to 0.299) (0.009 to 0.305) (-3.15t0 3.78) (0.07 t0 3.78) (-0.262t0 0.211)  (0.001 to 0.262)
Heart -3.81+23 401+19 -0.325 + 0.207 0.343+0.173 -3.85+2.32 4.04+£1.92 -0.24+0.177 0.255 +0.153
(-6.29t01.03)  (0.04t06.29)  (-0.557t00.095)  (0.002t00.557) (-6.27t01.03)  (0.04t06.27)  (-0.4551t00.078)  (0.002 to 0.455)
Bone -3.16+2.72 3.92+1.22 -0.282 +0.255 0.361 +0.097 -3.06+2.75 3.82+1.34 -0.212 £0.223 0.276 £ 0.124
(-5.72t04.15)  (1.56t05.72)  (-0.463t00.433)  (0.167t00.463)  (-5.72t04.2) (0.8t05.72)  (-0.491t00.353)  (0.101 to 0.491)
Kidneys -1.81+2.12 1.86 +2.07 -0.101£0.11 0.104 £ 0.107 -2.03 +£2.08 2.03+£2.08 -0.078 £ 0.08 0.078 £0.08
(-6.42t00.27)  (0.2t0 6.42) (-0.33t0 0.014) (0.01 t0 0.33) (-6.42 t0 0) (0t0 6.42) (-0.223 to 0) (0t0 0.223)
Spleen -1.33+2.08 1.99+1.39 -0.085 + 0.134 0.127 +£0.091 -1.25+2.22 196+ 1.56 -0.056 + 0.079 0.075 + 0.059
(-4.5 t0 2.05) (0.16 to 4.5) (-0.3141t00.12)  (0.007t00.314)  (-4.7t02.77) (0.05t04.7)  (-0.203t00.083)  (0.001 to 0.203)
Bladder 159+4.3 3.1+3.27 0.109 +0.285 0.211+0.213 1.61+4.22 3.05+3.23 0.067 +£0.133 0.101 +0.106
(-3.6t011.86) (0.31t011.9) (-0.275t00.787)  (0.013t00.787)  (-357t011.7) (0.31t011.7)  (-0.083t00.383)  (0.013 to 0.383)
Lungs 142+25 2.12+1.88 0.112+0.211 0.178 £0.154 1.46 +2.43 2.09+1.86 0.096 +0.165 0.14 £ 0.125
(-2.35t06.59)  (0.11t06.59)  (-0.236t00.549)  (0.008t0 0.549)  (-2.25t0 6.4) (0.04t06.4)  (-0.133t00.425)  (0.002 to 0.425)
Brain 2.19+4.88 357 +3.88 0.239 £ 0.56 0.426 +0.421 211+4.74 35+3.73 0.37 +0.884 0.572 +0.756
(-372t014.1) (0.06t014.1)  (-0.522t01.528)  (0.008t01.528)  (-3.72t013.6) (0.15t013.6) (-0.522t02.702)  (0.013 t0 2.702)
All Organs -0.67 +3.59 2.74+2.40 -0.047 £0.321 0.233+0.224 -0.69 + 3.57 273+2.38 -0.011 £0.375 0.197 +£0.318
(-642t014.1)  (0.04t014.1)  (-0.557t01528)  (0.002t01.528)  (-6.42t013.6)  (0.01t013.6)  (-0.522102.702)  (0.001 to 2.701)
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Abstract

Purpose In the era of precision medicine, patient-specific dose calculations using Monte Carlo (MC) simulations
is deemed the gold standard technique for risk-benefit analysis of radiation hazards and correlation with patient
outcome. Hence, we propose a novel method to perform whole-body personalized organ-level dosimetry taking
into account the heterogeneity of activity distribution, non-uniformity of surrounding medium and patient-specific
anatomy using deep learning algorithms.

Methods We extended the voxel-scale MIRD approach from single S-value kernel to specific S-value kernels
corresponding to patient-specific anatomy to construct 3D dose maps using hybrid emission/transmission image
sets. In this context, we employed a Deep Neural Network (DNN) to predict the distribution of deposited energy,
representing specific S-values, from a single source in the center of a 3D kernel composed of human body
geometry. The training dataset consists of density maps obtained from CT images and the reference voxelwise S-
values generated using Monte Carlo simulations. Accordingly, specific S-value kernels are inferred from the
trained model and whole-body dose maps constructed in a manner analogous to the voxel-based MIRD formalism,
i.e. convolving specific voxel S-values with the activity map. The dose map predicted using the DNN was
compared to the reference generated using MC simulations and two MIRD-based methods, including single and
multiple S-values and Olinda/EXM software package.

Results The predicted specific voxel S-value kernels exhibited good agreement with the MC-based kernels serving
as reference with a Mean Relative Absolute Error (MRAE) of 4.5+1.8 (%). Bland & Altman analysis showed the
lowest dose bias (2.6%) and smallest variance (CI: -6.6, +1.3) for DNN. The MRAE of estimated absorbed dose
between DNN, MSV, and SSV with respect to the MC simulation reference were 2.6%, 3%, and 49%, respectively.
In organ-level dosimetry, the MRAE between the proposed method and MSV, SSV, and Olinda/EXM were 5.1%,
21.8% and 23.5%, respectively

Conclusion The proposed DNN-based WB internal dosimetry exhibited comparable performance to the direct
Monte Carlo approach while overcoming the limitations of conventional dosimetry techniques in nuclear medicine.
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I. Introduction

Personalized medicine is a new paradigm aiming at improving healthcare while lowering the costs, thus offering
great potential for patient-specific diagnosis and optimal treatment [1]. Precision medicine aims at shifting from
the current one-size fits-all strategy to an individualized model. Dose calculation in nuclear medicine is tightly
linked to this approach [2]. In this framework, personalized dose estimation is crucial for optimizing clinical
procedures while minimizing the risk of radiation-induced toxicity [3].

In current clinical practice, patient dose monitoring is commonly based on simplified models, such as those
derived by the Medical Internal Radiation Dose Committee (MIRD) formalism [4]. The traditional MIRD
technique is based on organ-level dosimetry using time-integrated activity and radionuclide S-values, which
represents the mean absorbed dose to a target organ per radioactive decay in a source organ. These quantitative
parameters are modeled based on a reference computational model. This approach assumes a uniform activity
distribution within each organ and ignores individual anatomical characteristics. To cope with inter-subject
variability of anatomical features, the organ-level dosimetry approach was later extended by developing habitus-
specific and patient-specific computational models [5-9]. Furthermore, voxel-based dosimetry techniques have
been developed, including dose point kernel [10] and voxel S-value (VSV) [4] approaches. Unlike probabilistic
methods, dose point kernel is a deterministic approach that calculates the radial absorbed dose distribution around
an isotropic point source in a homogeneous water medium [11, 12]. Voxel-level MIRD schema is defined as a 3D
voxel matrix representing the mean absorbed dose to a target voxel per unit activity in a source voxel embedded
in an infinite homogeneous medium using Monte Carlo (MC) simulations. However, voxel-based dose calculation
should in principle take into account non-uniform activity distribution of the radiotracer, the heterogeneity of the
medium consisting of different material compositions, e.g. lung, soft tissue, and bone is ignored. In this regard,
direct MC simulations, deemed the gold standard for implementation of a reliable dose calculation framework in
clinical setting, enables accurate estimation of whole-body dose map [13, 14]. Though MC simulation takes into
account the non-uniform activity distribution and heterogeneity of patient-specific anatomical features, it suffers
from expensive computational burden. A number of previous works reported on the use of MC simulations in the
context of personalized dosimetry in nuclear medicine [15-17]. Hybrid PET/CT or SPECT/CT images are fed into
the MC simulator to model energy deposition of radiation emitted from the injected radiotracer considering the
patient-specific anatomy and voxelwise activity distribution obtained from CT and PET/SPECT images,
respectively. Several works focused on reaching an optimal compromise between accurate voxel-scale dosimetry
and the computational burden [18, 19]. Khazaee Moghadam et al. proposed a tissue-specific dose point kernel
approach implemented on a stylized phantom [20]. Lee et al. extended further this idea by applying this
methodology on real patient data [21]. They considered multiple material densities for internal dose calculation by
providing multiple voxelwise S-value kernels for various media with different densities according to human body
tissues. This enabled to provide multiple voxel-scale dose maps in an analogous manner to the MIRD calculations.
Consequently, each density-specific dose map was multiplied by the corresponding binary mask of the given
density regions obtained from CT-based segmentation, thus enabling the calculation of the final dose map by
superposition of the multiple density-specific dose maps. This method improves the accuracy of dosimetry
calculations compared to the single voxel S-value approach, but relies on a basic assumption that energy
depositions in each voxel arise mainly from self-absorption. This simplification introduces an extra error on the
estimated dose distribution, particularly in the boundary of tissues with different densities.

Accurate patient-specific dosimetry is becoming a must taking advantage of advances in targeted radionuclide
therapy and theranostic imaging [2]. In personalized dosimetry, MC simulation is still considered the most accurate
technique and the de facto reference standard for research application. Yet, this approach is not employed in routine
clinical procedures owing to the heavy computational burden. Deep learning emerged as a promising technique in
the area of computer vision and image processing, exhibiting superior performance over conventional state-of-the-
art methods in medical images analysis in PET and SPECT imaging, including attenuation and scatter correction
[22-24], low-count image reconstruction [25-27], as well as automated image segmentation [9, 28]. More recently,
deep learning approaches were employed for radiation dose estimation. Mardani et al. introduced a dose
distribution prediction method in external beam radiation therapy using a multi-layer convolutional auto-encoder
architecture [29]. Nguyen et al. used a U-Net architecture for clinical treatment plan optimization to improve the
treatment plan quality and uniformity while reducing the computational time [30]. Ma et al. implemented a deep
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learning method to provide isodose features for modulated arc therapy treatment plans [31]. Kearney et al.
proposed a 3D fully-convolutional dose prediction algorithm for prostate stereotactic body radiotherapy patients
[32].

For effective training of a deep learning algorithm, well-defined ground truth is an essential ingredient [33]. In
the above-mentioned seminal works, the ground truth was obtained from a substitute of MC dosimetry for the
training of the networks that may bear some inaccuracies owing to the simplifications in physical models [34]. To
address this limitation, Lee et al. used a U-Net deep neural architecture for internal dosimetry where the training
ground truths were obtained from direct MC simulation [35]. They fed CT images, representing patient structural
features, and static PET images, representing the activity distribution, into the network as input to predict a 3D
dose map rate. Gotz et al. set out to estimate dose maps of patients who received /Lu-PSMA using a modified
U-Net network [36]. In this work, the training datasets consisted of a two-channel input, including CT images (i.e.
patient-specific density map), MIRD-based voxel-scale dose map obtained from SPECT images as well as the
ground truth obtained from direct MC simulations. In these two works, the deep learning networks were trained
using whole-body dose maps obtained from direct MC simulations. However, generation of a comprehensive
training dataset in this manner would be challenging owing to the prohibitive computational burden of MC
calculations. Hence, these works either relied on a limited number of training samples or made some
approximations that could affect the accuracy of the proposed models. Lee et al. reported that the time required
for a single full whole-body MC simulation exceeds 4704.03 hours using a CPU with four cores and 16 GB RAM
[35]. However, GPU-based MC simulations have been recently proposed to overcome this challenge [37-39]. In
this regard, we proposed a novel methodology to estimate whole-body dose distributions using a deep
convolutional neural network, wherein unlike previous studies, generation of training datasets is no longer a
bottleneck. The proposed dose map generation framework consists of two steps. In the first step, a deep neural
network (DNN) is employed to predict dose distribution kernels, wherein the training dataset consists of only
density maps obtained from CT images as input and the corresponding dose distribution kernel for a point source
with unit activity obtained from MC simulations as output. In this approach, the simulation time for generating a
ground truth (dose distribution map around the central voxel source) covering the annihilation photon mean free
path is about 8000 times less than that required for whole-body MC simulations. This strategy makes it possible
to provide a diverse and extensive training dataset. In addition, this approach would reduce the complexity of the
training process as the DNN model should learn simpler features corresponding to a point source distribution
compared to direct translation from hybrid density/activity maps to absorbed dose map. In the second step, specific
dose distribution kernels predicted by the trained model are convolved with the activity map (here time-integrated
activity from dynamic PET images) to generate the final whole-body dose map, in a manner analogous to the
voxel-based MIRD formalism.

1. Materials and Methods

Method description

Direct MC simulations, wherein the 3D hybrid PET/CT or SPECT/CT images are fed into a simulator to produce
the whole-body dose distribution, are regarded as the gold standard approach. The computational burden of direct
MC simulations for building a comprehensive and large training dataset is prohibitive. Hence, we split the direct
process into two main parts as schematically illustrated in Figure 1. The idea is inspired from the MIRD-based
voxel-scale dosimetry formalism [4] where a single voxel S-value kernel is convolved with the activity map (e.g
PET images) to produce a whole-body dose map (Eq. 1). In the present study, we extended this idea through
estimation of the specific kernels according to the density map obtained from patient’s CT images. Analogous to
the MIRD-based voxel-scale dose kernel, we generate specific kernels, i.e. S(voxel;, « voxely) in Eq. 1, in such
a way that the central voxel contains the unit activity of given a radiotracer, where the surrounding medium is
defined based on the patient density map.

The principle of the reciprocity theorem states the reversibility or bilateralism of the interactions upon location
interchange of the source and target in a uniform isotropic model. Loevinger introduced this theorem to dose
calculation problems in a uniform homogenous medium [40]. Cristy reported that the reciprocity theory is
warranted in heterogeneous computational phantoms for photons [41]. We extended this theory to heterogeneous
media by applying a source to target correction factor of the energy-absorption coefficient ratio [42]. Since the
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deposited energy in each voxel depends on the energy fluence multiplied by the mass energy-absorption coefficient
of the medium [43], we modified the conditions of location interchange of source and target tacking into account
the ratio of the energy-absorption coefficient of target voxel to the source voxel. The reciprocal energy fluence is
assumed to be approximately equal for annihilation photons with dominant Compton scattering interaction.

| Step 1: Specific S-value kernel prediction

Random sampled
(central voxel)

Dose distribution Kernel!
13 Segmented medium (64*64*64)

CT image batch
(64*64%64)

Step 2: Patient-specific dose map calculation

Central source S(voxelk - voxeln) ACtiVity map WB dose map

Density map

XK F ¥
(X X X J

— _wN ~
Dvoxelk_anl Avoxeln-s(voxelk < voxeln)

Figure 1. Schematic representation of the voxel-scale dosimetry procedure. The top and bottom panels show the deep learning-
based specific S-value kernel prediction and MIRD-based voxel dosimetry formalism.

To generate the specific kernels, the distribution of deposited energy around the source voxel was calculated
using MC simulations. The size of the kernel depends on the type of radiotracer, i.e. decay mode and energy
spectrum. In this work, we defined the size of kernels as 19.2x19.2x19.2 cm?® where the mean free path of
annihilation photons in human tissue has been reported to be about 7 cm [44].

D(voxely) = Y_o Avoxery, - S(voxel, « voxely) ()]

In the first step, we employed a DNN to predict the specific energy deposition kernel when the source voxel is
located in the center of the kernel (Figure 1). The input data for the training is 3D volume density maps while the
corresponding output is 3D volume dose map obtained from MC simulations. To prepare the input dataset for
training, single voxels were randomly sampled from whole-body CT images and the surrounding volumes
(19.2x19.2x19.2 cm®) were extracted into 64x64x64 matrices to generate the input samples. Given the input
matrices, the MC simulator was employed to produce the dose distribution kernel considering a unit activity at the
center of each matrix. In other words, the training of the model was performed for single-point sources located in
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various positions within the density volume map, i.e. whole-body CT images. Hence, to produce a comprehensive
training dataset covering different anatomical sites, we randomly sampled voxels from different whole-body CT
images and the surrounding volumes were extracted to generate the input samples. In the second step, the whole-
body dose map was calculated by voxelwise convolution of the specific kernels with the activity map (Eq. 1).
Hence, we inferred the specific dose distribution kernel for each source voxel, i.e. S(voxel, « voxely), using our
trained neural network model. We estimated the whole-body dose map in an analogous way to the MIRD voxel
formalism, which convolves a single S-value kernel with each voxel in the activity map, yet using specific S-
values kernel for each voxel.

Deep Neural Network architecture

In this work, the ResNET [45] architecture implemented on TensorFlow platform, composed of 20 convolutional
layers with dilation convolution operations within different levels of feature extraction, was utilized. The dilation
factor supports the expansion of the receptive field-of-view without resolution loss by increasing the space between
original kernel elements. For low-level feature extraction, a dilation factor of zero was used within the first seven
layers, a dilation factor of two within the second seven layers for medium-level feature extraction, and a dilation
factor of four within the last six layers for high-level feature extraction. Leaky rectified linear unit (LReLU) was
used as activation function. The ResNET architecture benefits from 9 residual blocks, which results in a large
number of receptive fields and improves the process of feature extraction and network convergence (Figure 2).

For the training of the model, pairs of CT density images and deposited energy kernels were considered as
input/target, respectively. The ResNET model with a 3D spatial window equal to 3x3x3 voxels were used. The
following setting was used for the training of the network: learning rate = 0.001, sample per volume = 1, optimizer
= Adam, and decay = 0.0001. The optimization of the network was carried out based on the L2 loss function.

A——— P —

Density Map Dose Map
. 3x3x3 Conv, 16 Kr BN  LRelLU . BN  LReLU 3x3x3 Conv, 16 Kr

M N LReLU 3x3x3 Comv, 32K 2 D1 B &N LReLU 3x3x3 Cony, 84 Kr, 4 Dit

1x1x1 Conv, 160 Kr  SoftMax . ’. '.- Residual

Conv: Convolution, Kr: Kernel, BN: Batch Normalization, LReLU: Leaky ReLU, Dit: Dilation
Figure 2. Schematic diagram of the ResNET architecture.

Data preparation

To prepare the training data set, density maps were extracted from CT images. CT Hounsfield Units (HUs) have
a strong correlation with electron density, and consequently with the mass density of the medium. We converted
HU values to mass density using the methodology proposed by Schneider et al. which established linear multi-
regression models for the segmentation of CT images into different tissue densities [46]. We extracted density
maps consisting of 13 tissue densities, including air, lung, fat, soft tissue, and bone where values higher than 100
HUs were divided into eight discrete density values. Afterward, the whole-body density maps were resampled to
3 mm voxel size in three-dimensions. To build the ground truth data, MC simulations served as standard of
reference. The MCNP transport code [47] was employed for the generation of energy deposition kernels, i.e.
specific voxel S-values. To this end, one voxel was randomly sampled from the whole-body density maps and a
3D matrix of 64x64x64 voxels around the central voxel was extracted. This matrix, representing a heterogeneous
medium of patients’ anatomical structures, was directly imported to the MCNP code. The material compositions
of 13 segmented tissues were defined based on Schneider et al. [46]. The central voxels of the extracted 3D matrix
were defined as source location with uniform distribution of Fluorodeoxyglucose (*®F-FDG). Since the resolution
of the activity distribution (here PET images with an average resolution of 3 mm) determines the spatial accuracy
of dosimetry estimations, we adopted the same resolution for the calculation of dose maps. The energy spectrum
of emitted positrons was taken from [48], where the positron energy spectrum follows a Fermi distribution with
an average of 242.8 KeV and maximum energy of 633.5 KeV. The output of MC simulations consist of 3D kernels
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(64x64x64) with 3 mm resolution using energy deposition mesh tally in unit of MeV/cm? per particle. Three
million particles were tracked to reach a statistical uncertainty less than 4% in the border voxels at about 10 cm
away from the central voxel.

Clinical studies

To provide whole-body dose maps from an activity map based on Eq. 1, a specific S-value kernel is required for
each single voxel of the activity map. Whole-body unenhanced CT images of 24 patients acquired on Siemens
Definition Edge system were used for the training of the model (generation of the training dataset). The study
protocol was approved by Geneva Ethics committee and all patients provided written informed consent. For
evaluation of the model, hybrid PET/CT image sets consisting of a low-dose CT scan and dynamic whole-body
PET scans were employed. The hybrid PET/CT image sets were acquired on a Siemens Biograph mCT scanner
using a dynamic scanning protocol at 13-time points after intravenous injection of 18F-FDG [49, 50]. PET
scanning was conducted using continuous bed motion scan at ever increasing time intervals. PET image
reconstruction was performed using 3D iterative ordinary Poisson OSEM (3D-OP-OSEM) algorithm with a voxel
size of 4.07 x 4.07 x 3 mm.

Dose map calculation

To estimate whole-body voxelwise absorbed dose, the trained model was fed with patient-specific density maps
to generate the specific dose distribution kernels, S(voxel,, < voxel,), for each single voxel (i.e. voxel,) in the
PET image, wherein the corresponding voxel in CT images and its surrounding 64x64x64 voxels were considered
as the input density map. The predicted specific S-values were corrected by element-wise multiplication of the
ratio of the energy-absorption coefficient of the target voxel to the source voxel obtained from [51]. Lastly, specific
S-values underwent voxelwise convolution with the cumulated activity map to create the whole-body dose map
(Eqg. 1). The cumulated activity map was calculated by analytical integration of voxelwise time activity curves
over 13-time points dynamic PET frames (Eq. 2).
Arota = %Zilgo(Ai + Aiyq) At + fToo Ape~Mdt 2

In Eq. 2, Apyeq is the total number of disintegrations, A; is the activity concentration in the source organ
obtained from static images at the i time frame, Ar is the activity concentration in the last time point of
measurement, and X is the decay factor of the radionuclide. Bladder voiding schedules were not taken into account.
To conduct patient-specific whole-body voxelwise dose estimation, the results were converted in Gy after
multiplication by a correction factor of 0.9673 corresponding to the fraction of positron emission for éF.

To evaluate the proposed method, the predicted absorbed dose from the current model was compared against
direct MC dose estimation serving as standard of reference and different MIRD-based approaches, including the
OLINDA/EXM software (organ-scale MIRD formalism) [52], single voxel S-value (SSV) and multiple voxel S-
value (MSV). For organ-level dosimetry, regions-of-interest were manually drawn on CT images to delineate eight
organs, namely brain, heart, kidneys, liver, lungs, spleen, bone, and bladder. Lesions identified on PET images
were segmented using a fixed threshold of 42% of SUVmax and manually edited to remove the background and
include necrotic regions. The kinetic data required by Olinda/EXM software were calculated from the cumulated
activity using Eq. 2 and the masses of organs were modified based on organ masks defined from the segmentation
of CT images. SSV and MSV voxel-scale dosimetry was designed based on the MIRD formalism (Eq. 1) where
the voxel S-value kernels were generated from MCNP code with the same kernel size used in the previous step,
i.e. 19.2 cm in 3D with 3mm resolution. Ten million particles were simulated to build a 64x64x64 kernel in an
infinite homogenous medium considering a unit activity in the central voxel. In the MSV method [21], the S-value
kernels of four different media consisting of soft-tissue, lung, and two different densities of bone (with different
Calcium content) were simulated.

Quantitative analysis

Voxelwise mean absolute error (MAE), mean relative absolute error (MRAE %), and root mean square error
(RMSE) were calculated between reference and predicted dose maps.
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where Imagepredicted Stands for dose map generated by the DNN and Imagere Stands for the reference dose
map. vxl and v denote the total number of voxels and voxel index, respectively.

1. Results

Network validation

The total number of training dataset consisted of 12’100 pairs of volumetric images of density maps and energy
deposition kernels extracted from 24 different CT image sets. The specific voxelwise S-value kernels, obtained
from the DNN, were in good agreement with the reference MC kernels. The axial profiles plotted over reference
and predicted voxelwise S-value kernels in the lung region are shown in Figure 3. The mean relative voxel-wise
difference between the two profiles is about 3.3%. Figure 4 illustrates the comparison of predicted voxel S-values
(64x64x64) against MC simulations for the test case in the lung region with MRAE, RMSE and MAE of 4.5+1.8
(%), (1.8 £0.53)x10° (MeV/cm?) and (1.8+0.71)x10¢ (MeV/cm3), respectively. Furthermore, the voxelwise joint
histogram plot depicting the correlation between the predicted kernels and MC simulations is presented, where a
coefficient of determination (R?) of 0.98 was achieved.
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Figure 3. (a) CT-based density map, (b) reference kernel obtained from MC simulations, (c) predicted kernel by the DNN
model. Line profiles across the S-value kernels (right panel) comparing kernels obtained from MC simulations of DNN model
predictions.
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Figure 4. Probability distribution of Relative Absolute Error (RAE) for predicted voxelwise S-value kernels (64x64x64) with
respect to MC simulations (left). A.U.= arbitrary units. Voxelwise joint histogram plot depicting the correlation of predicted
kernels with respect to MC simulations (right).
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Analysis of dose distributions

To assess the impact of medium heterogeneity on dosimetry results, a whole-body map of deposited energy was
generated for a patient-specific computational phantom with unit activity distribution using three different
methods, including DNN, MSV, and SSV. In this regard, calculation of patient-specific absorbed dose map (step
2 in Figure 1) involves filling the patient’s body contour with a unit activity distribution instead of a time-integrated
activity map obtained from a dynamic PET series. Dose profiles over axial and coronal slices are illustrated in
Figure 5. It is expected that SSV in medium with densities lower than water overestimates the deposited energy
while underestimating the deposited energy for higher density media. The deposited energies obtained from MSV
confirms the limitation of this method in the heterogeneous boundaries in the spine area with an average density
of about 1.12 g/cm? (b-b' line profile). The voxelwise dose maps predicted by DNN and estimated using MIRD-
based methods, including SSV and MSV, were compared with the results obtained from MC simulations for a
patient diagnosed with lung adenocarcinoma having a pulmonary tumor of about 120 g. Figure 6 displays a
representative dose profile drawn on axial views comparing dose maps estimated from DNN, MSV, and SSV
against MC simulations.

16 = DNN —-= M8V " SSv
14 A

Deposited energy (MeV/cm?)

b b’
Density map DNN MSV S8V

Figure 5. Voxelwise deposited energy (MeV/cm?3) in a patient-specific computational phantom with unit activity distribution
estimated by DNN, MSV, and SSV.

Activity map Density map

MC simulation

Voxel dose (mGy)

Figure 6. Dose distributions and profiles (right) drawn on axial views comparing dose maps estimated using DNN, MSV, and
SSV methods against MC simulations.

138



(DNN - MC) / MC %

To quantify the agreement between the different methods with respect to the standard of reference, Bland-
Altman plots compare absorbed doses calculated using DNN, MSV and SSV with MC-based calculations. Figure
7 illustrates the bias and variance with 95% confidence interval (CI) of these methods against the standard of
reference method, where the data points reflect the percent difference of voxelwise dose values. The results show
that the lowest absorbed dose bias (2.6 %) and the smallest variance (Cl: -6.6%, +1.3%) were achieved by the
DNN approach. In addition, the results obtained using MSV demonstrated good agreement with the ground truth
(absorbed dose bias of 2.9 % and variance of Cl: -6.8%, +12.6%), except in some regions corresponding to
heterogeneous boundaries. Conversely, SSV showed significant discrepancy compared to the reference in lung
and bone regions. In the lung region illustrated in Figure 8 (top left), four VOIs over the heart, bone, lower lobes
of the lungs, and pulmonary tumor were drawn on fused PET/CT images to perform quantitative analysis of
absorbed doses within the VOIs. The mean absolute relative errors of estimated absorbed doses between DNN,

MSV, and SSV against MC simulations were 2.6+0.94 %, 3+3.5 %, and 49+68 %, respectively.

Whole-body voxelwise absorbed dose estimations based on time-integrated activity and patient-specific
anatomy obtained from a dynamic PET/CT scan are presented in Figure 9 along with two profiles plotted over
axial and coronal views. Organ-level dosimetry was extracted from the dose maps obtained from DNN, MSV and
SSV methods and compared against a commercial organ-based MIRD dosimetry software, i.e. Olinda/EXM
(Figure 10). In most organs, Olinda/EXM underestimates the absorbed dose compared to other voxel-based
methods except for lung and pulmonary tumor. The MRAE between organ doses estimated by DNN method and

MSV, SSV and Olinda/EXM were 5.1%, 21.8% and 23.5 %, respectively.
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Figure 7. Bland & Altman plots of voxelwise dose differences in the lung region calculated using DNN (left), MSV (middle)
and SSV (right) with respect to MC-based calculations serving as standard of reference. The solid and dashed lines denote the

mean and 95% CI of the dose value differences, respectively.
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Figure 8. Anatomical region for dose evaluation (top left), axial view of delineated VOIs (bottom left). Average absorbed

doses in defined VOlIs obtained using DNN, MSV and SSV compared to MC calculations (right).
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Figure 9. Voxelwise dose maps estimated using DNN, MSV, and SSV along with horizontal and vertical profiles drawn on
the coronal view.

Iv. Discussion

Despite the paramount importance of personalization in routine clinical setting, this paradigm is still in its infancy,
and in the literature, only a few studies have addressed this issue. In this work, we propose a novel methodology
to perform personalized radiation dose quantification, which is applicable in various nuclear medicine procedures
including diagnostic, therapeutic, and theranostics. The current methodology has been employed in PET imaging
dosimetry using 18F-FDG radiopharmaceutical, as the proof of concept. We developed a MC-based whole-body
voxel-level dosimetry approach to enable studies that might provide answers to controversies on whether voxel-
based dosimetry is superior to the mean absorbed dose approach [53]. Deep learning algorithms have been
deployed to solve complex real-life problems by translating the fundamental physics behind the problem into the
computer vision domain. In this work, we extended the core idea of the voxel-level MIRD dosimetry formalism
by using DNN algorithms to predict medium-specific S-value kernels instead of using a single kernel obtained
from deposited energy in a homogenous soft-tissue medium. The size of the kernel was 19.2 cm where the distance
from the central voxel to the border is more than the mean free path of annihilation photons (511 KeV). In a kernel
of 19.2 cm in three-dimensions representing voxelwise deposited energy in an infinite soft-tissue medium obtained
from MC simulations, the ratio of the deposited energy at the border of the kernel to the central source voxel is
about 10 order of magnitude confirming adequate size of the kernel. Although, increasing the size of the kernel
up to three mean free paths of annihilation photons from the center of the kernel can improve the accuracy of dose
estimation, it would induce considerably longer simulation time. The resolution of the kernel was defined based
on regular axial resolution of PET images. The statistical uncertainty of MC simulations was less than 4%. It is
obvious from Figure 2 that even in the border of the S-value kernels, the noise level owing to statistical uncertainty
is not significant. To benchmark our assumption for extending the reciprocal theory to heterogeneous medium, we
simulated a simple geometry consisting of soft-tissue, bone, and lung materials and calculated the deposited energy
when the source and target were locally interchanged. The deposited energies calculated using the reciprocal theory
were within 5% of those calculated by simulations.

The predicted 3D kernels exhibited good agreement with MC simulations with a MRAE of 4.5%. The DNN
predicted S-value kernel underestimates the ground truth as illustrated in the joint histogram analysis. The
comparison of the summation of the predicted 3D kernel against the summation of MC S-value kernel, as an index
of total energy deposition in the medium, showed an overall 4% underestimation. Since the deposited energy
follows an inverse square law with respect to the distance from the source, S-value kernels bear a very broad
dynamic range of intensities. Hence, we implemented a nonlinear intensity normalization using a sigmoid function
before feeding the kernels into the network. Owing to the non-linear behavior of the sigmoid function, increased
prediction errors were observed for certain intensity values after applying inverse sigmoid function. However, the
model performed overall much better using non-linear normalization.
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Figure 10. Whole-body organ-level absorbed doses estimated using DNN, MSV, SSV and Olinda/EXM software.

Voxelwise dose comparison between the proposed approach and conventional techniques revealed the
limitations of SSV and MSV for internal dosimetry calculations. Since media with higher densities inherently
contain more photon interactions, this causes higher energy deposition in the voxels, the summation on S-value
kernels of higher density media has higher values compared to those with lower densities. The profiles of absorbed
dose showed that SSV overestimated the deposited energy within media with a density lower than soft-tissue (e.g.
lung) (Figure 5). This concept applies to densities higher than soft-tissue, such as bone where SSV underestimated
the deposited energy. None of the above-mentioned seminal works compared their results with the MSV approach
which showed a good agreement with direct MC simulations. However, since this approach relies on the
assumption that most absorbed doses are contributed by self-absorption, dose estimation errors are commonly
observed at the boundaries of heterogeneous media (see Figure 7 where few data points significantly deviated from
the reference), which is not clinically important. Furthermore, MSV underestimated or overestimated the absorbed
dose in VOIs with small size depending on the medium density. Figures 5, 8 and 9 confirm that MSV overestimated
the results with respect to the ground truth in bones. These errors were predictable since the total deposited energy
in the soft-tissue kernel is 54% higher than that in lung kernel with the same size, while this difference is about -
34% between soft-tissue and cortical bone kernels. This limitation causes significant errors in absorbed dose
estimation for small size lesions in media with different mass densities, e.g. pulmonary nodules, which is a critical
issue in targeted radionuclide therapy. In addition, application of the MSV method is restricted to radiotracers with
higher positron energy, since taking only self-absorption into account does not fulfill the requirements of accurate
internal dosimetry. The Bland-Altman analysis demonstrated the lower bias and variance of DNN against MSV
and SSV. The data points of the DNN method beyond the CI correspond to voxels at the boundary of body contour
having no impact on dose calculation results. In addition, the data points of MSV method beyond the CI belong to
voxels with heterogeneous boundaries, while for SSV three separate regions were formed corresponding to three
different media. In nuclear medicine practice, knowledge of organ-scale absorbed dose according to the different
radio-sensitivity of organs is required. Olinda/EXM is a commercial software package enabling estimation of
organ-level absorbed doses according to the MIRD formalism. For the studied patient, it was observed that organ-
level dosimetry leads to underestimation of absorbed dose compared to voxel-level approaches, except the lungs,
as a result of ignoring the non-uniformity of organ activity distribution and inter-subject variability of anatomical
characteristics (Figure 10). Another limitation of this software is the use of isolated sphere model for tumor
dosimetry. This latter assumes that tumors are spheres with unit density and uniform activity distribution and there
is no information about the cross-dose from a tumor to other organs or from other organs to a tumor. Because of
this limitation, in the case study with a pulmonary tumor, we determined the total number of disintegrations within
the lung and tumor as input kinetic parameters of the lung in Olinda/EXM, which led to an overestimation of lung
self-absorbed dose by Olinda/EXM. Conversely, the underestimation of tumor dose lies in the fact that only self-
absorbed dose is considered in Olinda whereas cross-irradiation is ignored [54, 55]. Absorbed doses in most organs
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considered as soft-tissue were almost similar when using MSV and SSV techniques. MSV was able to correct the
SSV errors in regions with a density different from soft-tissue.

The importance of accurate patient-specific voxel-scale internal dosimetry is rapidly growing thanks to recent
advances in targeted radionuclide therapy and theranostics. Considering the advantages of voxel-level dosimetry
in molecular radiotherapy in terms of providing dose indices, such as dose volume histograms, we developed a
methodology for voxelwise dosimetry. The execution time for building a whole-body voxel dose map is less than
0.1% of the time required for direct MC simulations. However, the computational time is longer than that of MSV
because it has one additional component for inferring the specific S-value kernels. The total computation time for
the first step is about 0.7 h using NVIDIA GEFORCE RTX 2080 Ti platform, whereas the required time for the
convolution process is about 0.1 h on a 10-core CPU and 32 GB RAM. The results presented in this work
demonstrated that MSV provides reasonable accuracy for dose estimation in diagnostic nuclear medicine
procedures. However, due to its limitations, it introduces significant uncertainties which might limit its adoption
in therapeutic applications. The proposed method is robust and accurate and suitable for direct transfer to other
molecular imaging modalities. Its advantages compared to other deep learning-based dosimetry techniques
reported in the literature [35, 36] is that it does not require whole-body dose maps for the training step. In addition,
a single trained model for a given radionuclide could be employed for all compounds labelled with this
radionuclide. Furthermore, the fundamental principles and/or underlying physics of energy deposition have been
considered in our model. The latter depends directly on the energy absorption coefficient of the target voxel and
the probability of Compton scattering, which depends on the density of the medium. Previous works did not
explicitly incorporate in their model Compton scattering and its contribution to the overall absorbed dose. In this
regard, deep learning algorithms were employed to predict the absorbed dose map from the density/activity maps
using an end-to-end scheme without explicitly modelling the underlying physical principles (Compton scattering
and cross-irradiation). More importantly, we developed a simple network with a single input/output channel
featuring detailed modelling of the underlying physical interactions, which enables efficient and versatile training
of the algorithm with minimal risk of overfitting. Owing to the simple but efficient deep learning-based core of
the proposed framework (smaller number of trainable parameters compared to end-to-end image translation), the
model provides an accurate and robust solution using a small training dataset.

This work bears inherently some limitations that should be acknowledged, among them the long time required
for simulation-based generation of ground truth dose maps. First, the size of S-value kernel is about one mean free
path of annihilation photons. Second, extending the reciprocal theory to heterogeneous media is not
straightforward. However, we proved the efficacy of the concept using a simple simulation study. Third, the effect
of the limited size of the training and validation dataset warrants further investigation. However, a single patient
study was presented as a proof of concept. Unlike organ-level dosimetry that is inherently subject-sensitive,
estimation of voxel-wise dose distribution based on the voxel-based MIRD formalism is not subject-sensitive since
it depends only on physical parameters (S-value kernel, density map and activity distribution). In this context, the
accuracy of the results depends only on how the S-value kernels are determined. Let’s consider that SSV performs
well in homogenous media, the accuracy of this method is not related to the type of medium or the activity
distribution. The accuracy of this method directly depends on the S-value kernels applied for voxel-wise dosimetry.
Likewise, the accuracy of the proposed methodology is linked to the accuracy of the specific S-value kernels while
it is not dependent on patient-specific anatomy and activity distribution. Hence, in the first step, we evaluated our
S-value prediction voxel-by-voxel to assess the accuracy of our approach (Figure 4). Lastly, we only provided a
model for 18F, yet our method is extendable to all types of radionuclides/radiotracers where transfer learning can
be exploited to obviate the need for regeneration of large ground truth dataset for training the network. In particular,
for positron-emitting radiotracers with different positron energies, the generation of the ground truth should be
repeated for a kernel size equal to the range of positrons. Since the deposited energy outside the positron range is
contributed by the interactions of annihilation photons, for any pure positron-emitting radiotracer, the central part
of S-value kernels should be replaced with the center of simulated S-value kernels for 18F generated in the current
study.
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V. Conclusion

We proposed a unified methodology for patient-specific voxelwise whole-body internal dosimetry using deep
learning algorithms. The comparison of the proposed approach with standard of reference MC simulations revealed
very good accuracy with a MRAE of 2.6%. Our technique also outperformed conventional voxel-level and organ-
level MIRD-based formalisms. Future work will focus on exploiting the current methodology to generate whole-
body voxelwise dose maps in few minutes to serve as Monte Carlo-based ground truth datasets. A network with
two-channel inputs consisting of density/activity map pairs and one output channel corresponding to voxelwise
dose maps obtained from the previous step is then trained to develop a model for straightforward prediction of
whole-body dose maps from hybrid images.
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Abstract

Background and purpose: Accurate calculation of the absorbed dose delivered to the tumor and normal tissues
improves treatment gain factor, which is the major advantage of brachytherapy over external radiation therapy. To
address the simplifications of TG-43 assumptions that ignore the dosimetric impact of medium heterogeneities,
we proposed a deep learning (DL)-based approach, which improves the accuracy while requiring a reasonable
computation time.

Materials and methods: We developed a Monte Carlo (MC)-based personalized brachytherapy dosimetry
simulator (PBrDoseSim), deployed to generate patient-specific dose distributions. A deep neural network (DNN)
was trained to predict personalized dose distributions derived from MC simulations, serving as ground truth. The
paired channel input used for the training is composed of dose distribution kernel in water medium along with the
full-volumetric density maps obtained from CT images reflecting medium heterogeneity.

Results: The predicted single-dwell dose kernels were in good agreement with MC-based kernels serving as
reference, achieving a mean relative absolute error (MRAE) and mean absolute error (MAE) of 1.16+0.42% and
4.2+2.7x107* (Gy.secY/voxel), respectively. The MRAE of the dose volume histograms (DVHs) between the DNN
and MC calculations in the clinical target volume were 1.8+0.86 %, 0.56+0.56 %, and 1.48+0.72 % for D90, V150,
and V100, respectively. For bladder, sigmoid, and rectum, the MRAE of D5cc between the DNN and MC
calculations were 2.7+1.7 %, 1.9+1.3 %, and 2.1+1.7 %, respectively.

Conclusion: The proposed DNN-based personalized brachytherapy dosimetry approach exhibited comparable
performance to the MC method while overcoming the computational burden of MC calculations and
oversimplifications of TG-43.
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I. Introduction

Brachytherapy is a radiation therapy technique where radiation sources are located at small distances from the
tumors, temporarily as in high-dose rate brachytherapy (HDR-BT) or permanently as in low-dose rate
brachytherapy. In routine clinical practice, the dose distributions are commonly calculated using a simplified
formalism proposed by the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43)
[1] or its updated version (TG-43U1) [2]. In these formalisms, the patient’s anatomy is considered as a water-filled
homogenous medium. A number of factors that influence the dose distributions, such as tissue and applicator
heterogeneities, the finite geometry of the patient, the source-source and source-cable attenuation, and electron
contributions to absorbed dose are ignored. Commercial treatment planning systems (TPSs), such as SagiPlan
(Eckert & Ziegler BEBIG Co., Germany), attempted to address the limitations of TG-43 in attenuating media like
a shield and metallic applicator through multiplication of the dose distribution obtained from the TG-43 model by
an analytical attenuation factor. However, the effects of transmission angles and attenuation dependency on
distance from the applicator in the region behind the shield (caused by multiple scattering) are ignored. A number
of studies have addressed the limitations of TG-43 considered to cause an over/underestimation of the estimated
planned dose and consequently treatment evaluation parameters for the clinical target volume (CTV) and organs
at risk (OARs) in different disease sites [3-12]. The AAPM published the recommendations of Task Group 186 on
model-based dose calculation algorithms (MBDCAS) in brachytherapy beyond the TG-43 formalism [13]. They
recommended the collapsed-cone [14], superposition/convolution [15], deterministic solutions using the linear
Boltzmann transport equation [16] and Monte Carlo (MC) methods to improve the accuracy of dosimetric
calculations in TPS. In MBDCAs, the exact definition of source and applicator geometry inserted within the
patient-specific computational model and heterogeneity corrections are implemented into the model [13]. For
photon-emitting sources at energies lower than 150 KeV, the predominance of photoelectric interactions makes a
large difference in energy absorption coefficients between different tissue types, which necessitates the
introduction of heterogeneity corrections in dosimetry calculations. However, the dosimetric impact of tissue
heterogeneities and finite patient dimensions for high-energy photon sources of Co-60 and Ir-192 in different
treatment sites has been reported to be about 2% difference of dose-volume histogram (DVH) parameters between
TG-43 against MC ground truth for the CTV, while these differences exceeded 5% for OARs [17]. Desbiens et al.
[7] studied the dosimetric impact of medium heterogeneities for Ir-192 in gynecologic HDR-BT using MC
simulations. They reported about 1% error on DVH-driven indices by taking into account tissue heterogeneities,
whereas they reported that excluding the air pocket and applicator material from DVH calculation produces about
8.7% difference in CTV D90 with respect to TG-43.

Personalized dosimetry is required to improve clinical outcomes while lowering the risk of radiation-induced
toxicity by growing recognition of precision medicine as a new paradigm aiming at increasing treatment efficacy.
In this context, direct MC simulation is considered the gold standard for dosimetry calculations. However, its
heavy computational burden and long execution time made it prohibitive for routine clinical application. More
recently, the clinical adoption of deep learning (DL) has been extended into radiation oncology through treatment
planning optimization [18-25]. A number of studies assessed knowledge-based automatic treatment planning using
deep learning algorithms for external beam radiation therapy to overcome the computational burden of MC-based
dose distribution [26-29] for head and neck cancer patients. In our previous work, we developed a framework for
patient-specific internal dosimetry, where the core idea of the Medical Internal Radiation Dose Committee (MIRD)
formalism was employed by training a physics-informed neural network to predict specific deposited energy
kernels in a heterogeneous medium [30]. It was shown that the deep learning-based model outperformed
conventional MIRD approaches compared to reference MC simulation. We further extended our work to patient-
specific dose distributionning in brachytherapy. An independent work was simultaneously carried out by Mao et
al. [31] on Ir-192-based HDR-BT dose prediction using deep learning. They designed a modified U-Net to predict
the dose distribution considering contoured structures of patients, where 3D dose map obtained from MC
simulations serving as ground truth. Considering the current literature, the main contribution of this work is (i)
developing a physics-informed DL-based framework through feeding full voxel density map into the network
(considering the presence of dense objects, such as metallic applicators, ovoid caps and air pockets); (ii)
introducing the volumetric dose map as a whole (taking into account attenuation/ Compton scattering and their
contribution to the overall absorbed dose).
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In this work, we investigated the potential of predicting brachytherapy dose distributions using a 3D Deep
Neural Network (DNN), wherein a two-channel input consists of a density map obtained from CT images along
with the deposited energy kernel in water was fed into the network to predict patient-specific planned dose
distributions.

1. Materials and methods

Method description

In the first step, we developed a MC-based Personalized Brachytherapy Dosimetry Simulator (PBrDoseSim)
wherein CT and DICOM-RT plan dataset are imported into the system to estimate patient-specific dose
distribution. In the second step, we employed a DL model to generate personalized dose distributions from patient's
CT images and treatment plans (Figure 1). The DL network was designed as an image-to-image regression model
to predict the specific energy deposition kernel when the radioactive source is located in the dwell position obtained
from the treatment plan. The input data for the training is a two-paired channel composed of dose distribution
kernel in water medium along with volumetric density maps. The corresponding output is a 3D dose distribution
inspired from MC simulations. Given the input matrices, PBrDoseSim was employed to produce the dose
distribution kernel for single-dwell sources considering the radioactive seed with unit activity located in the dwell
position. The final dose distribution was reconstructed by superposition of single-dwell-position dose maps
through dwell-time-weighted linear combination.
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Figure 1. graphical abstract of the dose reconstruction procedure. The green panel shows the MC simulator structure, the red
panel represents deep learning-based single-dwell dose kernel prediction, and the blue panel represents post-processing and
analysis steps. Dw: single-dwell dose distribution in water, Des: single-dwell dose distribution in patient-specific geometry.
geo: geometry, Src: source, pos: position, ori: orientation.
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Data preparation

Data from 78 patients with locally-advanced cervical cancer treated with 3D conformal radiotherapy (45 Gy in 25
fractions) and HDR-BT (Co-60 source, 3/4 fractions and 8.6/7 Gy per fraction) as boost using a fletcher applicator
were collected. A total of 2355 single-dwell positions (on average 30 dwell positions per patient) were obtained.
Detailed patient demographics are given in Table 1. We randomly divided our patient data into training (70) and
external validation (8) datasets. Division by patient class was adopted to avoid sharing the patient geometry
information between the training dataset and unseen external validation set.

Table 1. Patients” demographic information.

Patients split CTV_volume Pescribed Dwell-pos

(cm3) dose-Dgo (Gy) Dwell positions (#) Sparsity
Ch.1 Ch. 2 Ch.3
Training 21.94+16.11 8.45+0.85 7.443.0 15.745.0 6.95+2.0 20.73+£3.84
(No. 70)
Validation 20.22+8.83 8.62+0.86 7.3x1.1 16.8+3.6 7.7+£1.0 20.16£3.32
(No. 8)

Ch: applicator channel (Ch. 1: left oviod, Ch. 2: tandem and Ch. 3 right ovoid)
Dwell-pos Sparsity: %ZNrdwe”_pusmon — , N: total number of dwell positions

Monte Carlo simulation

An in-house developed software for brachytherapy dose planning based on MCNP transport code was developed
[32]. This program was implemented in Matlab and comprises four modules: i) geometry, ii) source definition, iii)
simulation parameters, iv) output definition. The geometry module is fed by CT images. This module reads
patient's CT images to provide a density map through the conversion of CT Hounsfield units (HUs) into different
density classes [33]. In this module, the resolution size is a variable that can be modified by the user. Besides, the
densities and corresponding material compositions assigned to each voxel are available to users for modification
as an external library. The source module provides the definition of the source in MCNP code consisting of the
seed model, particles and energy definition, as well as position and orientation of the source. The source geometry
is defined using MCNP microbodies according to the source design. The mode and source energy spectrum are
defined based on the radioactive source material. The position and orientation of the seed is extracted from
DICOM-RT data (seed orientation is defined based on the two end-to-end dwell positions). The simulation
parameters include the number of histories tracked in the model and variance reduction techniques. The output
module defines the parameters of the scored MCNP tally and the geometry of the output that can be fine-tuned by
the user (Supplemental Table 1).

Dw representing the dose distribution in water was generated through the simulation of specified source seed
in an infinite homogenous water medium. Accodrding to TG-43 formalism, heterogeneity correction of metallic
applicator was applied on the planned dose by multiplication of an attenuation factor depending on the applicator
material and wall thickness.

In this work, density maps consisting of 13 density classes (air, lung, fat, soft tissue, and bone) where values
above 100 HU were divided into eight discrete density groups. Afterward, the generated density maps were
resampled to 3 mm3 voxel size and were directly imported to the MCNP code, representing a heterogeneous
medium of patient’s anatomical structures. The material compositions were defined based on Schneider et al. [33].
BEBIG Co0-60 HDR source (Model Co60.A86) used in this study was designed according to the company model
(Supplemental Figure 1). The mode and energy spectrum of the emitted source particles was defined based on Co-
60 (photons with two equal emission probability energy bins of 1.33 MeV and 1.17 MeV). The position and the
source orientation were extracted from the DICOM-RT file and used as input to MCNP code considering the
original coordinate in the TPS. Metal applicator (Fletcher tandem and oviods, Eckert & Ziegler BEBIG Co.,
Germany) segmented on CT images was modelled as foreign objects (density of 4.51 gr/cm?®) within the patients.
5 million (5x10°) particles were tracked in these simulation sets and truncation methods, i.e., energy cut, were
used as MCNP variance reduction techniques. Energy deposition mesh tally (type 3) was used in this simulation.
3D dose grids with a size of 34x34x34 voxels and a resolution of 3mm?3 were designed to score voxelwise energy
deposition. To benchmark our simulator, we designed a single dwell position treatment plan in a water sphere of
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5 cm radius (Supplemental Table 2) and quantitatively analyzed the planned dose obtained from the TPS against
our simulation.

Deep neural network architecture

In this work, a modified ResNet [45] architecture implemented on the TensorFlow platform was employed. The
ResNet architecture consists of 20 cascaded convolutional layers with three levels of dilated residual blocks
(Supplemental Figure 2). The first convolution layer is cascaded by three residual blocks with a 3x3x3 voxel
convolution used to extract low-level features from the data. The next three residual blocks were designed to
extract medium-level features using a dilation convolution operation by a factor of 2, whereas the last three residual
blocks capture high-level features by a dilation factor of 4. The network was trained to learn heterogeneity
correction on Dy according to the information derived from density maps. The optimization of the network was
defined based on L2 norm as objective function (OF) in addition to a regularization term of L1 in the following
form:

OF (regularized) = %Z(}”/ —-y)? + %Z w )

where y, J and A are ground truth, prediction, and decay factor, respectively. w represents trainable parameters.
The following setting was used for the training: optimizer = Adam, learning rate = 0.0001, batch size = 20, decay
= 0.00001. Pairs of volumetric density maps representing medium heterogeneity and Dy, reflecting the dose
distribution around dwell position in homogenous medium as input, and corresponding patient-specific dose map
(Dgs) as output were fed into the DNN. Dys obtained from PBrDoseSim has a large dynamic range owing to the
steep dose gradients with the distance to the source. Hence, it was non-linearly normalized for the sake of effective
training of the network. 5% of the training dataset was isolated for validation within the training of the model.

Evaluation strategy

Quantitative analysis of model performance was conducted by evaluating the mean relative absolute error
(MRAE), voxelwise mean absolute error (MAE), and kernelwise absolute mean error (AME) between DNN and
MC-based single-dwell dose maps. Furthermore, dose distribution quality metrics, i.e. 3D Gamma analysis for
multiple criteria (1%/ 3% dose deviation (DD), 3 mm distance-to-agreement (DTA), total plan volume/ 100%
isodose volumes), conformity index (COIN), dose homogeneity index (DHI), dose non-uniformity ratio (DNR),
and dose-volume histogram (DVH) parameters were investigated as clinically relevant indices. Two groups of
indicators consisting of CTV-based indices and OAR-based indices were defined. Dy is the absorbed dose received
by xx % of the target volume, whereas Vy is the percentage of the target volume receiving at least xx % of the
prescribed dose. Dycc represents the minimum dose received by x cm?3 of an OAR. The distribution of the results
was analyzed using Kolmogorov—Smirnov test and pairwise comparison between different methods against
reference was analysed using post-hoc-test (p < 0.05).

111. Results

The details of PBrDoseSim evaluation in water phantom are summarized in Supplemental C. A single-dwell dose
kernel and combined dose distribution along with axial dose profiles are illustrated in Figure 2, where the relative
difference between the two profiles are about 0.8% and 1.59%, respectively. The MRAE in a 10x10x10 window
around the dwell position (MRAE.) was calculated owing to the large contribution of absorbed doses in proximity
to the source position, yielding 1.16+0.42 % difference between DNN and MC results.
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Figure 2. Single-dwell dose kernel (axial view, top panel) and combined dose map (pear-shaped dose distribution, coronal
view, pear shape, middle panel) obtained from MC simulations and DNN model along with bias map in absolute unit of Gy
and line profiles across the kernels. Comparison of MAE and AME (bottom left), MRAE (%) and MRAEC (%) (bottom middle)
obtained within planned dose when using DNN against MC-based approaches. Joint histogram analysis displaying the
correlation between the local voxels between predicted dose maps against their corresponding MC-based ground truth (bottom
right).

Clinical studies

Dose quality indices obtained from MC simulation through the whole dataset are illustrated in Figure 3. The
average value (95% Confidence Interval (C195%)) of COIN, DNR and DHI indices were calculated as 0.24 (0.15),
0.65 (0.15), and 0.34 (0.15), respectively. The DNN outperformed other approaches by achieving the lowest bias
(0.05%) and the smallest variance (0.48%) against MC calculations. Voxelwise gamma analysis in the form of
cumulated volume histogram of predicted DNN-based dose distribution compared to MC-based dose map for
multiple criteria of all studied cases are presented in Figure 3-bottom. This graph confirms the gamma passing rate
(Gamma-value<1) of about 99.9% for all analyzed criteria.

The predicted DNN-based DVH shows a consistent shape with those obtained from the MC method serving as
reference (Figure 4). The mean relative absolute error of DVVH-driven dose metrics between DNN and Dy approach
with respect to MC-based results were 1.4+0.9 % and 2.4+2.1, respectively. While for volumetric metrics, these
were 1.05+1.18 % and 2.1+3.2 %, respectively. In the current cervical patient dataset, three organs were delineated
as OARs (sigmoid, bladder, and rectum) where Dscc and Do metrics are shown in Figure 5. The mean relative
absolute error of DVH parameters in OAR regions between DNN and Dy compared to MC simulations resulted in
1.6+1.6 % and 8.7£14.94 %, respectively. According to Kolmogorov—Smirnov test on the current dataset, non-
parametric statistical analysis was utilized. The post-hoc comparison confirms that the differences between DVH-
driven metrics obtained from DNN (p-value= 0.99) and Dy, (p-value= 0.68) with respect to those from MC-based
approach are not statistically significant.
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3D gamma analysis for the unseen external validation set is illustrated in Figure 6, which compares the
predicted DNN-based dose distribution against MC-based dose map for multiple criteria, namely 1% / 3% DD in
3mm DTA and local normalization, for both total dose distribution volume and 100% isodose volume. The
cumulated volume histogram depicts the gamma passing rate (Gamma-value<1) of 99.9% for all analyzing criteria.
Furthermore, the maximum intensity projection of 3D gamma maps of validation dataset is shown in Supplemental
Figure 5. Quality indices obtained from DNN and D, dose distributions are depicted along with MC-based as
ground truth (Figure 6). The MRAE of COIN and DNR indices between DNN models compared to MC approach
were 0.84+0.5 % and 1.8+2.3 % while these differences exceeded 0.8+0.4 % 3.4+4.6 % for Dy, model compared to
the reference.
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Figure 3. Dose quality metrics of the whole dataset according to the dose distribution obtained from MC-based calculations
(top left) along with the differences between quality indices calculated by DNN and Dw models against MC ground truth (top
right). Cumulated volume histogram of gamma analysis between dose maps obtained from DNN with respect to MC-based
dose distributions for 100%isodose volumes, (1% and 3%) DD, 3mm DTA, [coded as 100%isodose, (1% and 3%), 3mm] and
total dose volumes, (1% and 3%) DD, 3mm DTA, [coded as total, (1% and 3%), 3mm] (bottom).

The performance of the proposed DNN model on the external validation in terms of DVH-driven parameters
are summarized in Tables 2-3. The MRAE of DVH metrics between DNN and MC was 1.5+0.88 %, 1.8+0.86 %,
1.3+1 %, 0.85+0.43 %, 0.56+0.56 %, 1.48+0.72 %, 0.26+0.38 % for D95, D90, D50, V200, V150, V100 and V50
in the CTV region, respectively. Conversely, the Dy, approach compared to MC yielded 2.45+2 %, 2.56 +1.4 %,
3.9+2.1 %, 2.6+2.5 %, 2.9£1.9 %, 2.5+1.6 %, 0.37+0.55 % for the same metrics, respectively. For D2cc of the
bladder, sigmoid, and rectum, the MRAE between DNN and MC method was 3.2+1.9 %, 2.4+1.6 %, 2.5+2 %,
respectively. The post-hoc-test revealed no statistically significant differences between the metrics obtained from
DNN with respect to the MC-based approach (p-value = 0.82). An intraclass correlation coefficient of 99.8%
confirms that the results obtained from the proposed DNN method are in excellent agreement with MC serving as
reference.
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Figure 4. Mean DVH plots along with C195% (light shaded area) for the study population comparing the proposed DNN (left,
dashed line), and Dw (middle, dotted line) plans against MC results (continuous line) are given for CTV (pink), rectum (blue),
sigmoid (green) and bladder (red). DVH comparisons between DNN (dashed line), Dw (dotted line) approach with respect to
MC-based DVH (continuous line) are plotted for a randomly selected case study (right).
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Figure 6. Left panel: Mean gamma volume histogram (dashed) plots along with C195% (light shade) for the external validation
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[coded as total, (1% and 3%), 3mm]. Right panel: Quality indices calculated by MC, DNN and Dw models.
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Table 2. Comparison between the proposed DNN and Dw models with respect to MC. The mean value of the DVH-driven
dose metrics obtained from MC calculations are provided in absolute unit of Gy. The interquartile difference of dose indices
in absolute unit of Gy and mean relative error in percent difference between DNN and Dw model against MC are presented for
CTV and OARs.

DVH MC DNN vs. MC Dwvs. MC DNN MC Dw MC
RO metrics (Gy) Diff (Gy) Diff (Gy) Diffsstd  Diffistd
(mean=Cl) 25% 50% 75% 25% 50% @ 75% (%) (%)

CTV D95 5.90+ 1.6 -0.08 -004 007 -015 -0.06 0.02 -0.05+1.86 -0.7£3.3
D90 6.69+ 1.7 -0.14 -011 010 -019 -010 -0.06 -0.53+x211 -1.7£2.5

D50 12.12+2.8 -020 -010 -0.02 -061 -046 -0.31 -0.90+1.45 -3.9+2.1

Bladder D5cc 59+1.4 -0.08 0.05 025 -0.63 -0.37 -0.12 1.61+3 -5.93+£3.5

D2cc 7.56+1.66 -0.11  0.20 037 -054 -044 -0.20 1.92+3.46 -5.91+4.3

Sigmoid D5cc 2.34+1.36 -0.11 -0.04 0.01 -0.01 0.06 0.15 -1.43+2 3.29+6.5
D2cc 2.94+1.67 -0.11 -004 001 -001 0.14 0.21 -0.80+£3 4.23+6

Rectum D5cc 3.21+0.53 -0.09 -0.04 0.00 0.04 0.09 0.15 -0.65+2.87 2.87+3.9

D2cc 3.91+0.61 -0.14 -0.03 0.03 -0.04 0.02 0.11 -1.3243.1 0.84+3.3

Table 3. Mean value of the DVH-driven volume metrics obtained from MC calculations provided in absolute unit of cm?® and
relative percent of CTV volume. The interquartile difference of volume indices in (%) between the DNN and Dw models against
MC is presented for the CTV.

DVH Refl\e/lrgnce Ref':e/lrgnce DNN vs. MC Dwvs. MC
ROI VO|UI_T'I€ (cmd) (%) (%) (%)
metrics (mean+Cl)  (meantCl)  25%  50%  75%  25%  50%  75%
V200 6.36+ 3 30.8+108  -0.83 -065 035 -371 -204 -081
V150 907347  467+#163  -0.83 -0.27 000 -455 278  -111
cTv V100 152047.5  727+228  -1.63 -1.02 040 -3.72 244 077
V50 1981492  96.3+85  -010 000 009 -0.24 000 019

Iv. Discussion

Accurate calculation of the absorbed dose delivered to the tumor and specific surrounding OARs enables to
maximize the treatment gain factor, which is the main advantage of brachytherapy over external beam
radiotherapy. In this study, we developed a unified MC-based dosimetry platform enabling the transition from TG-
43 to MBDCA s approach while covering the limitations of analytical models in MBDCA [34, 35]. We designed a
novel DNN architecture to solve a complex problem, i.e. Boltzmann transport equation, by translating the
underlying fundamental physics of particle interactions into the computer vision domain.

We prepared a dataset of 78 cervical cancer patients from which only one treatment session was chosen to
increase anatomical variabilities. The simulator was fed by with patient CT images and treatment plans providing
patient-specific geometry and radioactive source position and orientation within the patient. 10 cm dose grid’s size
was selected based on the steep dose gradient with radial distance (inverse square law) [36] that covers the desired
volume of interest for clinical dose evaluation. To confirm this assumption, isodose contours were calculated at
the boundaries of selected dose grids for the whole dataset corresponding to 15 % (+4%) of the prescribed dose.
In addition, none of the evaluated metrics, i.e. DVH-driven indices were affected by this kernel size.

The predicted 3D dose kernels from DNN exhibited good agreement with MC serving as reference confirmed
by joint histogram analysis (Figure 2). However, MRAE of 6.3% in the full planning volume can be attributed to
the larger statistical uncertainty associated with MC simulations in far distances from the source. Voxel dose
difference obtained from Dy model compared to MC was calculated with MRAE of about 13+3 % while MRAE,
exceeds 3116 % in the vicinity of dwell position (Supplemental Figure 4). Gamma analysis shows that at least
99.99% of points passed all criteria through the whole dataset (3 mm DTA was restricted by voxel size of the dose
grids). In terms of DVH indices, DNN shows a comparable performance against MC calculations with an average
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relative bias of 0.7 (¥1.4) % in the CTV volume. While, Dw showed an overall negative bias (-2.2 %) and higher
variance (3.34 %) against MC results (Figure 5). For OARs, the inserted balloon within the bladder caused a
considerable underestimation of absorbed dose obtained from Dw, while DNN was trained to correct for its effect.
For the sigmoid and bladder, there is low bias since OARs are almost composed of soft tissues and not located in
the high dose regions, while the high variance is mainly caused by the presence of air pockets ignored in Dw
models (low dose area in Figure 4). External validation revealed good generalizability of the model with an average
bias of 0.49 (+1.8)% in CTV dose indices with respect to the MC ground truth (details on case study interpretations
are presented in Supplemental F). Mao et al. [31] reported the same magnitude of relative error (prostate: CTV
D90=0.73%, OAR D2cc~1.1%; cervix: CTV D90=1.7%, OAR D2cc~ 2%) between their DL model against MC
as ground truth using Ir-192. Although, they reported slightely less error for quantitative indices in their original
model evaluation (prostate), they did not provide any evaluation on their full dose distribution compared to ground
truth. Furthermore, they did not provide any baseline comparison, i.e. against Dw, thus, direct comparison of
different models is not fair/insightful (owing to different dataset). One of the major limitation of their model is that
it relies on contoured structures rather than original density map obtained from CT images. Therefore, it is unable
to account for dense materials such as metallic applicator, ovoid caps, CT contrast agents, air pockets, etc, while
our framework was based on a realistic physical model considering original voxel density maps as input.
Furthermore, they used modified U-Net architecture composed of encoder-decoder (down and up sampling/polling
layers) that converts original images to feature space by losing image resolution that would be issue in the presence
of small heterogenieties. while in our proposed modified ResNet algorithm, image size is steady through all layers
without losing image resolution. We modeled the fundamental principles of energy deposition [37] through fully
volumetric dose map rather than patchwise learning. However, previous studies on DI-based dose prediction did
not explicitly incorporate compton scattering in their network and ignored its contribution to the overall dose
distribution [31, 38, 39].

Overall, the DNN model outperformed TG-43-based approach in terms of heterogeneity correction in clinically

relevant parameters of the HDR-BT planned dose. The required time for prediction of a combined dose (~30 dwell
positions) was about 0.6 sec (2080TI GPU, Xeon 2.30) compared to 540 min (10 core CPU, 64-GB RAM ). This
work bears some limitations that should be acknowledged. First, the choice of dose grid size/ resolution and particle
histories were restricted by the long simulation time and limited GPU memory for DL training process. Source
position/ orientation within the voxel is affected by course grid resolution, however, it has a local effect (first
vicinity voxel) on deposited energy distribution and do not impact DVH-derived parameters. Second, the effect of
the limited size of the training and validation dataset warrants further investigation. Third, we only provided a
model for cervical HDR-BT using Co-60. Yet, this methodology is extendable to all types of brachytherapy
treatments and different disease sites, where transfer learning can be exploited to obviate the need for a large
ground truth dataset for model training.
It is worth highlighting the potential opportunities and challenges in the utilization of deep learning into
brachytherapy personalized dose distributionning. In this context, DL algorithms can provide a solution for fast
personalized dosimetry without compromising the accuracy. One of the challenges that DL can address is the
construction of patient-specific computational models using structural images. It highly impacts the accuracy of
MC-based dose calculation. Furthermore, it can be directly deployed for construction of planned dose for
verification of clinical TG-43 dose distributions, inverse planning and treatment outcome prediction.

V. Conclusion

We developed a unified pipeline for MC-based dosimetry in HDR-BT that has been used to provide an accurate
set of MC simulations on a large retrospective cohort. We further developed a DNN model to provide an alternative
solution for accurate personalized dose distributionning in brachytherapy to overcome the computational burden
of MC simulations. The proposed algorithm achieved good agreement with MC calculations while outperforming
the conventional TG-43-based formalism. Future work will focus on extending the core idea to different
radioactive seeds for various disease sites.
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Supplemental material

Monte Carlo-based dose simulation

A unified MC-based dose calculation engine, PBrDoseSim, was developed for personalized brachytherapy based
on MCNP radiation transport code. The simulator has the capability of modifying all modules, e.g. source model,
applicator model, tally score definition, and simulation setting depending on the application, supporting different
types of input images, e.g. DICOM, NIFTY, NRRD, etc, and modifying material composition and density of the
patient-specific computational model.

Supplemental Table 4. Monte Carlo simulations description as recommended by TG-268 task group.

Item name Description

Code, version MCNPX (version 2.6)

Validation Validated against phantom study

Timing 18 mins on a 10 Intel core node from 3.7 GHz processor.

Geometry Patient-specific voxelwise computational model obtained from CT images
segmented by multi-level thresholding (Voxel resolution: (3mm)3).

Phantom material: mass density obtained from HU values (CT images) and

assigning material composition from [40]

Source BEBIG 60Co HDR source (model Co60.A86). Energy spectrum of 60Co was

description defined as photon-emitting source with two equal emission probability energy bines of

Cross sections
Transport
parameters

Variance
reduction

Histories
(statistical
uncertainty)

Postprocessing

1.33 MeV and 1.17 MeV. Source positions was extracted from RTplan and source
orientation was derived from the direction of two consecutive dwell positions
(Supplemental Figure 1).

ENDF/B-VI Release 8 Photoatomic Data.

Energy Deposition Mesh Tally (type 3), Tally scores energy deposition data in
which the energy deposited per unit volume from all particles is included (Electron/
photon transport).

Energy cut-off in 10 KeV electron and photon particles

5x106 photon histories.

Statistical uncertainty per particle history (type A): <0.05 for single-dwell
simulation in 1 Gy isodoses (10% of maximum prescribed isodose).

Convert to voxel dose in absolute unit of Gy by multiplication in a constant factor
(UCxDwell_timexgamma yieldxReferenceAirKermaRate/306). UC: unit conversion
in Gy.

Supplemental Figure 7. BEBIG Co-60 HDR source (model Co60.A86) collision score simulation within a homogeneous

water medium.
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Network architecture

DW Density Map

Lf

Cru

-1

- 3x3x3 Conv, 16 Kernel  Batch Normalization LReLU

Batch Normalization ‘ LReLU 3x3x3 Conv, 16 Kernel

ﬁ Batch Normalization | LReLU  3x3x3 Conv, 32 Kernel, 2 Dilation

. Batch Normalization | LRelLU 3x3x3 Conv, 64 Kernel, 4 Dilation

0 s r~r— output
'.'." Residual Single-Dwell
Dose Map

Conv: Convolution, LReLU: Leaky ReLU,

Supplemental Figure 8. Schematic diagram of the ResNET architecture.

Monte Carlo simulator evaluation using water phantom
The details of the developed MC simulator are summarized in Supplemental Table 1 according to the
recommendations of TG-268 [41]. The benchmark study performed on a 5 cm radius water sphere with a single
central source yielded a gamma index (3%/3 mm) of 0.9999 between the simulated dose map and TG-43-based
planned dose. DVH comparison between the two methods is shown in Supplemental Figure 3. The absolute percent
difference between DVH parameters, i.e., D95, D90, V200, V150, V100, V50, was zero except for D90 where it
was about 3% (likely caused by the statistical uncertainty of MC results, < 5%).

RTplan parameters for irradiation of a spherical water phantom while the source was located in the center of
the phantom with a single dwell position is illustrated in Supplemental Table 2. The DVH plots are shown in
Supplemental Figure 3.
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Supplemental Table 5. RTPlan parameters of water phantom dose planning.

RT plan parameters

Source model BEBIG 60Co
(Co0.A86)
Size of CTV 523 cm?
Dwell positions 1 (central)
Dwell time 820 sec
Prescribed dose 1.2 Gy
1 : : : : :
—MC
0.8+ ---TG43 |-
X
~ 0.6
o
=
_g 04
>
0.2
0

0O 2 4 6 8 10 12 14
Dose (Gy)

Supplemental Figure 9. DVH plot for dose plan estimated by MC versus dose plan provided by Sagiplan software based on
TG43 formalism.

Dw model performance

The analysis revealed that Dy, resulted in higher bias but lower variance in dose calculation as a result of ignoring
tissue heterogeneity. Unlike the DNN model, Dy underestimated the deposited energy in the vicinity of the dwell
position owing to ignoring the applicator’s material. We further analyzed tissue-specific voxel dose differences.
According to the dosimetric principles, the deposited energy in a voxel depends on the energy fluence multiplied
by the mass energy-absorption coefficient of the medium [37], wherein both factors are affected by medium
density. Overall, it was observed that D, overestimated the deposited energy in fat and soft-tissue whereas it
underestimated the deposited energy in tissues with density higher than soft-tissue. The DNN model was trained
to learn heterogeneity corrections to the medium density.

y=096x+22 R?=094
rmse = 5.33 (Gy/sec)

%107
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MAE AME MRAE MRAEC 0 % \C Dose (1GOyfsec)

05

Dose (Gy.sec_ /voxel)
Difference (%)
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Supplemental Figure 10. Comparison of (left) MAE and AME, (middle) MRAE (%) and MRAECc (%) obtained in dose plan
regions and a window surrounding dwell source position when using Dw against MC-based dosimetry approaches. (right)
Voxelwise joint histogram plot depicting the correlation of predicted single-dwell dose maps with respect to their corresponding
MC-based ground truth dose kernels.
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Maximum Intensity Projection (MIP) of 3D gamma analysis for validation set

Gamma indices were analyzed for multiple volume of interests (total dose volume and 100% isodose volume) and
DD factors (3% and 1%) while the setting of local normalization and 3mm DTA was constant. As expected, gamma
passing rate in 3% DD is higher than 1% DD because of a larger dose gradient criterion.

(b)

Supplemental Figure 11. MIP of 3d gamma analysis of dose grids comparing DNN against MC ground truth on the validation
set for (a) 1% DD and (b) 3% DD.

Case study interpretation

We compared the performance of our method against TG-43. However, in the case of high-energy photon emitting
brachytherapy sources, such as Co-60, improving water-based dose kernels is challenging since the dosimetric
impact of MBDCAS in this energy range is small (on average less than 5%) mainly owing to the predominance of
Compton scatter conditions, which is less influenced by the heterogeneity of media. Furthermore, in this work, we
focused on cervix site assumed to consist of soft-tissue media where no substantial density differences are expected
for normal patients (without metallic implants). Therefore, the trained model mostly corrects the effect of metallic
applicator, presence of fat, inserted balloon within bladder and air packets. Our dataset was composed of 78
patients, where in about 12 cases, at least one of the DVVH-driven parameters obtained from Dw yielded a relative
error higher than 5% against MC-based metrics. We performed a meta-analysis of these patients’ information to
address the limitations of Dw. It was concluded that when the size of CTV is small and the applicator is not
excluded from the CTV volume, the effect of applicator heterogeneity distorts the DVH plot and underestimates
the absorbed dose. The D50, V200 and V150 metrics are mostly affected since these parameters represent the
DVH behavior in high dose areas. In a few cases where the CTV was large and partially located in the vicinity of
ovoids, a distortion of V200 and V150 was observed owing to the ovoid heterogeneity effects. TG-43-based
planned dose for a patient with a large metal implant in the femur underestimated all DVH parameters by a factor
of 7% on average. Air packets around the applicator that were not excluded from the CTV contour also affected
the DVH plot. In the external validation set, DNN outperform TG-43 based algorithm in almost all quantitative
metrics.
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A transition phase from TG-43 to MBDCA using radiological images seems feasible in clinical setting using
some simplified corrections, such as heterogeneity correction according to the voxelwise energy absorption
coefficients and excluding air pockets and applicator from DHV plots [7]. Although, accurate patient-specific dose
planning requires detailed knowledge of material composition of the irradiated tissues, applicator characteristics,
shield heterogeneity, etc. MC methods are deemed the gold standard. In addition, the accuracy of MC-based dose
planning is highly dependent on the accuracy of patient-specific computational model obtained from radiological
images that is fed into the MC simulator. In clinical radiation oncology, personalized computational phantoms are
mostly constructed through conversion of HUs to density maps and assigning an elemental tissue according to the
density [33]. This process is prone to error owing to photon starvation and the impact of reconstruction algorithms.
In this work, we observed metallic artifacts in tissues around the applicator, which led to a higher density in the
area surrounding the applicator and consequently to a higher deposited energy. We compared the mean absorbed
doses in the CTV which showed a considerable underestimation of Dw against MC-based mean absorbed dose (on
average 7%) mainly caused by the effect of the applicator and the metal artifact in the applicator surrounding area.
This underestimation was more likely observed in cases with small size of CTV where the applicator was not
excluded.
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Abstract

Purpose: Metastatic neuroendocrine tumors (NETS) overexpressing type 2 somatostatin receptors are the target
for peptide receptor radionuclide therapy (PRRT) through the theragnostic pair of 68Ga/177Lu-DOTATATE. The
main purpose of this study was to develop machine learning models to predict therapeutic tumor dose using pre
therapy 68Ga-PET and clinicopathological biomarkers.

Methods: We retrospectively analyzed 90 segmented metastatic NETs from 25 patients (M14/F11, age 63.7£9.5,
range 38-76) treated by 177Lu-DOTATATE at our institute. Patients underwent both pretherapy 68Ga-
DOTATATE PET/CT and four timepoint SPECT/CT at ~4, 24, 96 and 168 hours post-177Lu-DOTATATE
infusion. Tumors were segmented by a radiologist on baseline CT or MRI and transferred to co-registered PET/CT
and SPECT/CT and normal organs were segmented by deep learning-based method on CT of the PET and SPECT.
The SUV metrics and tumor-to-normal tissue SUV ratios (SUV_TNRs) were calculated from 68Ga-PET at the
contour-level. Posttherapy dosimetry was performed based on the co-registration of SPECT/CTs to generate time-
integrated-activity, followed by an in-house Monte Carlo-based absorbed dose estimation. The correlation
between delivered 177Lu Tumor absorbed dose and PET-derived metrics along with baseline clinicopathological
biomarkers (such as Creatinine, Chromogranin A and prior therapies) were evaluated. Multiple interpretable
machine-learning algorithms were developed to predict tumor dose using these pretherapy information. Model
performance on a nested 10-fold cross-validation was evaluated in terms of coefficient of determination (R?),
mean-absolute-error (MAE) and mean-relative-absolute-error (MRAE).

Results: SUVmean Showed a significant correlation (g-value <0.05) with absorbed dose (Spearman p=0.64),
followed by TLSUVmean (SUVmean OFf total-lesion-burden) and SUVpeak (p=0.45 and 0.41, respectively). The
predictive value of PET-SUVnmean in estimation of posttherapy absorbed dose was stronger compared to PET-
SUVpeak, and SUV_TNRSs in terms of univariate analysis (R?= 0.28 vs. R? < 0.12). An optimal trivariate random
forest model composed of SUVmean, TLSUV mean and total liver SUVmean (normal and tumoral liver) provided the
best performance in tumor dose prediction with R?=0.64, MAE=0.73 Gy/GBq and MRAE=0.2.

Conclusion: Our preliminary results demonstrate the feasibility of using baseline PET images for prediction of
absorbed dose prior to 177Lu-PRRT. Machine learning models combining multiple PET-based metrics performed
better than using a single SUV value and using other investigated clinicopathological biomarkers. Developing
such quantitative models forms the groundwork for the role of 68Ga-PET not only for the implementation of
personalized treatment planning but also for patient stratification in the era of precision medicine.
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I. Introduction

The theragnostic principle has been summed up as: “We treat what we see, and We see what we treat™ [1]. This
concept of “see and treat” in nuclear medicine therapy has led to the development of theragnostic pairs, consisting
of an imaging radiotracer for staging and molecular targeting and its therapeutic counterpart, usually a beta- or
alpha-emitter for tumor ablation. Neuroendocrine tumors (NET) commonly express somatostatin receptors
(SSTR), predominantly subtype 2, which is the basis for the use of SSTR PET imaging and peptide receptor
radionuclide therapy (PRRT). For the management of NET, the theragnostic pair of 68Ga/177Lu-DOTATATE
has been widely used since 2018 when 177Lu-DOTATATE (Lutathera) was approved by the U.S. Food and Drug
Administration (FDA) on the basis of NETTER-1 trial results [2, 3].

In current 177Lu-PRRT clinical practice, pretherapy 68Ga-DOTATATE (68Ga-PET) is required for candidate
eligibility to confirm sufficient tumor SSTR expression (peformed via qualitative assessment with Krenning
score). The approved empiric protocol for 177Lu-PRRT is 4 cycles of 7.4 GBq infusions (~ 2 months intervals).
Although 177Lu-PRRT has been showed to improve progression-free survival (65% at 20 months, compared to
long-acting octreotide 11%), objective responses are uncommon (20%) and complete responses are rare (1-2%).
Therefore, to optimize 177Lu-PRRT outcomes, either patient selection criteria must be improved, or a
personalized treatment approach must be developed. Precision nuclear medicine for PRRT has been proposed,
with pretreatment 68Ga-PET used for patient selection and additional posttherapy imaging valuable to provide
individualized measurements relevant to treatment safety and efficacy [4].

Dosimetry-guided personalized radiopharmaceutical therapy (RPT) involves modulation of the number of
treatment cycles or the administered dose per cycle based on posttherapy dosimetry, which has been shown
positive impact on treatment response [5-8]. Predictions of therapeutic absorbed doses from 177Lu-PRRT have
also been performed using pretherapy 68Ga-PET, which is particularly desirable for planned alterations in the
first dose of 177Lu-PRRT, which has the potential to maximize tumor dose while limiting potential toxicity [9,
10]. Two previous studies [9, 11] reported on the ability to predict renal dose using pretherapy imaging, as the
kidney toxicity is a limiting factor for 177Lu-labeled RPTs [11]. Knowledge of expected renal dose exposure per
cycle is especially important if escalation of administered activity is considered in the first RPT cycle; while not
currently performed routinely in clinical practice, prioritizing higher doses early on may be preferable, since there
is an observed decrease in absorbed tumor dose per administered activity (Gy/GBq) in subsequent cycles [12].

According to the principles of RPT and cellular irradiation, the likelihood of tumor response is expected to be
correlated with the tumor absorbed dose. Various studies have shown dose-response correlations in 177Lu-PRRT
[3, 5, 7, 13]. Furthermore, some authors have reported on the correlation of 68Ga-PET uptake with treatment
outcome [14, 15]. In this context, tumor absorbed dose estimation prior to the therapy could provide a quantitative
metric for response with potential to improve patient-selection criteria. We therefore sought to develop models
that predict the mean tumor absorbed doses delivered by 177Lu-DOTATATE using pretherapy 68Ga-
DOTATATE PET plus a comprehensive set of clinicopathological biomarkers. The contribution of this work to
the field of RPT is threefold: 1) using a previously validated Monte Carlo-based dosimetry workflow with a patient
cohort that includes four-posttherapy SPECT/CT scans [16]; 2) including a complete set of clinical biomarkers in
addition to 68Ga-PET in the dosimetry prediction models; and 3) implementation of interpretable machine
learning algorithms for dose prediction.

1. Materials and methods

Patient population

This study comprised of 25 patients with histologically proven metastatic NETS, progressive on prior therapy,
who received at least the first cycle of standard 177Lu-DOTATATE PRRT and underwent four time-point
SPECT/CT dosimetry at the University of Michigan Hospital. As part of an ongoing research study approved by
the Institutional Review Board, all patients provided written informed consent to participate in the study, which
included serial SPECT/CT imaging following standard treatment. Patients’ demographic information is presented
in supplemental-Table. 1.

L Prof. Richard Baum
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Tumor and organ delineation

Up to five index lesions larger than 2 mL were manually segmented by a radiologist (MER) on diagnostic-quality
baseline CT or MRI and then transferred to the subsequent PET/CT and SPECT/CT scans using co-registration.
The spleen was manually segmented by a technologist while kidneys and liver were segmented using a deep
learning algorithm on the CT of the PET/CT and SPECT/CT [16]. The normal liver was sampled from uniform
uptake regions using three sphere volumes-of-interest (8 cm?® diameter). The organ segmentations were verified
and adjusted by the radiologist as needed.

68Ga PET/CT imaging and PET-derived metrics

Patient preparation required PET scans to be acquired 4 weeks after any long-acting somatostatin analogue
treatment. PET/CTs were acquired at ~60 min (range: 54-77 min) post-intravenous injection of ~160 MBq of
68Ga-DOTATATE (range: 144-196 MBq). Data were reconstructed using vendor-specific recommended
parameters. Partial volume correction was performed using volume dependent recovery coefficients from a
sphere-phantom measurement [2].

Image-derived features, both activity and SUV (standardized uptake value) metrics, were calculated for the
transferred contours. Tumor SUV metrics including mean, peak, coefficient of variation (CoV: standard deviation
divided by SUVmean), skewness and kurtosis, and mean activity (Bg/mL) corrected to the injection time and
normalized by injected activity were extracted. In addition, SUV nean Of the spleen, healthy liver, and kidneys along
with blood pool (SUVmean in aortic arch) were quantified. The relative tumor uptake was calculated as tumor-to-
normal tissue ratios (TNR) using tumor SUVean relative to the SUVmean 0f normal spleen (SUV_TNRgpieen),
normal liver (SUV_TNRjier) and blood pool (SUV_TNRypjeod). In addition, SUVmean Of the total liver volume
encompassing both healthy tissue and lesions is quantified as TotLiverSUV mean.

To quantify total lesion burden-related metrics, whole-body PET-SUV images were segmented using an
empiric SUV threshold (whole-body SUV-cutoff=5, liver SUV-cutoff=10). The generated mask from
thresholding was adjusted to add lesions not included in initial segmentation and remove physiological uptake in
organs and then verified by the nuclear medicine clinician (KW). Therefore, three independent metrics based on
the segmented mask encompassing total 68Ga-DOTATATE-avid lesion volume were defined: Total Lesion
Volume (TLV) in mL, average SUV of the Total Lesion Volume (TLSUV mean), and Total Lesion Somatostatin
Expression (TL-SSE) defined as TLVXTLSUV mean.

Clinicopathological biomarkers

A total of 25 clinical, pathologic, and laboratory variables were included in our study, all of which we believed
had theoretical potential to influence patient overall health, tumor behavior, and treatment response. Clinical
patient data and lab values were obtained through review of the electronic medical record.

The total variable set, including 16 quantitative and 3 qualitative 68Ga-PET features, 8 treatment history, and
11 blood-test biomarkers, is detailed in Table 1.

177Lu SPECT/CT imaging and dosimetry workflow

Our patient data regarding dosimetry in patients undergoing 177Lu-DOTATATE comes from an ongoing
research study that includes serial post-therapy SPECT/CT imaging at ~ 4, 24, 96, and 168 hours after the first
cycle. A 25 min single-bed SPECT/CT acquisition is performed on a Siemens Intevo using manufacturer-
recommended protocol and reconstructed with Siemens XSPECT Quant using 48 iterations and 1 subset and no
post filtering [17].
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Table 1. Complete variable set, including PET and clinicopathological features, used in the development of a predictive model
for tumor delivered dose from 177Lu-PRRT.

features Name of feature Description

Shape Volume Volume of index tumors (segmented by radiologist)

PET Uptake/  SUVmean Mean SUV value

SUVv SUVpeak Average SUV within a 1 mL sphere centered on the site of highest uptake in a tumor
SUViurt Measure of the shape of the peak of the SUV distribution (kurtosis)
SUVskew Measure of the asymmetry of the SUV distribution (skewness)
SUVBIoodpool SUVmean in the aortic arch
SUVspieen SUVmean Of the Spleen contour
SUVLiver Average SUVmean Of three spheres (8 mL) sampled from the normal liver tissue
SUVKidneys Average of SUVmean from right and left kidney contours
SUV_TNRbiood Ratio of Tumor SUVmean to blood pool SUVmean
SUV_TNRspleen Ratio of Tumor SUVmean 10 SUVmean Of the spleen
SUV_TNRIiver Ratio of Tumor SUVmean t0 SUVmean Of the liver
TotLiverSUVmean SUVmean Of the whole liver including both normal and tumoral tissues
TLV Total lesion volume
TL-SUVmean Average SUV of the entire total lesion volume
TL-SSE Total lesion somatostatin expression (TLVX TL-SUVmean)

Diagnostic Liver metastasis Disease present in liver (Based on Dotatate PET)
Bone metastasis Disease present in bone (Based on Dotatate PET)
Node metastasis Disease present in lymph nodes (Based on Dotatate PET)
Tumor location Anatomical location of the index tumor

Histological Grade Histologic grade (using Ki67 index) of primary tumor from biopsy/surgery
Primary tumor site Primary Tumor Site

Treatments #Systemic therapy Number of prior systemic treatments (Chemotherapy or other)
#Directed therapy Number of prior liver directed treatments (TACE, Y90, cryotherapy)
Y90-SIRT Prior treatment liver with Y90-SIRT
Everolimus Prior treatment with everolimus (Systemic MTOR inhibitor)
Capecitabine/ Prior treatment with capecitabine and temozolomide (Chemo, systemic)
temozolomide
Sunitinib Prior treatment with Sunitinib (Multi-Kinase Inhibitor, systemic)

Blood tests White Blood Cells White Blood Cells (K/cmm)
Lymphocytes Lymphocytes
Absolute Neutrophil Absolute Neutrophil Counts (K/cmm)
Hemoglobin Hemoglobin (g/dL)
Platelet Platelet Count (K/cmm)
eGFR Estimated Glomerular Filtration Rate (Calculated)
Creatinine Creatinine (mg/dL)
Bilirubin Bilirubin (mg/dL)
Albumin Albumin (mg/dL)

Alkaline Phosphatase

CgA

Alkaline Phosphatase (ALK, ALP, ALKP, or ALK PHOS) (IU/L)
Chromogranin A (Tumor Marker) (ng/mL)

For dosimetry, we employed an integrated workflow implemented within MIM software that has been
elaborated in a recent article by Dewaraja et al [16]. The workflow is composed of the following steps:

1. A contour-guided intensity-based registration was used to align four posttherapy SPECT images.

2.

Time Integrated Activity (TIA) was calculated by integration of the time-activity curve, a mono/ bi-
exponential function (TIA = f:c (e~Mt — e~%2t)). Here, C scales the curve up or down, A,is the

clearance/elimination rate, and A, is the uptake/absorption rate. The term effective half-life (Tes) refers

D@ 2, « Ay).
A1

TIA along with the corresponding density map (obtained from CT) were coupled with a fast Monte Carlo
(MC) simulator, developed at the University of Michigan [18], to generate the voxel-level absorbed dose
map.

to the slower exponential component (i. e. Ters =
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Statistical analysis and predictive modeling

For the statistical analysis, the Spearman rank correlation between predictive features and tumor dose were
analyzed, followed by Benjamini and Hochberg p-value correction, where g-value <0.05 considered significant.

To predict tumor absorbed dose using PET-derived features and biomarkers, a cross-combination of different
regression models were analyzed. We compared linear and supervised random forest regression algorithms
through univariate, bivariate, and multivariate analysis implemented in MATLAB 2022 (MathWorks Inc., Natick,
MA, USA). We adopted nested cross-validation (CV), whereby the outer-loop CV was repeated 10 times to
consolidate the results of 10-fold inner-loop CV [19]. During inner-loop CVs, 10% (8/80) of the whole dataset
was considered as unseen validation-set and 90% used as training-set. Due to the intrinsic heterogeneity and
limited size of our data, bootstrap aggregation strategy (500 bootstrap samples with replacement) was
implemented to improve model stability and avoid overfitting (algorithm flowchart in supplemental-Figure 1).

We designed a hierarchical interpretable feature selection strategy using main-effect analysis to select the most
important predictors. First, using a univariate linear regression model, the best variable with the highest coefficient
of determination (R2) was determined. In the second step, a set of bivariate regression models was generated using
two independent variables, i.e. the selected variable from the univariate analysis followed by a second variable
from the predictor-set. In the third step, the five best bivariate models that most increased predictive likelihood
(with the highest R2) were selected, forming the basis for a set of trivariate models. We extended the process up
to four-variable models, but because we saw no further significant improvement in predictive likelihood, this
process was stopped. In addition, we employed ElasticNet and Permutation-based Random Forest variable-
Importance (PRFvI) feature selection algorithms. The feature-selection algorithms were implemented in a
bootstrap ensemble framework as elaborated in supplemental-Figure 2. A maximum of 8 features were selected
based on the recommended number of at least ten observations per predictor [20].

We employed the proposed hierarchical feature selection algorithm in both linear and random forest
algorithms. In the linear model, we used a generalized linear regression model based on the least square loss
function. In the case of random forest algorithms, we used a bootstrap aggregation between two models including
random forest (ensemble tree) [21] and generalized additive model [22] (supplemental-Figure 2). To reduce
overfitting and improve generalizability, we grew a shallow tree by forcing the number of observations per leaf
to be at least 10 or the number of splits per predictor to be at most 5. The number of ensembled trees (=200) was
obtained from hyperparameter optimization. We implemented the proposed hierarchical feature selection
algorithms on both linear and decision tree regression models. Additionally, the selected features from ElasticNet
were fed to a multivariate generalized linear model and those selected based on PRFvI algorithm were tested in
the decision-tree model. The model performance was evaluated based on nested CV 10-fold R?, mean-absolute-
error (MAE) and mean-relative-absolute-error (MRAE) compared to ground truth.

We further tested sensitivity and specificity of the best model for predicting tumor absorbed dose >25 Gy/cycle
for response. This threshold dose was chosen as it is a previously reported potential cutoff for tumor response
following 177Lu-PRRT [5, 6].

111. Results

A total of 25 patients (M14: F11, age 63.7+9.5, range 38-76) with 90 neuroendocrine tumors larger than 2 mL
(mean= 65.6+139.9 mL, range: 2.1-1039 mL) met the study criteria. An example of corresponding 68Ga-PET,
post-treatment 177Lu SPECT/CT, and resulting time-activity curves of target lesions are given in Figure 1. PET-
SUVmean and SUVpeak measured from the 90 studied tumors were 16+6.4 (5.6-34.2) and 26.4+15.5 (6.1-104),
respectively, while SUVmean for normal liver, spleen and kidneys were 6.9+2.4 (2.2-11.4), 13.1+3.5 (7-19.2) and
5.4+2.7 (5.4-19.2), respectively. The mean tumor absorbed dose averaged 2.68+1.89 Gy/GBq (0.23-10.26
Gy/GBaq), while the average value of Te was 91.6+26.6 h (27.9-159.5 h).

The statistical variability of the investigated predictors dichotomized based on ANOVA-test of the absorbed
dose are illustrated in Table 2. The dichotomization cut-offs of the continuous predictors were calculated from an
iterative process (1000 iterations), in which a random number within the range of predictor’s quantiles (0.05-0.95)
were generated to binarize the predictor values. Then, one-way ANOVA test was applied on dose vector according
to the binarized predictor; thus, the cut-off was selected based on the minimum p-value obtained from ANOVA-
test.
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Figure 1. (Top panel) baseline diagnostic images (contrast-enhanced CT/MRI) were used to define target lesions, which were
then co-registered to pre-therapy 68Ga-DOTATATE PET/CT and post-therapy 177Lu-DOTATATE SPECT/CT images.
(bottom panel) dosimetry pipeline included four timepoints registration of SPECT images to generate TIA that is fed into MC-
based dose engine.

Self and cross-correlation of all baseline features compared to tumor absorbed dose and 4 other dose-related
parameters (parameters that directly contribute to absorbed dose) is presented in Figure 2 (Spearman-correlation
(p), g-value<0.05). The dose-related parameters are the scale factor C of the time-activity curve normalized by
tumor volume (C,,;), TIA normalized by tumor volume (TIAv) and Ter. We expect a physics-informed
correlation between dose and TI1Ayq, according to the assumption of local-energy-deposition for 177Lu-labeled
agents [23], and hence a correlation with TI1Ave components (Cy,; and T f). SUVmean Shows a strong correlation
with dose parameters (dose: p=0.64, TIA: p =0.39, C,;: p =0.56), followed by TLSUV mean (dose: p =0.45, T1Avo:
p =0.51, C,p;: p =0.63) and SUVpeak (dose: p =0.41, TIAvo: p =0.54, Cpo;: p =0.56). TotLiverSUVmean Shows a
correlation only with Cyo (p =0.44). A significant but moderate correlation between Tess and the pre-PRRT number
of systemic treatments (#Systemic therapy) (p =-0.31), Capecitabine/ temozolomide (p =-0.35) and bilirubin (p
=0.33) is observed.

Figure 3 illustrates the intra-patient variability of the index tumor absorbed doses among the study population.
The intra-patient tumor dose variability in terms of coefficient of variation (CoV) was within the range of 0.04-
0.78 (Median=0.38); this is comparable to the variation within the whole tumor-set, which had a CoV of 0.69.

For our predictive models, we excluded lesions smaller than 4 mL in order to reduce the dose calculation
uncertainties owing to mis-registrations and partial volume effects (>4mL, N=80). Also, two lesions with highest
doses (P_22, P_25 in Figure 3) were considered outliers and excluded from model building because of their
exceptionally high uptake in 177Lu-SPECT, despite 68Ga-PET uptake in a similar range compared to the other
analyzed lesions (both in the same patient and other patients).

The association of dose and different SUV parameters were evaluated using univariate analysis (linear least-
square regression). SUVmean (coefficient-of-determination: R?=0.28), compared to SUVpea (R?=0.07), and
SUV_TNRs (R%<0.12) showed a better performance in prediction of therapeutic dose (Figure 4). The majority of
studied tumors were found in the liver (75/90), while 11 lesions were lymph node metastases. Three primary
pancreas tumors and one chest tumor were also included. No significant differences of absorbed doses or SUV-
parameters were observed based on tumor volume or localization.
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Table 2. Patient population clinicopathological biomarkers. The variability of the tumor dose and SUVmean with respect to
the dichotomized predictors is illustrated. The forest-plot represents the range of dose values in the selected predictor’s group

while dots represent mean dose values. P-value was obtained from ANOVA test.

Parameters N (%) Mean + std SUVmean Dose (Gy/GBq) p-val
Volume
<52 mL 70 15.07 £ 10.6 20.74+ 8.6 — 0.13
>52 mL 30 177.07 £217.5 17.93 +6.7 M
SUV_CoV
<45% 68 0.30+0.1 1951+7.9 - 0.02
>45 % 32 055+£0.1 20.70 £ 8.7 M
TLV (mL)
<150 10 60.87 +42.6 23.30+8.6 — <0.001
> 150 90 624.30 £ 664.4 19.52 +8.0 v
TL-SSE (SUV.mL)
<2864 30 1683 + 763 16.30+7.5 —_—, 0.001
> 2864 70 12005 + 9895 21.44+79 +
White blood cells
<54 35 3.57+0.8 21.26 +10.1 + 0.08
>54 65 8.16+2.1 19.16 + 6.8 —
Lymphocytes
<1.6 64 091+04 19.73+8.5 . 0.04
>16 36 1.95+0.3 201975 N —
Absolute neutrophil
<2 18 1.62+0.2 21.91+9.8 . 0.03
>2 82 454+15 19.47+7.7 —
Hemoglobin
<12 20 11.24+0.9 18.71+10.1 . 0.01
>12 80 13.70+1.0 20.20+7.6 —
Platelet
<190 29 167.81+£19.3 19.40+9.4 + 0.008
> 190 71 255.90 £59.4 20.10+7.6 ——
eGFR
<52 12 40.26 £ 10.6 16.47+7.3 + 0.04
> 52 88 82.46 + 14.0 20.39+8.2 —
Creatinine
<1.2 81 0.89+0.2 20.67+8.1 [ 0.03
>1.2 19 1.39+0.3 16.56 + 7.5 +
Bilirubin
<0.9 81 0.49+0.2 20.18+8.0 N 0.08
>0.9 19 1.13+£0.1 18.67 +8.9 4
Albumin
<45 68 4.04+0.3 20.86+7.8 e <0.001
>45 32 4.88+0.3 17.91+85 1 4
Alkaline phosphatase
<88 20 7457 +13.7 23.21+82 S
> 88 80 149.91 +40.3 19.07+79 4 <0.001
CgA
<500 28 146.60 + 140.6 2591+8.1 L e 0.001
> 500 72 3434.12 £ 7070.4 17.62+6.9 4
Grade
G=1 33 22.16+9.8 ’ 0.3
G=>2 67 18.69+ 7.0 4
Bone Met
No 51 20.85+7.5 . 0.12
Yes 49 18.90 £ 8.7 +
Nodal Met
No 29 23.22+85 . 0.14
Yes 71 18.56 + 7.6 —_—
# Systemic therapy
0 52 17.90+55 ’ 0.54
lor2 42 20.99+9.2 —
>2 5 31.56+11.3 ——
Primary tumor site
Midgut 61 19.40+7.8 o 0.79
Pancreas 28 22.84+9.2 4
Other 11 15.43+4.0 ¢
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Figure 2. Spearman rank self and cross correlation between absorbed dose-related parameters (Dose, T1Avol, Cvol and Tefr) and
PET-SUV parameters along with biomarkers. The color-code and size of spheres show the correlation magnitude. The
insignificant correlations (g-value>0.05) are plotted as faded spheres.

According to the proposed hierarchical feature-selection strategies (supplemental-figure 5), linear univariate
regression model picked SUVmean as the anchor predictor with R?=0.28 and MAE=1.08 Gy/GBq. We compared a
cross-combination of all features with SUVmean to evaluate the second and third important features in dose
prediction (supplemental-Figure 5 and 6). In bivariate model, TotLiverSUVmean and TLSUVmean Were the most
effective predictors in terms of R? and MAE (R?=0.61 and 0.48, MAE=0.82 and 0.88 Gy/GBq, respectively) from
Ensembled Tree (Ens-Tree) models. The best prediction performance was achieved from a trivariate Ens-Tree
algorithm consisting of SUVmean, TotLiverSUVmean and TLSUV mean With R2=0.64 and MAE=0.73 Gy/GBq (Table
3). The predicted dose compared with the measured absorbed dose from different algorithms is illustrated in
Figure 5.
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Figure 3. Intra-patient variability of tumor doses for all patients. The sphere color indicates SUVmean and background color
shows the margins of standard deviation of tumor dose values. The size of spheres depicts the volume of tumors in logarithmic
form (4-1039 mL).
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Figure 5. Pre-therapy predicted dose using univariate linear model and random forest (RF) bi/tri-variate models of Table 2 vs.
the delivered dose measured from Lu-177 SPECT/CT (the filled gray dots represent the 2 outliers).

Table 3. Model performance of the selected prediction algorithms using 68Ga-PET SUV metrics. The quantitative metrics are
reported as mean (95% CI) calculated from nested CV. The MAE quantile range is reported based on the averaging over 10-

outerloop CV point prediction.

Model Features R2* Median MAE Q'l\J/laﬁtI?Ie
10-fol MRAE B

0-fold (Gy/GBq) (0.05-0.95)

Univariate Linear
SUVmean 0.28(0.00) 0.38(0.00) 1.08(0.00) 0.14-2.8

Bivariate Tree_Ens
SUVmean, TotLiverSUVmean 0.61(0.01) 0.26(0.01) 0.82(0.01) 0.10-2.29
SUVmean, TLSUVmean 0.48(0.03) 0.26(0.01) 0.88(0.02) 0.05-2.66

Trivariate Tree_Ens
SUVmean, TotLiverSUVmean, TLSUVmean  0.64(0.02)  0.20(0.01)  0.73(0.02) 0.02-2.46

* Two outliers are excluded from R2
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The sensitivity and specificity of the best-performing model (trivariate Ens-Tree from Table 3 and Figure 5),
using a threshold of 25 Gy/cycle for response, was calculated as 0.76 and 0.94, respectively (Figure 6). Again,
this threshold-level was chosen to mirror previously reported dose-cut-offs for response following 177Lu-PRRT
[5, 6].

50
FP TP
40
false 4 ) °
® 9 -n o% o0 &
@ 2 30 o
o 8 O e o®
e}
3 8 w . °
= g20[00 ¢
5 ®
o)
true 4 13 e C&DO
10| o0
Q
8% TN FN
false true 0 10 20 30 40 50 60 70 80
Predicted Class ) Measured dose(Gy)

Figure 6. Considering the threshold dose for responders of 25 Gy/cycle, confusion matrix of predicted dose from trivariate
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1v. Discussion

Accurate and early prediction of therapeutic absorbed dose in NETS is important information that can be used to
guide appropriate patient selection and treatment alterations for PRRT, potentially helping to distinguish between
patients likely to undergo effective versus futile treatments. To date, 68Ga-PET derived quantitative metrics have
appeared promising as a measure of SSTR2 density in neuroendocrine tumors [24]; however, studies assessing
correlation between SUV features and absorbed dose/treatment outcomes remain scarce, and further investigation
is necessary to establish conclusive relationships.

Prediction of tumor and organ-absorbed doses may help optimize treatment efficacy prior to therapy by
enabling an individualized treatment plan, administering variable doses of PRRT that maximize tumor irradiation
while minimizing organ exposure. According to a recent study indicating the decline of 177Lu-DOTATATE
tumor uptake over therapy cycles, an individualized dose escalation strategy may be more effective in the first
cycle [12]. A clinical trial reported on personalized 177Lu-DOTATATE PRRT guided by the prediction of renal
toxicity based on eGFR and patient-surface-area prior to the therapy [5]. In our ongoing research with standard
dose 177Lu-DOTATATE, we have already developed a predictive model for kidney absorbed dose based on
pretherapy PET-SUV metrics and biomarkers (i.e. eGFR) estimating posttherapy renal dose within 18% accuracy
[11]. In the current study, we further evaluated the predictive power of 68Ga-PET SUV metrics with readily
available baseline biomarkers to develop machine learning models for tumor absorbed dose prediction.

The relationship between baseline PET-derived features and delivered absorbed dose is not straightforward.
First, there are notable differences in the pharmacokinetics and biodistribution of 68Ga/177Lu-DOTATATE
theragnostic pairs [2], influenced by variable masses and chemical structures of administered
radiopharmaceuticals, patient behavior [4], radioactive metabolites [25], medication effects, etc. Second, the static
68Ga-PET acquisition (~60 min post-injection) potentially only depicts the SSTR2 density distribution, while the
absorbed dose quantity is related to dynamic physiologic circulation and accumulation of the radiopharmaceutical.
In the other word, dose quantity is proportional to the multiplication of Cyo (scale factor of the time-activity curve
normalized by tumor volume) and T (retention half-life).

In this context, we observed a significant correlation of PET-SUV metrics with Cyq (Figure 2-3, SUVmean:
p=0.63), while no correlation with Tt (Supplemental-Figure 3-4). Therefore, it can be concluded that the observed
correlation between PET-SUV parameters and the tumor absorbed dose quantity (SUVmean: p=0.62) stems from
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the correlation between 68Ga-tumor-uptake and 177Lu-tumor-uptake. There is a body of literature that indicated
a significant correlation between 68Ga-SUV and 177Lu-induced tumor dose [9, 26-28]. Ezziddin et al. reported
a strong correlation between 68Ga-DOTATOC SUV-metrics with 177Lu-Octreotate absorbed dose
(SUVmean: p=0.72; SUVmax: p=0.71) [26]. Hanscheid et al. showed that PET-based SUVmax significantly
correlates (p=0.76) with the maximum dose delivered to tumor in meningioma patients [29]. However, one group,
Singh et al, found no significant correlation between SUVs and the tumor dose from 177Lu-DOTATATE therapy
in metastatic-NETS [24].

In previous studies, tumor-to-normal organ rations (SUV_TNRs) were suggested as potential factors that
might reduce the inter-patient and inter-acquisition variability associated with tumor SUV by using physiological
uptake in normal organs as an individualized reference [30-32]. We compared the correlation of tumor SUV,
SUV_TNRs and activity concentration with respect to absorbed dose, but SUVmean OUtperformed other metrics in
terms of strength of the correlation (Figure 4). We have previously noted discordance using TNR between the
68Ga PET and the 177-Lu-PRRT dosimetry SPECT/CT, with significantly higher SUV TNR on 177Lu SPECT
compared with 68Ga PET [2]. This phenomenon may be related to temporal differences in DOTATATE uptake
and internalization in tumor as compared to normal organs, further accentuated by differences in image timing
(60 minute PET vs. >4 hr SPECT/CT) [2].

We evaluated the correlation of inter-patient PET-derived total lesion burden metrics, including total lesion
volume (TLV), average SUV of the total lesion volume (TLSUVmean), and total lesion somatostatin expression
(TL-SSE=TLVx TL-SUVmean), all compared to the index tumor absorbed dose (Figure 2). TLSUV mean Showed a
strong correlation with dose components (Cvoi: p>0.63), while no significant correlation was observed regarding
TLV and TL-SSE. This association is reasonable from a physiologic standpoint, given that greater overall PET
tracer avidity may correlate to increased PRRT binding and dose deposition by a similar theragnostic pair.
Accordingly, a recent paper notably found correlation of TLSUV mean With survival in NET patients treated by
177Lu-DOTATATE, implicitly showing correlation of TLSUV mean With tumor absorbed dose and accordingly
therapy-response [33]. Furthermore, we found a strong correlation between SUV mean Of the total liver volume
(TotLiverSUVmean) with dose components (Cvor: p=0.45). We used TotLiverSUVmean as a surrogate for extent of
hepatic metastatic disease involvement:

(Tumor_liver_SUVypqn X Tumor_volume) + (healthy_liver_SUVy,eqn X healthy_liver_volume)

TotLiverSUY, =
OLHverstinean (healthy + tumor) liver volume

By expanding a univariate analysis showing the predictive value of SUV mean, We built bi/tri-variate models to
enhance prediction accuracy. The best model performance achieved by a trivariate model composed of only PET-
SUV metrics: SUVmean, TOtLIVErSUVmean and TLSUVean. All three metrics showed strong correlation with
radiopharmaceutical-uptake-related dose component (Cyol), illustrated in supplemental-Figure 7. A bivariate
model only using SUVmean and TotLiverSUVmean likewise showed a good predictive performance (R?=0.61,
MAE=0.82 Gy/GBq). These results illustrate that the extent of liver tumor involvement, via TotLiverSUV mean, is
predictive of dose. The main advantage of using this variable is that it is readily calculated from PET images
without any complicated computation: it is merely the SUV mean OF entire liver segmented volume, which can be
simply performed through machine learning models from CT images.

In addition to Ens_Tree models, we evaluated bi- and tri-variate linear models, where SUV nean cOmbined with
bilirubin and albumin improved the prediction performance (R?=0.47, MAE=0.87 Gy/GBq). Bilirubin and prior
systemic treatment showed significant correlations with Tes (p=-0.33 and p=0.3, respectively) that can indirectly
imply the impact of retention half-life on absorbed dose values. These findings may suggest that prior treatments
or underlying hepatic dysfunction may alter tumor behavior and potentially the degree of PRRT tumor uptake and
metabolism. Our linear model, built upon the features selected by ElasticNet (7 variables), also showed some
improvement compared to trivariate models (R2=0.57, MAE=0.8 Gy/GBq), but due to a higher number of model-
variables, it is prone to spurious correlations in a small-size dataset. The features selected by PRFvI algorithm
align with those from the hierarchical algorithm; however, compared to trivariate decision tree, the model
performance did not show any improvement (supplemental-Figure 8).

Tumor absorbed dose in PRRT is likely influenced by multiple biological factors, both individual patient
characteristics and specific tumor features (i.e. proliferation rate, heterogeneity, intrinsic radio-sensitivity). The
intra-patient tumor dose variability of our dataset is comparable with inter-patient variability of the whole set
(0.38 vs. 0.69), therefore, we treated each individual tumor independently, while the biomarkers and some PET
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features, such as TL-SSE and TLSUVmean Were calculated in the patient-level, feeding inter-patient information
to our models.

The primary limitations of our study are its small sample size and lack of independent multi-center validation
and back-testing of the models, relying instead on nested cross validation. Although we followed the
recommended rules for generalizability and interpretability of the models [20], further investigation is warranted.
An inherent limitation of tumor dosimetry studies relates to the uncertainties associated with quantitative imaging
(i.e. scatter/attenuation correction, segmentation, and partial volume correction) and multi-timepoint serial
imaging to determine Kinetics (i.e. time-series registration) [16]. In addition, simplification in post-therapy
imaging such as using SPECT-planar hybrid imaging or reduced time-points; or approximation in particle
transport algorithms can introduce extra uncertainties into dosimetry process [34]. To the best of our knowledge,
this is the first study of predictive dosimetry using complete four-timepoint posttherapy 3D SPECT/CT imaging,
radiologist-defined lesion contours, and a validated Monte Carlo-based dosimetry workflow that reduces some of
these uncertainties in the measured absorbed dose and hence help to build a more precise model. As post-PRRT
imaging is increasingly used as part of routine clinical protocols at some centers, we expect more data to be
available in the future to independently validate and improve the proposed model.

V. Conclusion

To explore dose-response relationships in PRRT, we investigated the predictive value of using 68Ga-PET-based
SUV metrics along with biomarkers to estimate the tumor absorbed dose with 177Lu-DOTATATE therapy. We
showed that tumor SUVmean, TOtLiverSUVmean and average SUV of the total lesion volume (TLSUVmean) are
capable of predicting the 177Lu-PRRT delivered tumor absorbed dose with an accuracy of MAE=0.71 Gy/GBq
(R?=0.64) in nested cross validation. We hope to further test the proposed models on multi-center data, to
eventually provide a validated decision-support tool for clinicians to improve patient-selection and thus optimize
treatment outcomes. Developing such precise quantitative metrics establishes a greater role of 68Ga-PET for
patient stratification, as well as prognostication and assessment of the therapeutic response modeling.
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Supplemental material

For outer-loop=1:10
forinner-loop=1:10
random-split = Train-set/ Test-set
forBST=1:500 \
i) bootstrap re-sampling (80% of Train-set; ..o, With-replacement) = BST_sample

ii) generate a regression model inputted by BST_sample 2>
A) Linear model = model A {BST}

B) Random forest (num_tree=200, leaf size=10) 2 model B {BST}
C) generalized additive model (num_tree=200, max_split_per_predictor=5) >model_C{BST}

\\end BST-loop /
prediction on new points from Test-Set e oy > (Model_A/B/Chay > A/B/C_Yhates
Linear model: Aggregation of the results of model A= trimmean(A_Yhatg;)

Tree model: Aggregation of the results of model B and C= mean(trimmean(B_Yhatgs )+ trimmean(C_Yhatg))
end inner-loop

end outer-loop

Supplemental-Figure 1. Nested CV in validation process for evaluating both linear and decision tree models in bootstrap
aggregation strategy.

For R=1:10
for BST=1:500
i) bootstrap re-sampling (80% of whole data with-replacement) = BST sample
Al) TImplement ElansticNet (CV=10, «=0.8, A=hyper-parameter optimization) inputted by BST sample = model {BST}
> Feature coefficient {BST}: F coefggr
Bl) Random forest of 500 regression trees (leaf-size=10) using the BST sample = Predictor importance estimation by

permutation of out-of-bag predictor observations = Impggr = Normalize importance vector = F Impggr =“II[:;J¢“”
BsTIl;

end BST
A2) Feature Importancein ElasticNet:
BST

1. Feature importance= B—lwziﬂ |F _coef;| —> Selected Features: FS1= Feature Importance > 0.001

1. Implement ElansticNet (Mcrep=10, CV=10, u=0.6, A=hyper-parameter optimization) inputted by the whole data-set and FS1
features > selected Features: FS2=|Feature_coefficient[>0.1
. Feed the FS2 mto a generalized linear regression (glm) model using whole dataset, and the sigmficant features (p-val<0.05)
from glm = selected features
B2) Feature Importancein PRFvI:

. . 1
i.  Feature importance= — ¥257

757 =1 F Imp;—> sort the features importance = select 10 best

end R

8 most frequent features from 10 repetition in both cases A and B = ElasticNet Features and PRFvl Features

o: Weight of lasso versus ridge optimization
L: Regularization coefficients

Supplemental-Figure 2. Flowchart representing feature selection using two strategies: 1. ElasticNet and Permutation-based
Random Forest variable-Importance (PRFvI).
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Dose/GBq 0.9097 0.8582 0.4711

TIAvol 0.8808 0.4073

Cvol

Dose/SUVmean 0.9328

Supplemental-Figure 3. Self-correlation between absorbed dose related parameters (Spearman, g-value <0.05).
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Supplemental-Figure 4. Spearman rank correlation between dose parameters and SUV quantities along with biomarkers in
different subsamples of tumor volume (g-value<0.05).

We first examined the correlation between dose-related parameters, i.e. TIA and € normalized by tumor volume (T1Avol, Cpo;),
and T,gf. Presuming that local energy deposition is a valid approximation for 177Lu-labeled radionuclides’ dosimetry [23],
we expect a physics-informed correlation between dose and TI1Avo and further with Cy,; and T,f¢. Physically, the self-dose is
composed of these parameters in addition to an independent noise level owing to the mathematical process. The term “noise”
refers to the non-linear transformation applied on TIA during the MC-based dose calculation that degrades the linear
correlation between TIA and dose. In this regard, we designed two strategies to test the strength of correlation between
predictors and dose.

1. Comparing the correlations between predictors and three dose-related parameters, i.e. dose, TIAvol and C; ;-

2. Comparing the correlations between predictors and dose parameters in multiple subsamples of the data filtered by
tumor volume.
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Supplemental-Figure 5. Model performance in hierarchical feature selection approach: Linear Univariate, Bivariate and

Trivariate analysis (10-fold, Bootstrap aggregation models).
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Supplemental-Figure 6. Model performance in hierarchical feature selection approach: Ens-Trees, Bivariate and trivariatate
analysis (10-fold, Bootstrap aggregation models).
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Supplemental-Figure 7. Tumor absorbed dose and Cval, plotted vs. tumor SUVmean, TotLiverSUVmean and TLSUV mean, Where
the color bar shows the tumor SUVmean; (bottom row) Tumor absorbed dose plotted vs. tumor SUVmean, TotLiverSUVmean and
TLSUVmean, Where the color bar shows the tumor location. The size of spheres depicts the volume of tumors in logarithmic
form (4-1039 mL).
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Supplemental-Figure 8. Pre-therapy predicted dose using different models of Table 2 vs. the delivered dose measured from
Lu-177 SPECT/CT (the filled gray dots represent the 2 outliers).
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Supplemental-Table 1. Patient demographic information

Demographics Median Range
Age (y) 63.7 (9.5) 38-76
Weight (kg) 85.5 51-129
Gender N (%0)

Female 44

Male 66

Diabetes 20

Hypertension 60

ECOG (score: 0-5)

S=0 44

S=1 44

S=2 12

Krenning score

S=3 12

S=4 88

Administered Lutathera

~ 7.3 (GBq) 88 7.1-74
~3.7 (GBq) 12 3.7-38
68Ga PET/CT scanner Reconstruction
Biograph mCT 88 3D-OSEM, TOF, 3 iteration
(Siemens Healthineers) (21subsets), 5-mm Gauss filter
Biograph TruePoint (Siemens Healthineers) 4

Discovery MI (GE Healthcare) 4

and Discovery STE (GE Healthcare) 4

ECOG: Eastern Cooperative Oncology Group

Supplemental-Table 2. Model performance of different prediction algorithms using PET-SUVmean With/ without clinical
factors. The quantitative metrics are reported as mean (95% CI) calculated from nested CV. The MAE range is reported
based on the averaging over 10-outerloop CV point prediction.

Model Features R2" Median MAE MAE Quantile
10-fold MRAE (Gy/GBq) (0.05-0.95)

Univariate Linear

SUVean 0.28(0.00) 0.38(0.00) 1.08(0.00) 0.14-2.8
Bivariate Linear

SUV mean +bilirubin 0.37(0.01) 0.31(0.01) 0.95(0.01) 0.05-2.94

SUVmean + #Systemic therapy 0.34(0.02) 0.40(0.02) 1.06(0.01) 0.10-2.61
Trivariate Linear

SUV nean + bilirubin +albumin 0.47(0.00) 0.26(0.00) 0.87(0.00) 0.04-2.63

SUVean + bilirubin +#Systemic therapy 0.42(0.02) 0.34(0.02) 0.94(0.01) 0.04-2.68
Multi-variate Linear
ElasticNet features SUVmeantSUV Livert SUViidney +

#Systemic therapy +#Directed therapy +

bilirubin +albumin 0.57(0.02) 0.26(0.01) 0.80(0.02) 0.06-2.56
Bivariate Tree_Ens

SUV nean + TotLiverSUV nean 0.61(0.01) 0.26(0.01) 0.82(0.01) 0.10-2.29

SUVnean + TLSUV ean 0.48(0.03) 0.26(0.01) 0.88(0.02) 0.05-2.66
Trivariate Tree_Ens

SUVmeant TotLiverSUV meant TLSUV mnean 0.64(0.02) 0.20(0.01) 0.73(0.02) 0.02-2.46
Multi-variate Tree-Ens
PRFvI features SUVmean + TLSUV mean + SUVspieen +

SUVsew + TOtLiVerSUVmean + SUV Liver +

SUVpeak + ALP 0.46(0.02) 0.26(0.01) 0.90(0.02) 0.06-2.59

* Two outliers are excluded from R2
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Chapter 12

Conclusion and future perspectives



I. Summary of the research and achievements

The use of ionizing radiation in medical imaging and radiotherapy increased significantly over the past three
decades globally. Medical imaging examinations, especially CT and molecular imaging, carry small risks of
radiation hazards that should be justified and furthermore optimized by “keeping the exposure of patients to the
minimum necessary to achieve the required diagnostic or interventional objective”*. Current radiopharmaceutical
therapy regimens are in a transition phase from one-size-fits-all concept to a personalized approach by increasing
the radiation dose to the target while minimizing the absorbed dose to healthy tissues. Therefore, establishing a
practical framework for patient-specific dosimetric data estimation can be used in the optimization of radiation-
involved medical procedures to ensure the minimum radiation dose necessary, while improving the efficacy of the
medical task at hand.

This dissertation aimed at evaluating and developing unified frameworks that were developed to offer accurate
and practical solutions for the key challenges and major limitations of personalized dosimetry in nuclear medicine
procedures. In Part 1, we mainly focused on the two components of personalized dosimetry: computational
phantoms and radiation transport algorithms. Toward patient-specific computational models, we started with the
development of a library of habitus-dependent computational phantoms and extended our methodology to
construct patient-specific phantoms through the registration of reference computational models on patient’s CT
images. However, taking advantage of the emergence of deep learning algorithms in the domain of computer vision
and image processing, nowadays, the construction of patient-specific computational models from CT images is a
practical task in clinical setting. In addition, we have developed and validated different MC simulators for
personalized dosimetry from various medical exposure scenarios and further addressed the limitation of MC-based
dose engines in terms of computational cost by implementing deep learning in dose reconstruction. We developed
a unified framework for the deployment of deep learning algorithms for fast dose calculation in nuclear medicine,
brachytherapy and external CT exposure with a reasonable accuracy compared to MC-based dose maps serving as
standard of reference (ground truth). In addition to our studies in dose monitoring, we conducted a study on
radiation dose optimization of CT acquisition protocols by means of deep learning and demonstrated the feasibility
of ultra-low dose imaging in chest CT examinations with acceptable clinical diagnosis accuracy. Following our
research on dosimetry in medical imaging, we extended the concepts and tools that we previously developed to
theragnostic dosimetry. In this context, we developed the theragnostic dosimetry workflow for both *°Y-SIRT and
TLu-DOTATATE therapy. As the result, a stusy was conducted on 177lu-DOTATATE radiopharmaceutical
therapy that confirmed the predictive value of 68Ga- DOTATATE (theragnostic pair) for patient-stratification and
personalized planning in RPT.

The main contributions achieved during this dissertation are summarized in the following paragraphs:

1. To cope with inter-subject variability of anatomical features, a habitus-dependent library of computational
phantoms has been developed, covering the diversity of organ masses along with the morphometric
parameters by adjusting voxel-based ICRP adult reference phantoms. The move toward patient-specific
phantoms is a major improvement taking advantage of the availability of habitus-dependent phantoms
associated with anthropomorphic and anatomical diversities and classified in different somatotypes.

2. We quantified the dosimetric characteristics of patient-specific computational models in CT dose estimation.
Although using habitus-specific phantom series is feasible for dosimetry in clinical setting, the estimated
organ dose may considerably differ from the ground truth (up to 36%). If, however, patient CT images are
available, a reference computational phantom can be matched to the patient data to construct a patient-
specific computational model through deformable registration, thus improving the accuracy of organ dose
estimation.

3. We further adapted and validated our Monte Carlo simulation tool developed for dose calculation associated
with CT examinations on a Siemens scanner. An experimental setup using an anthropomorphic physical
phantom and TLDs was designed to evaluate the accuracy of MC-based personalized organ-level dosimetry.
Using the validated CT dosimetry simulator, patient-specifics dosimetry, and moreover, optimization of CT
technologies and scanning protocols would be feasible. In our study, we also assessed the dosimetric impact
of input parameters in organ-level dose simulation. It can be concluded that, when the information from the
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CT raw projection data is not available, the simulation results could be acceptable if the longitudinal tube
current modulation (with <6 mm interval in z direction), is implemented in the simulation.

4. We proposed a unified methodology for patient-specific voxelwise whole-body internal dosimetry using deep
learning algorithms. The comparison of the proposed approach with standard of reference MC simulations
revealed very good accuracy with a mean relative absolute error of 2.6%. Our technique also outperformed
conventional voxel-level and organ-level MIRD-based formalisms. Future work will focus on exploiting the
current model to generate whole-body voxelwise dose maps for the purpose of using active learning to
improve model performance and further extend this model to a faster pipeline through straightforward
prediction of whole-body dose maps from hybrid PET/CT images.

5. We developed and validated a unified pipeline for MC-based dosimetry in high-dose-rate brachytherapy that
has been used to provide an accurate set of MC simulations on a large retrospective cohort. We further
developed a deep learning model to provide an alternative solution for accurate personalized dose distribution
estimation in brachytherapy to overcome the computational burden of MC simulations. The proposed
algorithm achieved good agreement with MC calculations while outperforming the conventional TG-43-
based formalism. Future work will focus on extending the core idea to different radioactive seeds for various
disease sites.

6. We proposed a deep learning model for construction of whole-body dose maps from CT scans with
reasonable accuracy at the voxel level with excellent performance achieved for organ-level dose estimation.
The whole process, including pre-processing and model inference on a new dataset, can be performed within
seconds, which makes personalized dosimetry with an acceptable accuracy a feasible option in clinical
setting. The main advantage of our model is its ability to construct accurate and personalized dose maps for
a wide range of acquisition parameters.

7. Ultra-low-dose chest CT imaging of COVID-19 patients would result in the loss of critical information about
lesion types. However, the results presented in this work indicated that ResNet is an optimal algorithm for
denoising ultra-low-dose CT images for COVID-19 diagnosis. Future work will focus on a more accurate
low-dose CT simulation algorithm along with the extension of the model to whole-body clinical CT studies
to further validate our model.

8. Keeping the dose-response relationship in mind, the current study investigated the predictive values of Ga-
based SUVs along with biomarkers to predict the therapeutic tumor dose. We showed that tumor SUV mean,
SUVistar-tiver aNd SUVmean 0f MTV is capable of predicting the Y/Lu-PRRT induced tumor dose with an
accuracy in terms of MAE of 0.71 Gy/GBq (R?=0.63). We foresee to further benchmark the proposed models
on a multi-center study to provide a validated decision-support tool for clinicians to improve patient-selection
and thus optimize treatment outcome. Developing these quantitative metrics forms the ground for the role of
%Ga-PET not only for patient stratification but also for prognostication and assessment of therapeutic
response modeling.

Il. Future perspectives

This dissertation focused mainly on personalized dosimetry in diagnostic and therapeutic nuclear medicine
examinations. On the basis of advancements in quantitative molecular imaging technologies, computational
modeling of the human body, and sophisticated radiation transport techniques, nowadays, patient-specific
dosimetry is feasible in routine clinical setting. Through the advent of artificial intelligence and in particular deep
learning, in the area of computer vision and image processing, the task of segmentation, one of the main challenges
in personalized medicine, has been addressed. Currently, robust automatic segmentation is a hot topic in medical
image analysis for organs segmentation from structural images (such as CT and MRI) and the detection and
delineation of tumoral tissues from different medical images such as PET, contrast-enhanced CT, MRI,
pathological slides, ... etc. Logically, prospective research in this field would deal with further development,
evaluation and commercialization of the proposed segmentation algorithms in real-world clinical setting. To be
specific in the field of personalized dosimetry, real time organ dosimetry from external exposure is becoming
feasible thanks to fast organ segmentation algorithms.

In the case of CT dose optimization, deep learning-based low-dose CT image denoising is one of the promising
approaches. While a novel technical approach could be real-time prediction of the 3D voxel density map of the
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patient from 2D CT localizer (scout image) and accordingly modulating the tube current based on the predicted
density map.

In radiopharmaceutical dosimetry, simplified radiation transport methods, like the MIRD formalism and local
energy deposition provide clinically acceptable results for therapeutic radiotracers with short range particles (i.e
beta and alpha) in soft-tissue regions, while in heterogenous medium, such as bone marrow dosimetry, the
simplified approaches provide some uncertainties compared to MC simulations. In the case of imaging radiotracers
labelled with longer travelling range radiation (i.e. photons) compared to therapeutic agents, simplified radiation
transport approaches introduce considerable errors compared to patient-specific MC dosimetry. Therefore,
according to the promising results achieved by Al-based internal dose construction, this could be a potential option
for clinical dosimetry in a reasonable computational time. However, fast GPU-based Monte Carlo simulations
using high performance computers and the next generation of quantum computers seems more reliable for use in
clinical setting. In addition, patient-specific biokinetics of imaging radiotracers cannot be extracted from static
image acquisitions. It would be interesting to build a simple data-driven model for the prediction of time-integrated
activity from dynamic scans similar to studies in RPT dosimetry with single time points.

In theragnostic dosimetry, there are some gaps in image quatification because of motion that has not been
adequately addressed yet. Respiratory motion degrades image quality and impacts image quantification from
attenuation correction step to the construction of density maps for radiation transport. One potential solution for
attenuation correction is using deep learning-based attenuation correction algorithms, as these methods showed
promising results to compensate the impact of mismatch between CT and ®F-FDG PET examinations resulting
from respiration motion.

In addition, a better understanding of radiobiology in molecular radionuclide therapy is needed. Radiobiology
has been a key factor for establishing optimal treatment regimens for external beam radiotherapy. Nowadays, there
is some evidence that the extrapolation of radiobiology of external beam radiotherapy to molecular radionuclide
therapy is not straightforward, because of dose-rate effects and more importantly owing to the different molecular
and cellular signalling pathways. Therefore, there is a need for restablishment of specific radiobiological models
in RPT.

In the current clinical scenario, there is minimal evidence on patient eligibility for RPT, in particular for Y7Lu-
DOTATATE and PSMA, and no standardized criteria has been established yet. Thus, there is still room for
outcome prediction of these type of treatments with encouraging responses and well tolerable side effects that can
aid clinicians to further optimize clinical trial designs and individual patient management. Furthermore, potential
prognostic models are useful tools in designing randomized clinical trials for patients’ selection and stratification
of patients to responder and non-responder groups. Considering the fact that the developed predictive model should
not bias well-informed clinical decisions, instead, it has to be employed as a complementary decision-support tool.
In addition, using dual tracer (e.g. ®Ga-PSMA and '8F-FDG) in RPT prognostic modelling is a hot topic that needs
more clinical trials and investigations to build a conclusive understanding of the predictive value of these models.
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