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Summary 

The use of ionizing radiation in medical imaging procedures, particularly in diagnostic radiology and nuclear 

medicine has significantly increased in the last decade, leading to major improvements in the diagnosis and 

treatment of various diseases. UNSCEAR indicated that over 3.6 billion x-ray examinations and 33 million nuclear 

medicine procedures are performed annually, worldwide. Although the use of ionizing radiation in medicine plays 

a pivotal role in healthcare, it is associated with risks of radiation-induced cancer. Therefore, its use is subject to 

standards of safety and stringent optimization procedures. Here, the term optimization refers to limiting the 

exposure of patients to the minimum necessary to achieve the required diagnostic or therapeutic objective, 

depending on the medical task at hand, the equipment being used, and patient-specific characteristics. To this end, 

the first step is the accurate assessment of radiation dose delivered to patients to assist the optimization of the given 

procedure.  

The work presented in this dissertation and portfolio of published work aimed to establish an accurate and 

reliable methodology for monitoring and optimization of the radiation dose, initially from diagnostic imaging, but 

later in theranostic nuclear oncology. This research addressed two main questions: first, to establish a framework 

for habitus-specific and patient-specific dose monitoring and radiation dose reduction in hybrid PET/CT imaging; 

and second, to develop a practical dosimetry workflow to bring the full capacity of theragnostic dosimetry-guided 

planning to RadioPharmaceutical Therapy (RPT). 

In the first phase of this thesis four works were carried out: i) a comprehensive library of computational 

phantom composed of 479 male/female phantoms were constructed representing anthropomorphic and anatomical 

diversities in adult population. ii) A framework for Monte Carlo (MC) based dose calculation from both internal 

(i.e. PET) and external (i.e. CT) exposure was developed and habitus-specific dose from a PET/CT examination 

was simulated. iii) The developed MC-based external dose simulator was benchmarked against experimental 

measurements and the dosimetric uncertainties associated with using different scan protocol parameters were 

investigated, iv) a methodology for construction of patient-specific computational model for dose estimation in 

radiological imaging was developed.  

In the second phase, the application of deep learning in dose calculation and optimization was extended. Using 

the dosimetry toolkits and methods that have been developed in the first phase; we developed a novel deep 

learning-based algorithm for fast MC-based internal dosimetry. Patient-specific absorbed dose calculation using 

MC simulation is deemed the gold standard technique for internal dosimetry. However, this method is 

computationally expensive. Hence, we proposed a novel method to perform whole-body personalized voxel-level 

dosimetry taking into account the heterogeneity of activity distribution, non-uniformity of surrounding medium, 

and patient-specific anatomy using a physics-informed deep residual neural network. The proposed model was 

evaluated on the diagnostic 18FDG-PET examinations showing a comparable accuracy with MC-based dose maps 

while being much faster in terms of execution time. This methodology is extendable to other diagnostic and 

therapeutic radionuclides. More specifically, we extended our model on 18FDG to a betta- emitter therapeutic 

agent, 177Lu-DOTATAE, using transfer learning that outperformed conventional methods, such as local energy 

deposition and MIRD formalism in high density regions (i.e. bone metastasis). 

Furthermore, we applied the deep learning-based dose reconstruction methodology developed for internal 

dosimetry in nuclear medicine into high dose rate brachytherapy. To address the simplifications of TG-43 

assumptions that ignore the dosimetric impact of medium heterogeneities, we proposed a neural network algorithm 

for reconstruction of MC-based dosimetry from CT images and radiation source characteristics. The results 

showed a comparable performance to the MC method while overcoming its computational burden and the inherent 

oversimplifications of TG-43 protocol. 

Motivated by the dramatic increase of chest computed tomography exams following the global outbreak of 

COVID-19 in 2020, we designed an ultra-low-dose CT examination protocol for clinical diagnosis of COVID-19 

patients using a deep neural network. In this work, we aimed to use deep learning algorithms on ultra-low-dose 

COVID-19 CT images to generate high-quality images with a comparable diagnostic accuracy to full-dose CT 

images. In our proposed protocol, the radiation dose in terms of CT dose index was reduced by up to 89% while 

the overall scoring to the predicted images assigned by radiologists showed an acceptance rate (score=4.72 ± 0.57) 

comparable to reference full-dose CT images (score=5). 
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Using the validated MC code that has already been developed for reconstruction of radiation dose associated 

with CT examinations, we developed a deep learning-based model to predict 3D voxel-level absorbed doses from 

anatomical density map and acquisition parameters. Through the generation of the dose map from a single source 

position, our model can generate accurate and personalized dose maps in few seconds for a wide range of 

acquisition parameters. 

On the ground of previously developed personalized dosimetry methods, we further studied dosimetry in 

theragnostic in connection with targeted molecular radiotherapy. In recent years, the emergence of theragnosticas 

a single modality combining diagnostics and therapy, contributed to the current resurgence of interest in 

radiopharmaceutical therapy as a multidisciplinary endeavor. In pursuing personalized RPT based on patient-

specific biology, tumor burden and dosimetry, a significant body of literature demonstrated the positive impact of 

dosimetry-guided dose planning on treatment efficacy. 

Neuroendocrine tumors (NETs) with overexpressing somatostatin receptors provide the basis for peptide 

receptor radionuclide therapy (PRRT) through theragnostic pair of 68Ga/177Lu-DOTATATE. The main purpose of 

this study was to develop machine learning models to predict therapeutic tumor absorbed dose using pre-therapy 
68Ga-DOTATATE PET/CT and clinicopathological biomarkers. The patients included in this study underwent 

both pre-therapy 68Ga-DOTATATE PET/CT and four time-points SPECT/CT at ~4, 24, 96 and 168 hours post 
177Lu-DOTATATE infusion. The preliminary results demonstrated the feasibility of using baseline PET images 

for estimating tumor absorbed dose prior to 177Lu-PRRT to enable personalized treatment planning and patient 

stratification. 
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Résumé 

 

L'utilisation des rayonnements ionisants dans les procédures d'imagerie médicale, notamment en radiologie et en 

médecine nucléaire, a considérablement augmenté au cours de la dernière décennie, ce qui a permis d'améliorer 

considérablement le diagnostic clinique et le traitement de diverses maladies. L'UNSCEAR indique que plus de 

3,6 milliards d'examens radiologiques et 33 millions de procédures de médecine nucléaire sont réalisés chaque 

année dans le monde. Bien que l'utilisation des rayonnements ionisants en médecine joue un rôle essentiel dans le 

système de santé, elle est associée à des risques de cancer radio-induit. Par conséquent, son utilisation est soumise 

à des normes de sécurité et à des procédures d'optimisation rigoureuses. Le terme d'optimisation désigne ici la 

limitation de l'exposition des patients au minimum nécessaire pour atteindre l'objectif diagnostique ou 

thérapeutique requis, en fonction de la tâche médicale à accomplir, de l'équipement utilisé et des caractéristiques 

spécifiques du patient. À cette fin, la première étape est l'évaluation précise de la dose de rayonnement délivrée 

aux patients pour aider à l'optimisation de la procédure donnée. 

Le travail présenté dans cette thèse et les travaux publiés visaient à établir une méthodologie précise et fiable 

pour le contrôle et l'optimisation de la dose de rayonnement, initialement en imagerie diagnostique, mais plus tard 

en médecine nucléaire thérapeutique ou théranostique. Cette recherche a abordée deux questions principales: 

premièrement, établir un cadre pour la surveillance de la dose spécifique à la morphologie et apparence du patient 

et la réduction de la dose de rayonnement en imagerie hybride TEP/TDM; et deuxièmement, développer un flux 

de travail pratique de dosimétrie pour apporter la pleine capacité de la planification guidée par la dosimétrie 

théranostique à la radiothérapie métabolique. 

Dans la première phase de cette thèse, quatre travaux ont été réalisés : i) Une bibliothèque complète de fantômes 

computationnels composée de 479 fantômes masculins/féminins représentant les diversités anthropomorphiques 

et anatomiques de la population adulte a été construite. ii) Un cadre pour le calcul de la dose basé sur la méthode 

de Monte Carlo (MC) à partir de l'exposition interne (c'est-à-dire TEP) et externe (c'est-à-dire TDM) a été 

développé et la dose spécifique au patient lors d'un examen TEP/TDM a été simulée. iii) Le simulateur de dose 

externe basé sur la méthode de Monte Carlo a été évalué par rapport à des mesures expérimentales et et les 

incertitudes dosimétriques associées à l'utilisation de différents paramètres de protocoles d’imagerie ont été 

étudiées. iv) Enfin, une méthodologie pour la construction d'un modèle de calcul spécifique au patient pour 

l'estimation de la dose en imagerie radiologique a été développée. 

Dans la deuxième phase de cette thèse, l'application de l'apprentissage profond dans le calcul et l'optimisation 

de la dose absorbée a été étendue. En utilisant les différents outils et méthodes de dosimétrie qui ont été 

développées dans la première phase, nous avons développé un nouvel algorithme basé sur l'apprentissage profond 

pour une dosimétrie interne rapide basée sur le modèle MC. Le calcul de la dose spécifique au patient par 

simulation MC est considéré comme la technique de référence en dosimétrie interne. Cependant, cette méthode 

est coûteuse en termes de temps de calcul. Nous avons donc proposé une nouvelle méthode pour effectuer une 

dosimétrie personnalisée voxelisée du corps entier en tenant compte de l'hétérogénéité de la distribution de 

l'activité, de la non-uniformité du milieu environnant et de l'anatomie spécifique du patient à l'aide d'un réseau 

neuronal résiduel profond. Le modèle proposé a été évalué sur les examens diagnostiques 18FDG-PET montrant 

une précision comparable aux distributions de dose calculées par la méthode de MC tout en étant beaucoup plus 

rapide en termes de temps d'exécution. Cette méthodologie est extensible à d'autres radionucléides utilisés em 

diagnostic et en thérapie. Plus précisément, nous avons étendu notre modèle développé initialement pour le 18FDG 

à un agent thérapeutique émetteur bêta, le 177Lu-DOTATAE, en utilisant l'apprentissage par transfert qui a surpassé 

les méthodes conventionnelles, telles que le dépôt d'énergie local et le formalisme MIRD dans les régions à haute 

densité (c'est-à-dire les métastases osseuses). 

De plus, nous avons appliqué à la curiethérapie à haut débit de dose la méthodologie de reconstruction de la 

dose basée sur l'apprentissage profond développée pour la dosimétrie interne en médecine nucléaire. Pour remédier 

aux simplifications des hypothèses TG-43 qui ignorent l'impact dosimétrique des hétérogénéités du milieu, nous 

avons proposé un algorithme de réseau neuronal pour la reconstruction de la dosimétrie basée sur le MC à partir 

d'images TDM et des caractéristiques de la source de rayonnement. Les résultats ont montré une performance 
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comparable à la méthode MC tout en surmontant sa charge de calcul et les simplifications excessives inhérentes 

au protocole TG-43. 

Motivés par l'augmentation spectaculaire des examens tomodensitométriques thoraciques suite à l'épidémie 

mondiale de COVID-19 en 2020, nous avons conçu un protocole d'examen tomodensitométrique à ultra-faible 

dose pour le diagnostic clinique des patients COVID-19 en utilisant un réseau neuronal profond. Dans ce travail, 

nous avons voulu utiliser des algorithmes d'apprentissage profond sur des images TDM COVID-19 à ultra-faible 

dose pour générer des images de haute qualité avec une précision diagnostique comparable à celle des images 

TDM à pleine dose. Dans le protocole que nous avons proposé, la dose de rayonnement en termes d'indice de dose 

TDM a été réduite jusqu'à 89 %, tandis que la notation globale des images prédites attribuée par les radiologues a 

montré un taux d'acceptation (score = 4,72 ± 0,57) comparable à celui des images TDM pleine dose de référence 

(score = 5). 

En utilisant le code MC validé qui a déjà été développé pour la reconstruction de la dose de radiation associée 

aux examens TDM, nous avons développé un modèle basé sur l'apprentissage profond pour prédire les doses 

absorbées au niveau du voxel 3D à partir de la carte de densité anatomique et des paramètres d'acquisition. Grâce 

à la génération de la distribution de dose à partir d'une seule position de la source, notre modèle peut générer des 

distributions de dose précises et personnalisées en quelques secondes pour une large gamme de paramètres 

d'acquisition. 

Sur la base des méthodes de dosimétrie personnalisée précédemment développées, nous avons étudié la 

dosimétrie en théranostic en relation avec la radiothérapie moléculaire ciblée. Ces dernières années, l'émergence 

du théranostic en tant que modalité unique combinant diagnostic et thérapie a contribué à la résurgence actuelle 

de l'intérêt pour la radiothérapie moléculaire ciblée en tant qu'effort multidisciplinaire. Dans le cadre de la 

recherche d'une radiothérapie personnalisée basée sur la biologie, la charge tumorale et la dosimétrie spécifique 

au patient, un grand nombre de publications ont démontré l'impact positif de la planification de la dose guidée par 

la dosimétrie sur l'efficacité du traitement. 

Les tumeurs neuroendocrines avec surexpression des récepteurs de la somatostatine constituent la base de la 

thérapie par radionucléides des récepteurs peptidiques (PRRT) grâce à la paire de radionucléides 68Ga/177Lu-

DOTATATE. L'objectif principal de cette étude était de développer des modèles d'apprentissage automatique pour 

prédire la dose thérapeutique absorbée par la tumeur à l'aide de la TEP/TDM du 68Ga-DOTATATE et de 

biomarqueurs clinicopathologiques avant la thérapie. Les patients inclus dans cette étude ont subi un TEP/TDM 

pré-thérapeutique au 68Ga-DOTATATE et quatre points temporels TEMP/TDM à ~4, 24, 96 et 168 heures après 

la perfusion de 177Lu-DOTATATE. Les résultats préliminaires ont démontré la faisabilité de l'utilisation d'images 

TEP de base pour estimer la dose absorbée par la tumeur avant le traitement par 177Lu-PRRT afin de permettre une 

planification personnalisée du traitement et une stratification des patients. 
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I. Motivation and background 

Medical applications of ionizing radiation have substantially increased over the past three decades, leading to 

major improvements in the diagnosis and treatment of human diseases. While the patients gain recognized 

benefits from radiation-involved health technologies in medicine, they may also be exposed to unnecessary or 

unintended irradiations and be subject to potential health hazards in inappropriate applications. Therefore, it is 

essential to assess potential risks for a better management of safety and quality in the use of radiological 

medical equipment and protection of patients, health workers and members of the public. Since the beginning 

of radiation therapy, a lot of efforts have focused on the optimization of curative principles for maximization 

of absorbed dose to tumors while sparing healthy tissues. Although high radiation doses are known to be 

correlated with increased risks of cancer (deterministic effects), the effects of low doses, typically encountered 

in diagnostic medical imaging, are still a matter of debate (stochastic effects). There is some evidence 

indicating the association of increased cancer risks with diagnostic low-dose radiation exposure that raise 

concerns about potential carcinogenic harms associated with these examinations [1-4]. However, some 

research studies questioned the hypothesis behind the uncertain risk estimation for low dose exposure delivered 

by medical procedure (<100 mSv) [5]. Thus, it is considered prudent for public safety to assume that exposure 

to ionizing radiation, no matter how small it is, carries small risk of unwanted health effects, including cancer. 

In this context, the assessment of radiation dose to patients, as a metric for quantification of either deterministic 

or stochastic risks, plays a critical role in the development, clinical use, and optimization of radiation-involved 

procedures in both diagnostic and therapeutic applications. Here, the concept of optimization includes 

assessment of the risks and benefits of a procedure guiding the amendment of the protocols. To this end, 

accurate radiation dosimetry provides the basis for quantification of risk factors. While more accurate risk 

quantification leads to a better understanding of risk-benefit association depending on the medical task at hand, 

the equipment being used, and patient-specific characteristics. Therefore, the framework of current dosimetry 

methods plays a key role in the advancement of both safety and efficacy of medical exposures. 

Precision medicine is a new paradigm aiming at improving healthcare while lowering the costs, thus 

offering great potential for patient-specific optimal treatment strategies [6]. In the era of precision medicine, it 

is time to shift from one-size-fits-all paradigm to personalized approach for dosimetry calculation that is 

essential for both diagnostic and therapeutic nuclear medicine procedures. 

In recent years, the demand for radiopharmaceutical therapy (RPT) has grown rapidly in clinical oncology 

owing to its efficacy and specific theragnostic features. The introduction of theragnostics, as a single modality 

combining diagnosis and therapy in RPT, enables not only for therapy verification but also for personalized 

dosimetry-guided treatment planning [7]. Currently, RPT is administered intravenously or locoregionally, 

where planning is typically designed based on either a fixed dosage or patient’s body weight/surface area, 

analogous to chemotherapy. This approach is very much in contrast with external beam radiotherapy where 

personalized planning is integrated in clinical routine. Considering advances in quantitative molecular imaging 

technologies, computational modeling of the human body, and sophisticated radiation transport techniques, it 

is time to shift from the standard fixed dose regimen to a personalized approach in RPT. There is mounting 

evidence that personalized dosimetry enables for more rigorous approach in treatment planning aiming at 

improving therapeutic outcome and for a better understanding of the dose–response association [8-11]. 

With respect to radiotracer imaging, i.e. single-photon emission computed tomography (SPECT) and 

positron emission tomography (PET), mostly implemented as hybrid imaging modalities integrated with 

computed tomography (CT), personalized dosimetry is recommended for optimizing clinical procedures while 

minimizing the risks of radiation-induced cancer. The International Commission on Radiological Protection 

(ICRP) suggested estimating the radiation dose delivered to patients from medical imaging procedures toward 

the optimization rule known as ALARA (As Low As Reasonably Achievable) in order to minimize the risks 

through the appropriate use of ionizing radiation [12]. Currently, CT scanning accounts for the primary source 

of medical radiation exposure to the population. Despite the technological innovations devised to optimize the 

radiation dose associated with CT. Yet, "CT is still not a low-dose imaging modality" [13]. Hence, personalized 

dosimetry is of critical importance for effective analysis of the risk-benefits of medical imaging and the design 

of radiation dose optimization strategies according to ALARA principle. 
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In the context of personalized dose calculation, three main components are required:  

1. The definition of radiation sources (external or internal); 

2. Patient-specific computerized representations of the human body, referred to as computational 

models. 

3. Radiation transport algorithm and scoring of energy depositions. 

 

The definition of radiation source considers the characteristics of the emitted radiation, including the type 

of particle (e.g. photons, electrons, positrons, alpha particles, etc), particle energy and the geometrical 

distribution of the source. Computational models are digitized representations of the human anatomy that have 

been introduced to represent the spatial distribution of the different tissues in the body. These phantoms were 

developed originally for applications in radiation protection and medical imaging instrumentation and 

protocols optimization. Computational phantoms have been extended from simple water-filled slabs and 

spheres to patient-specific anthropomorphic models with a realistic detailed anatomy and material 

compositions. The principle of absorbed dose calculation involves solving the Boltzmann transport equation 

which describes the interaction of radiation particles travelling through a medium. There are two main 

categories of approaches for solving this equation: deterministic and stochastic algorithms. The Monte Carlo 

(MC) technique has been introduced as a stochastic solution for the Boltzmann transport equation through 

probabilistic simulation of particle interactions with matter. The main advantage of the MC method compared 

to the deterministic approach is its capability to simulate complex problems allowing the definition of either 

intricate geometries (i.e. complex heterogeneous medium) or source models. Direct MC simulations are 

considered the gold standard for implementation of a reliable dosimetry framework. However, this technique 

is computationaly intensive and requires significant expertise in computer programming [14]. 

II. Scope and outline of the research 

According to the structure of this dissertation, illustrated in Figure 1, we conducted multiple studies in two 

distinct parts: the first part focused on advanced methods for dosimetry in diagnostic nuclear medicine imaging 

centering mainly around hybrid PET/CT systems, whereas the second part focused on radiation dosimetry in 

theragnostic applications. 

PART 1: diagnostic nuclear medicine dosimetry 

In current clinical radiopharmaceutical dosimetry, patient absorbed dose monitoring is commonly based on 

simplified models, such as the Medical Internal Radiation Dose Committee (MIRD) formalism [15]. The 

traditional MIRD technique is based on organ-level dosimetry using time-integrated activities and 

radionuclide-specific S-values, which represents the mean absorbed dose to a target organ per radioactive decay 

in a source organ. These quantitative parameters are modeled based on a reference computational phantom. 

This approach assumes a uniform activity distribution within each organ and ignores individual anatomical 

characteristics. OLINDA/EXM® software, released at 2004, was the first computer code based on organ-level 

MIRD formalism for radiopharmaceutical absorbed dose calculation (OLINDA/EXM stands for Organ Level 

INternal Dose Assessment/EXponential Modeling). It calculates radiation doses to different organs of the body 

from systemically administered radiopharmaceuticals and performs regression analysis on user-supplied 

biokinetic data to support such calculations for nuclear medicine pharmaceutical [16]. 

To cope with inter-subject variability of anatomical features and heterogeneity of radiotracer distribution 

within the source volume, voxel-based dosimetry techniques have been developed, using either dose point 

kernels [17, 18] or voxel S-values (VSV) [15] approaches. Dose point kernel is a deterministic approach which 

calculates the radial absorbed dose distribution around an isotropic point source in a homogeneous water 

medium [19, 20]. The voxel-level MIRD schema is defined as a 3D voxel matrix representing the mean 

absorbed dose to a target voxel per unit activity in the central source voxel embedded in an infinite 

homogeneous medium using MC simulations. However, voxel-based dose calculation should in principle take 

into account non-uniform activity distribution of the radiotracer, the heterogeneity of the medium density 

consisting of different tissue compositions, e.g., lung, soft tissue, and bone, in radiation transport calculation 
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is ignored. Therefore, MC-based radiation transport algorithms that are capable to simulate either a 

heterogenous activity distribution or a complex inhomogenous medium is considered as the gold standard, in 

particular for dosimetry in heterogenous medium, such as lung and bone lesions and marrow dosimetry and 

also for imaging radiotracers with longer ranges. 

 

 

Figure 1. Outline of the Thesis. 

 

Computed tomography (CT) is a widely deployed imaging modality in clinical setting. Its natural growth 

and widespread adoption, inevitably became a public health concern raising awareness about patients’ exposure 

to ionizing radiation (UNSCEAR [21] reported ~ 3·6 billion diagnostic x-ray examinations, annualy). Patient 

radiation dose associated with CT examinations is typically reported using exposure indices, such as CT dose 

index (CTDI) and dose-length product (DLP). These metrics represent the radiation output of a specific 

examination that are useful for quality assurance but do not provide any information on tissue absorbed dose. 

The estimation of absorbed doses can be performed using various methodologies. The most straightforward 

approach uses conversion factors specific to the scanning protocols, such as size-specific dose estimate 

(SSDE). An alternative option is to use dedicated software tools, such as ImpactDose2 and Radimetrics [22], 

that have been developed based on MC calculations using a general x-ray tube as source model and reference 

computational phantoms representing population-based patient anatomy. Both above mentioned software 

packages proved to have some discrepancies with organ absorbed doses calculated through patient-specific 

MC simulations [23-25]. MC calculations using patient-specific computational models is deemed to be the 

most accurate approach in CT dosimetry while its downsides, including computational burden, and required 

expertise in computer programming, limit its adoption in clinical setting. 

In the context of personalized dosimetry, patient-specific computational model is the key component 

enabling accurate estimation of organ-level dose. However, detailed segmentation of patient images to 

construct personalized models was not feasible for clinical routine applications till recently, where the 

emergence of deep learning in the computer vision domain revolutionized the area of patient-specific 

computational modelling. In this regard, to cope with inter-subject variability of anatomical features, a potential 

 
2 https://impactdose.software.informer.com/ 
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alternative for person-specific organ absorbed dose estimation was introduced through developing a library of 

computational models where habitus-specific phantoms could serve as alternative models covering various 

anthropometric and anatomical characteristics of patients [26]. Several habitus-dependent phantom series have 

been developed to perform patient-specific absorbed dose estimation by matching anthropometric 

characteristics of patients, such as gender, age, height, and body weight [27, 28]. The construction of patient-

specific models from regional CT images is another alternative for patient-specific dosimetry, which was 

adopted in a number of studies and also within RadimetricsTM commercial dose tracking software (Bayer 

HealthCare, Berlin, Germany) by mapping the segmented model of patient CT images to a template anatomy 

through a simple protocol-based registration of CT scan localizer to predefined anatomical landmarks on 

Cristy & Eckerman  stylized phantom [29-31]. 

Since Monte Carlo calculations using patient-specific models are commonly considered as gold standard 

for organ absorbed dose estimation from diagnostic imaging procedures, the implementation of an easy to use 

and reliable framework enabling to estimate patient-specific organ absorbed doses for individual patients in 

clinical setting is highly desirable. This was the focus of Part 1 of this dissertation. 

Focusing on public health aspects related to the risks of the use of radiation in medicine, this part considered 

hybrid PET/CT scanner as example to establish a framework for personalized dosimetry in molecular imaging. 

Patients undergoing PET/CT scanning is exposure to two different radiation sources: the internal radionuclide 

source and the external X-ray source. This part includes components linked to patient representation, radiation 

dose calculation, radiation dose optimization and application of artificial intelligence (AI) in fast MC-based 

dosimetry. The studies conducted in Part 1 were divided in two sub-categories: 

 

A. Develop and validate Monte Carlo simulation code system for personalized dosimetry of a clinical 

PET/CT examination. 

1. Developing a comprehensive library of anthropomorphic computational models representing the 

main anatomical characteristics of the majority of patients at different ages (both genders), and 

different anthropomorphic characteristics. 

2. Developing a MC simulation code system for clinical PET/CT scanners to incorporate the 

geometry of the CT component and the biokinetic data of fluorodeoxyglucose (18F-FDG) that is 

extendable to other radiotracers. 

3. Developing a unified methodology for constructing patient‐pecific computational models from 

CT regional images based on deformable registration algorithms for organ absorbed dose 

estimation in radiological imaging. 

4. Assessment of uncertainties associated with MC-based personalized dosimetry in clinical CT 

examinations, in comparison with experimental measurements. 

 

B. Applications of artificial intelligence, in particular deep learning algorithms, into MC-based 

personalized dosimetry. The tools, techniques and data developed in part A, established the foundations 

for application of AI in radiation dosimetry. 

 

1. Implementation of deep learning for optimization of acquisition protocols in CT scanning to 

reduce patient exposure while recovering image quality in the chest region. 

2. Implementation of deep learning in external dosimetry for real-time, acquisition parameter-free, 

patient-specific MC dose reconstruction in CT examinations. 

3. Implementation of a fast MC-based dose reconstruction in whole-body internal dosimetry using 

a physics-informed deep learning algorithm.  

4. Extension of deep learning-based fast MC dose simulation in personalized brachytherapy dose 

reconstruction. 

PART 2: Therapeutic nuclear medicine dosimetry 

Radiopharmaceutical therapy involves a biochemical pathway to deliver cytotoxic levels of radiation to a specific 

cancer cell type through targeting agents while minimizing damage to normal cells. In recent years, the progress 
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in radiopharmacology with the emergence of theragnostics, combining diagnostic and therapy, contributed to the 

current resurgence of interests in RPT as a multidisciplinary endeavor [32]. The promising clinical outcome of 

RPT for the treatment of both local cancers and metastatic malignancies is being approved as an effective treatment 

technique with a good safety profile, while economically and logistically viable [33]. Currently, RPT planning is 

typically based on either a fixed dosage or patient’s body weight/surface area, analogous to chemotherapy. This 

approach is very much in contrast with the new EU directive 2013/59/EURATOM Article 56, indicating that “For 

all medical exposure of patients for radiotherapeutic purposes, exposures of target volumes shall be individually 

planned and their delivery appropriately verified taking into account that doses to non-target volumes and tissues 

shall be as low as reasonably achievable and consistent with the intended radiotherapeutic purpose of the 

exposure”. In Chapter II of the above directive, Definitions (Article 5, Definition 81), it is further stated that 

“‘radiotherapeutic’ means pertaining to radiotherapy, including nuclear medicine for therapeutic purposes” [34, 

35]. 

Pursuing the concept of precision medicine in RPT, we developed a theragnostic dosimetry workflows for 
177Lu-labeled radiopharmaceutical were developed based on patient-specific biology, molecular pathology, and 

dosimetry.  Lu-DOTATATE has been recently approved by the FDA for the treatment of somatostatin receptor-

positive neuroendocrine tumors (NETs) [36]. While the currently recommended dosage is a fixed administered 

regimen (7.4 GBq/fraction), there is mounting evidence that dosimetry-guided adaptation of administered activity 

may be beneficial to optimize therapy outcome. The preliminary results indicate wide margins for increasing the 

administered activity with tolerable toxicity [9, 37]. 

In Part 2 we focused on the capacity of theragnostic dosimetry-based planning to RPT setting by developing a 

practical dosimetry workflow for 177lu-Labeled peptide receptor radionuclide therapy (PRRT); and furthere to 

develop a decision-support model for 177Lu-DOTATATE RPT for patient stratification based on quantitative 

biomarkers from pre-therapy imaging and pathology to ensure optimal efficacy and economy.  
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Abstract 

The prevalent availability of high-performance computing coupled with validated computerized simulation 

platforms as open-source packages have motivated progress in the development of realistic anthropomorphic 

computational models of the human anatomy. The main application of these advanced tools focused on imaging 

physics and computational internal/external radiation dosimetry research. This paper provides an updated review 

of state-of-the-art developments and recent advances in the design of sophisticated computational models of the 

human anatomy with a particular focus on their use in radiation dosimetry calculations. The consolidation of 

flexible and realistic computational models with biological data and accurate radiation transport modeling tools 

enables the capability to produce dosimetric data reflecting actual setup in clinical setting. These simulation 

methodologies and results are helpful resources for the medical physics and medical imaging communities and are 

expected to impact the fields of medical imaging and dosimetry calculations profoundly. 
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I. Introduction 

Human anatomical models have been developed to represent the spatial distribution of different tissues in the body 

(human anatomy) [1, 2]. These models were mainly constructed to provide a non-invasive and inexpensive way to 

test various diagnostic imaging and interventional/therapeutic procedures [3], such as dosimetric calculations for 

ionizing/non-ionizing radiation exposure, optimizing medical imaging facilities, and personalized medicine. An 

important category of anatomical models is physical phantoms composed of solid materials with properties 

equivalent to human tissues, e.g., homogenized cylindrical water phantoms used for the calibration of radiation 

detectors and diagnostic imaging systems [4, 5]. However, these phantoms are usually expensive while reflecting 

a crude approximation of the human body. In addition, using physical phantoms for the calibration of advanced 

systems can be very costly and time-consuming. As a result, computational phantoms representing a mathematical 

model of the human anatomy in a digital format were developed originally for applications in radiation protection 

and medical imaging optimization. Recently, the ultimate objective of constructing human computational models 

as the ancestor of the digital twins (i.e. computational objects employed in medicine or other fields as surrogate or 

replica of the human body to certain process, e.g., to ionizing radiation) is the personalization of medical 

procedures within the paradigm of precision medicine [6]. Starting in the 1960s, the development of the 

computational models evolved through many generations, and in the 1980s, further efforts were made in this 

domain. In this regard, the Visible Human Project led to the creation of the first complete anatomical model for 

dose calculation purposes [7]. The first generation of computational phantoms suffered from a variety of 

limitations, including lack of anatomical realism, the non-inclusion of tissue characteristics, calculation speed, as 

well as their incompatibility with available analytical or Monte Carlo simulation codes. More importantly, these 

computational phantoms have not been designed for subject-specific modeling and ignored inter-subject 

anatomical variability [8]. 

Advances in high-performance computing stimulated the development and usage in research of realistic 

computational anthropomorphic models. To date, more than 200 computational phantoms have been reported in 

the literature [2]. Examples of widely used anatomical models are the NURBS-based XCAT phantom series [9] 

and the Virtual Population based on triangle mesh [10, 11]. Advances in medical imaging modalities and 

computational algorithms allow fast and construction of personalized computational models through automated 

segmentation techniques and enable the incorporation of physiological motion into anatomical models. 

II. The fundamentals of computational models design 

Multiple factors should be considered during the construction of a realistic anthropomorphic anatomical model 

[12]. These include anatomy (tissues, organs and regions), tissue properties, computational efficiency as well as 

compatibility with analytical or Monte Carlo simulation codes. 

As a result, the first step in anthropomorphic anatomical model construction consists of defining geometrical 

surfaces and tissue properties. This can be done either by using constructive solid geometry (CSG) or boundary 

representation (BREP) approaches [13, 14]. In CSG, objects are created using primitives, such as cylinders, 

ellipsoids, spheres, … etc. A number of examples can be found in the literature that fall under this category ranging 

from whole organ representation [8] to voxel-based representations [15]. Although whole organ representation 

approaches have the advantage that they are computationally efficient and compatible with existing Monte Carlo 

radiation transport simulation codes, they suffer from the lack of anatomical realism. Conversely, voxel-based 

representation has the advantage of reflecting anatomical realism that can be integrated into simulation codes [15]. 

However, the geometric fidelity is dependent on voxel size, and the simulations are computationally inefficient, 

especially for organ shapes readjustment. In BREP modeling, tissues can be characterized using boundary surfaces, 

such as non-uniform rational B-splines (NURBS) or polygon mesh surfaces. As in the case of voxel-based CSG, 

the data can be extracted from CT images by contouring organ surfaces followed by modeling to end up with 

smooth and continuous boundaries. The BREP representation better reflects anatomical realism compared to CSG, 

given that it can model complex anatomical features using an extended set of operation tools. 

Although BREP models provide improved realism compared to previous modeling techniques, the 

corresponding models are still static. Therefore, a number of additional parameters have to be included to mimic 

the reality. There are many reasons behind this as summarized by Neufeld et al. [12]: 
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- Slow changes in anatomy during treatment in radiotherapy, 

- Inter-subject anatomical variability in anthropomorphic parameters, such as height, weight, age, BMI, etc. 

- Need to have personalized models reflecting specific patient‘s anatomy/physiology. 

- Voluntary or involuntary motion of organs, such as respiratory/cardiac motion or bowel movement that 

may affect quantitative analysis or radiation therapy planning. 

Much worthwhile research efforts have been carried out in previous studies to handle some of the above-

referenced limitations. The Visible Korean male phantom [16] is a landmark example where morphing techniques 

have been developed in order to modify the volume and shape of static phantoms. The employed methods include 

physics-based approaches [12], image registration techniques [17, 18] and geometrical approaches [11, 19, 20]. 

Finally, organ motion modeling techniques were developed to consider patients’ involuntary respiratory motion. 

This led to a new generation of 4D computational models (3D space + time) that became practical tools for 

simulation in medical imaging as well as in radiotherapy treatment for oncological applications. Examples include 

respiratory motion simulation using rigid or elastic transformations, as adopted in the popular 4-D XCAT phantom 

[21], and deformable voxelized phantoms [22] using more sophisticated techniques, such as finite element 

algorithms [23].  

From mathematical to voxel-based to boundary representation models 

Computational human phantoms have been developed to realistically model patients’ anatomy and physiology, 

considering the geometry and structures of organs/tissues, material composition, temporal changes, such as 

respiratory/cardiac motions, fluid dynamics such as blood flow or contrast perfusion, …etc [24]. Computational 

phantoms have been extended from simple water-filled slabs and spheres to anthropomorphic models with a 

realistic representation of the anatomy and material composition. Computational models are typically classified 

into three main categories; a) stylized phantoms, b) voxel phantoms and c) boundary representation phantoms 

(Figure 1). 

 

Figure 1. The evolution of computational phantoms from simple macro-bodies to detailed personalized models. Adapted with 

permission from [25]. 

The first generation of computational phantoms was constructed for radiation protection purposes in the 1960s. 

It was primarily composed of simple macrobodies, easily described based on quadratic equations, such as cuboids, 

cylinders, spheres, ellipsoids, … etc [26]. The first anthropomorphic stylized phantom developed by Fisher and 

Snyder comprised only three regions (skeleton, lungs and remainder tissues) [27]. Nine years later, they built an 

improved version of their phantom composed of main organs defined by simple geometric primitives [28]. Along 

with the technical developments of stylized phantoms, diversities in the target population according to age (from 

newborn to adult), gender (male/ female) and pregnancy gestation (fetus models) [29-31] were modeled. For a 

long time, mathematical models served as the de facto standard in radiation protection and dose management. 

Many upgraded versions of these phantoms have been constructed, such as Adam and Eva [32], precise head and 

brain models [33], bone and marrow [34, 35], gastrointestinal tract [36], … etc. Furthermore, to cover anatomical 

diversities of patient/worker populations, a library of stylized phantoms with different statures has been devised 

[37]. 4D stylized phantoms representing organ motion were developed based on surface equations, such as 

superquadratics [38] and non-uniform rational B-splines (NURBS) [39]. Mathematical models have the 
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advantages of easy manipulation of shape and size adjustment or motion simulation [40]. However, this design 

lacks anatomical realism as the model represents only a crude approximation of organs’ shape and position. In 

addition, the definition of heterogenous tissue composition in macrobodies is not possible. 

Through the advent of tomographic medical imaging modalities, such as CT and MRI, the visualization of the 

human anatomy in three-dimensions was made feasible. Medical images consist of small elements called pixels in 

2D and voxels in 3D representing tissue information. To construct a 3D computational phantom, a label is assigned 

to each voxel according to the anatomical region (i.e., liver, brain, bone, etc) and tissue characteristics (material 

composition and density) obtained from medical images (i.e., CT or MRI). The segmentation of organs and tissues 

from medical images is traditionally performed manually, a labor-intensive and time-consuming process. Although 

voxel phantoms provided significant anatomical realism compared to stylized models, they suffer from limitations 

attributed to the finite voxel resolution of structural images (in the order of millimeters) and the inherent nature of 

voxel element geometry (uneven steps). In fact, tomographic images are not capable of representing fine structures 

in micrometer dimensions, such as the skin, eye lens and epithelial tissue in the digestive tract. As a result, the 

anatomical fidelity of the developed model depends on voxel size, and most existing voxel models involve some 

level of assumptions about the anatomical structures. Furthermore, CT images that are mostly used as reference 

structural images do not generally represent soft-tissue contrast and typically cover only part of the body (not total-

body images). 

A number of reference anthropomorphic voxel phantoms have been developed mostly based on CT images. 

These reference models were first developed for the adult male model and later extended to the adult female, 

pediatric and pregnant phantoms. In the late 1980s, Zankl et al. constructed voxel computational models using CT 

images of healthy patients that eventually ended up in 12-phantoms family representing different ages, gender and 

size [41-43]. In 1994, a head-torso voxel model, referred to as the VoxelMan was developed from CT images to 

support imaging physics research in nuclear medicine [44]. In 2000, the VIP-Man phantom was developed by Xu 

et al. as the first model constructed based on color photographic images of a cadaver [45]. In 2002, the dose 

Calculation task group of the International Commission on Radiological Protection (ICRP) Committee launched 

a project focusing on the development of a set of standard voxel phantoms to be released to the public as the ICRP 

Reference phantoms (adult male and female) [46]. Bolch et al. created a series of pediatric reference phantoms 

from newborn to 15-years old teenager [47]. As the most recent developed pediatric family phantoms, ICRP 

publication 143 describes the development of a series of 10 computational models composed of male and female 

newborn, 1 year, 5 years, 10 years, and 15 years old phantoms [48].  

Computational models based on boundary representation techniques were introduced as a new computational 

model generation taking advantage of both mathematical and voxel-based models. BREP phantoms are able to 

represent realistic anatomy of the human body while can benefiting from the advantages of mathematical phantoms 

in modeling the deformations. Surface-based models, such as non-uniform rational B-splines and polygon mesh 

models, are subcategories of BREP modeling. These advanced surface models are capable of realistically 

representing the anatomical structures while enabling the simulation of anatomical deformation (posture and 

involuntary organ motion) by providing a rich set of mathematical operation tools. In surface-based designs, the 

transformations can be simply applied to the surfaces or vertex points to morph the object. 

In the BREP or hybrid approach, voxel data are combined with stylized modeling techniques to design a 

computational phantom that benefits the advantages of both voxel models in representing the anatomical realism 

and stylized phantoms in providing the flexibility for anatomical variations [49]. A series of reference phantoms 

(adult and pediatric) in hybrid format has been developed by the University of Florida [50-52]. A series of hybrid 

pregnant female phantoms at the end of three gestational periods has been developed by Xu et al. [53] whereas a 

family of Iranian BREP phantoms (adult male/female and pregnant reference phantoms) has been 

developed at Ferdowsi University of Mashhad [54-56] as illustrated in Figure 2. The Virtual Family, a 

series of surface-based computational phantoms, has been developed based on high-resolution MR images [10, 

11]. A polygon surface phantom at Hanyang University in Korea extended from the reference voxel model of 

VKH-Man was also designed [57]. Recently, mesh-type ICRP reference adult phantoms, which account for 

surface-based counterparts of the voxel-type ICRP reference phantoms, have also been developed [58, 59].  
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Figure 2. The reference BREP Iranian computational phantoms. Left panel: male/female adult reference computational 

phantoms. Right-top panel: the segmented structural/anatomical details and, Right-bottom panel: the reference pregnant 

phantom with fetus model at three gestation periods. Courtesy of Dr. Miri and Dr. Rafat, Ferdowsi University of Mashhad. 

III. Extensions of reference phantoms 

Motion and posture simulation 

Reference computational phantoms are constructed using tomographic images of a single subject, thus lacking 

inter-subject anatomical variability. In addition, reference models have been traditionally developed as static 

models where the physiological dynamics of the human body behavior is ignored. To address these limitations, a 

library of anatomically variable computational phantoms and time-varying 4-D reference phantoms have been 

developed. 

In digital models, physiological motion is typically captured from gated imaging, where the data acquisition is 

synchronized with a physiological signal. This information is used to simulate motion through time-varying 

transformations of the body structures. In BREP designed phantoms, the topological transformations are applied 

to surface control points. The 4-D NCAT phantom, an extension from the earlier mathematical MCAT phantom 

by Segars et al. [39, 60], representing cardiac and respiratory motions, was the first NURBS-based torso model. 

In an updated version, the 4-D XCAT phantom family was extended to include a series of 47 phantoms 

representing cardiac and respiratory motions of different patients [61]. A number of studies reported on the 

extension of 4D XCAT phantoms. For instance, Ghaly et al. [62] developed a population of 4D phantoms by 

deforming the 3D XCAT reference model. In addition, Konik et al. [63] simulated non-rigid respiratory and 

voluntary body motion based on the XCAT model. The 4-D VIP-Man phantom developed based on polygonal 

mesh was employed for external beam treatment planning in the lung region [64]. For CSG design, respiratory 

motion transformations are applied to individual voxels by linear interpolation of the deformation vector fields to 

generate a series of high-temporal-resolution voxel phantoms [22]. 

Morphing and changing the posture of reference phantoms is a useful technique to mimic real-world scenarios 

in the radiation protection domain [2]. Since building a new posture-specific phantom is challenging and time-

consuming, morphing techniques have been developed enabling the deformation of volumetric and topological 
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features of organs and structures from existing reference computational models. Strategies for morphing the 

anatomy encompass simple heuristic methods for scaling and transpositions of organs to complex non-rigid 

registration techniques [19, 65]. These strategies were exploited to extend a series of computational phantoms with 

different anatomical characteristics, such as height, weight, BMI, …etc, from a reference computational model. 

This strategy will be further elaborated in the section below “Libraries of computational human phantoms”. To 

simulate physiological motion of anatomical structures, posture-specific phantoms have been devised. The 

postures were adjusted based on the information derived from a body motion capture system to realistically 

simulate sequence of body movements [20, 66]. Han et al. [67] developed walking phantoms suitable for radiation 

dosimetry in external photon exposure scenarios. Another study by Su et al. [68] reported on sitting phantoms 

designed for internal radiation dosimetry studies. Recently, mesh type ICRP phantoms were deformed to multiple 

non-standing postures using a posture-change method based on a rigid shape-deformation algorithm and motion-

capture technology [69] to measure the radiation dose in specific situations.  

Libraries of computational human phantoms 

Reference phantoms are constructed according to the anatomical characteristics of a single subject considering 

anthropomorphic data of the average population, therefore lacking inter-subject anatomical variability (Figure 3). 

The diversity of anthropometric parameters between individuals raises the demand for building patient-specific 

computational phantoms. Although personalized phantoms are deemed to represent the ideal digital twins, there 

are some limitations associated with the construction of individualized phantoms. This includes the lack of high-

resolution tomographic images for specific patients and the time-consuming procedures for organ/tissue 

segmentation. In this regard, habitus-specific phantom series created based upon the deformation of a reference 

phantom assembling different anatomical variables for population-based assessments have been introduced. 

Deformation algorithms have been typically developed based on morphing the tissues considering hyper-elastic 

soft-tissue and stiff joints. Some interactive tools enabling topological morphing and interpolation of tissues, such 

as tissue growth (analogous to thermal expansion), to construct a habitus-variable computational population from 

a reference model have been developed. A number of studies reported on size-adjustable phantoms representing 

the variability of anatomical and anthropomorphic parameters, such as body size, organ volume/shape, …etc. 

Johnson et al. [70] extended the UF hybrid adult phantoms to 25 habitus-specific computational phantoms. Na et 

al. [19] reported on the construction of a library of adult phantoms (weight-specific) extended from the RPI 

reference models using an automated deformation algorithm implemented on polygon mesh surfaces. In addition, 

a number of obese phantoms and a set of age-dependent Chinese computational models in mesh format have been 

developed based on the RPI reference phantoms to examine the effect of obesity on CT dosimetry [71, 72]. Broggio 

et al. [73] constructed 25 adult phantoms to cover the diversity of heights and weights in the adult male population. 

Lloyd et al. [74] developed a non-rigid deformation algorithm to extend the population of the Virtual Family 

phantoms using biomechanical finite element methods. Geyer et al. [75] extended the UF reference phantom 

family to height/weight-specific phantoms. A Korean library of voxel phantoms has been developed to represent 

different body shapes and sizes [76]. More recently, Akhavanallaf et al. [65] developed an automated algorithm to 

construct a comprehensive library of phantoms extended from voxel-based ICRP reference phantoms. Choi et al. 

[77] extended a body-size dependent family of adult phantoms based on mesh-type ICRP reference phantoms. 

Hoseinian et al. [78-80] created a comprehensive series of BREP whole-body phantoms covering statistical 

diversities of the Iranian population (Figure 3). Beside the development of total-body phantom families, Erickson 

et al [81] established a database of realistic virtual breast models based on breast computed tomography images. 
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Figure 3. Series of adult computational phantoms (males and females) developed based on CT images of healthy Iranian 

population. The distribution of anthropomorphic indices, height and weight (top panel), along with the structural details of the 

developed computational models (left-bottom panel) are shown. As an example, the anatomical deviations of the thyroid gland 

in this population is illustrated (right-bottom panel). Courtesy of Dr. Miri and Dr. Rafat, Ferdowsi University of Iran. 

IV. Advances in computational models 

Recent advances in computational phantoms design focused on two main aspects: first, realistic representation of 

patient-specific anatomy; and second, upgrade of reference phantoms by adding small (micrometer-scale) or 

complex anatomical structures. The anatomical fidelity of the developed computational phantoms depends 

strongly on the voxel resolution of the reference tomographic images. Current imaging technologies are not 

capable of representing complex or fine structures, such as bone marrow, eye lens, alimentary tract structures, 

…etc, in micrometer-scale. In this context, Yeom et al. from Hanyang University developed mesh type ICRP 

phantoms extended from the reference ICRP voxel models through preserving the original anatomical structures. 

Complex structures of the gastrointestinal system have been improved and the fine structures of the alimentary 

and respiratory tracts and lung airways were added (Figure 4) [82, 83]. In a recent study, mesh-type skeletal 

systems for pediatric population and detailed eye models for children and adolescents of the ICRP reference 

phantoms were developed in a fine-structure [84, 85]. Abadi et al. [86] elaborated on the lung architecture of the 

XCAT series by modeling the airways and pulmonary vasculature. MIDA is a detailed head and neck model (over 

160 structures) constructed from a series of high-resolution multimodal MR sequences [87]. In parallel, advanced 

functionalized anatomical models have been developed [12].  
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Figure 4. Adult male and female mesh-type ICRP reference computational phantoms. Micron-scale radiosensitive regions of 

major organs and tissues are visualized on the left and right sides of the phantoms. Reprinted with permission from [88]. 

 

Toward the 4th generation patient-specific digital twins, semi-automatic segmentation techniques based on 

texture patterns or manual delineation along with deformable registration algorithms have been traditionally 

employed. In state-of-the-art approaches, this process was labor-intensive and time-consuming which limited the 

construction of patient-specific computational models [89]. Recently Carter et al. proposed to use deformable 

registration techniques to create individualized phantoms to better support patient-specific dosimetry [90]. Thanks 

to recent advances in artificial intelligence algorithms, fully automated segmentation of medical images became 

feasible. In this field, machine learning and deep learning techniques proved to serve as useful techniques to 

generate patient-specific phantoms. Deep learning algorithms demonstrated their capabilities in image 

segmentation [91-95] and image registration [91, 96] that can be integrated into the workflow for the construction 

of patient-specific computational phantoms for diagnostic and radiotherapy risk assessment purposes [97, 98]. In 

2019, Xie et al. [99] constructed patient-specific pregnant phantoms by means of deep learning anchor organ 

segmentation and used them as input for Monte Carlo organ dose calculations. As illustrated in Figure 5, the 

generated patient-specific phantoms were utilized to estimate fetal exposure from abdominal CT examinations. 

 

 

Figure 5. Illustration of the deep learning pipeline used to automatically generate pregnant computational phantoms. 

 

Peng et al. [92] used deep learning techniques to automatically segment CT images and combined it with 

accelerated Monte Carlo simulations to calculate patient-specific radiation dose to make the implementation of the 

proposed approach in clinical setting feasible. They claimed that the proposed patient-specific phantom 

constructed based on automatic segmentation is prone to much less error compared with the selection of a 



18 

computational phantom from available libraries. Recently Fu et al. [91] developed a unified pipeline to create 

personalized computational models from radiological images. The proposed pipeline is composed of three main 

steps: first, some anchor organs were segmented from CT images using deep learning algorithms; second, the best-

matching reference phantom was selected from a template phantom library using parametrized template matching 

approach; and third, a deformable registration between CT images merged with anchor organ masks and the 

selected reference phantom was carried out. They registered patient images to one of the phantoms selected from 

the XCAT library (Figure 6). 

 
Figure 6. The pipeline for automated construction of personalized computational phantoms. Reprinted with permission from 

[91].  

V. Summary and future perspectives  

Advances in high-performance computing and the capabilities offered by deep learning-based algorithms has 

triggered important developments toward the 4th generation of human computational models called digital twins 

which represent the biological and physical characteristics of the human body from gene information to 

anthropomorphic parameters. Recent advances in deep learning-assisted medical image analysis and processing 

successfully pushed the borders toward real-time patient-specific computational models. Considering the time-

consuming process of organs labeling and generation of ground truth in the supervised approach, novel 

unsupervised models, such as variational auto-encoders or generative adversarial networks, seem promising for 

application in this area [100]. 
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Abstract 

Computational phantom libraries have been developed over the years to enhance the accuracy of Monte Carlobased 

radiation dose calculations from radiological procedures. In this paper, we report on the development of an adult 

computational anthropomorphic phantom library covering different body morphometries among the 20–80 years 

old population. The anatomical diversities of different populations are modeled based on anthropometric 

parameters extracted from the National Health and Nutrition Examination Survey database, including standing 

height, total weight, and body mass index. Organ masses were modified to match the corresponding data. The 

ICRP reference male and female models were selected as anchor phantoms. A computer code was developed for 

adjusting standing height and percentage of fat free mass of anchor phantoms by 3-D scaling. The waist 

circumference and total body mass were further adjusted. The diversity of organ masses due to anthropometric 

differences deviates from the mean values by about 3%–21%, while this deviation exceeds 50% for genital organs. 

Thereafter, organ-level absorbed doses from both internal and external radiation exposure conditions were 

estimated. A total of 479 phantoms corresponding to seven age groups were constructed for both genders, thus 

fulfilling the criteria for representing a diverse adult population with different anthropomorphic and anatomical 

characteristics.  
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I. Introduction 

The utilization of radiation-based diagnostic imaging systems is progressively increasing worldwide, raising 

concerns about the potential hazards of radiation exposure. Computational phantoms were developed to accurately 

model radiation interaction within the human body using Monte Carlo (MC)-based radiation transport software 

packages targeting a number of applications, including radiation dose calculations and imaging physics research 

[1]. The first generation of computational phantoms were defined by simple surface equations and initially 

developed in the 1960s [2]. In the late 1980s, following the advent of tomographic medical imaging technologies, 

such as CT and MRI, voxel-based phantoms were developed to represent the anatomical features of the human 

body. Voxel-based phantoms were rapidly adopted in Monte Carlo simulations owing to their ability to model 

anatomical details and have been continued to be developed over the years taking advantage from advances in 

high resolution imaging. The third generation of computational phantoms using boundary representation (BREP) 

techniques emerged in the form of Non-Uniform Rational B-Splines (NURBS) or polygon mesh surfaces. They 

offer better flexibility in terms of modeling deformation, motion and change in posture [3-5]. 

From a radiation protection perspective, it is essential to determine and quantify the variability of radiation 

dose with respect to variations in anthropometry and anatomy. To this end, anthropomorphic phantoms coupled 

with Monte Carlo methods play an important role in radiation dosimetry calculations. Reference anthropomorphic 

models were developed based on the average population [4, 6-8] but limited to fixed anthropometric and 

anatomical parameters. However, the diversity of anthropometric parameters between reference models and 

individuals may introduce significant uncertainties, thus motivating and raise the demand of personalized 

computational phantoms. Although, person-specific phantoms added up to an ideal model, some limitations such 

as lack of high resolution tomographic images for each person and a time consuming segmentation process drew 

the attention of researchers to a more efficient approach of computational phantoms in medical dosimetry. Habitus-

specific phantoms introduced as a size adjustable type of phantoms which were constructed based on deformation 

in a reference phantom. These phantoms are neither too individualized like subject-specific phantoms nor 

population-averaged as are reference phantoms [3, 9]. 

A number of studies focused on size-adjustable phantoms to account for variability in body size, organ masses 

and other parameters, such as body fat percentage and subcutaneous fat distribution in dosimetry applications. 

Johnson et al. [9] built patient-dependent phantom series containing 25 models based on the University of Florida 

(UF) hybrid adult male (UFHADM) phantom [10] using anthropometric parameters extracted from NHANES III 

(1988–1994). The phantoms were remodeled considering two classes of target parameters: primary parameters 

(body height and weight) and secondary parameters (waist and thigh circumferences). The internal organ masses 

of Johnson’s models deviated from reference values due to the 3D scaling during the deformation process. 

In another study, an automated algorithm was developed to generate an adult phantom library using polygon 

mesh surfaces where the Rensselaer Polytechnic Institute (RPI) adult male and adult female models [4] were 

extended into a library representing morphometric diversities in the US population for the 19-year old males and 

females. The organ masses were assumed to follow a Gaussian normal distribution [11] according to the mean and 

standard deviation compiled from various sources [5]. 

A study was performed by Broggio et al. [12] to construct a library of 25 adult males using NURBS surfaces 

constructed based on full body optical models. The anthropometric parameters were extracted from Civilian 

American and European Surface Anthropometry Resource (CAESAR) with 109 identified organs scaled by ICRP 

reference data and height-dependent linear formula [13, 14]. Cassola et al. [15] produced a library of 18 phantoms 

from FASH and MASH mesh-based anchor phantoms using 3D modeling software where the organ masses were 

scaled as a function of height [16]. 

The first library of 4D phantoms comprising 58 NURBS models was developed by Segars et al. [17]. This 

library was extended based on reference XCAT phantoms [18] using real anatomy of chest-abdomen-pelvis CT 

data of normal patients having different Body Mass Indices (BMIs). A library of 84 adult phantoms based on the 

Chinese Reference Adult Male polygon Surface (CRAM_S) was constructed by Chen et al. [19] where the organ 

models were adjusted to match reported Chinese reference data. An extended library of UF family containing 351 

computational phantoms has also been developed based on morphometric data from NHANES (1999-2006) [20]. 



27 

 

In previous works, attention was paid to reflect more realistically the distribution of physical properties while 

the anatomical diversities were not appropriately considered. Different approaches have been adopted to determine 

organ masses representative of the considered population for the design of computational phantoms. For instance, 

organ masses can be set to reference values or deviate from reference masses during 3D scaling. Alternatively, 

organ masses were linearly correlated to only phantom statures or simply sampled using a normal distribution. A 

practical approximation to realistically model the anatomical variability among individuals consists in 

implementing multiple correlations of each organ mass with different external anthropometric parameters into the 

phantom series.  

In this work, a software tool was developed to automatically remodel anchor reference phantoms to match 

target morphometric and anatomical characteristics. The developed library of voxel-based models is capable of 

representing internal details unlike surface models that cannot represent an inhomogeneous density distribution of 

organs or tissues [21]. The diversity of 13 organ masses depending on different morphometric parameters was 

considered. ICRP male and female voxel phantoms [22] were selected as reference models. A total of 230 male 

and 249 female adult voxel-based phantoms were constructed considering the diversity of anthropometric 

parameters from NHANES (2011-2014) [23] and variability in internal organ masses between individuals. As an 

application, Monte Carlo-based dosimetry calculations using the developed phantom library were performed for 

internal and external radiation exposure conditions. 

II. Material and Methods 

ICRP adult reference phantoms  

The ICRP phantoms were constructed through modification of the voxel models (Golem and Laura) of a 38-year-

old male (176 cm, 70 kg) and a 43-year-old female individual (167 cm, 59 kg), whose body height and mass 

resembled the physical characteristics of the reference male and reference female phantoms. In total, 140 organs 

with 53 tissue types were segmented and the organ masses of both models adjusted to the ICRP data of the adult 

reference male and female [22, 24]. The main characteristic of these phantoms are summarized in Table 1. 
 

Table 1. Main characteristics of the ICRP adult male and female reference computational phantoms. 

Reference Phantom Properties Male Female 

Height (cm) 176 163 

Mass (kg) 73.0 60.0 

Number of tissue voxels 1,946,375 3,886,020 

Slice thickness (voxel height, mm) 8.0 4.84 

Voxel in-plane resolution (mm) 2.137 1.775 

Voxel volume (mm3) 36.54 15.25 

Number of columns 254 299 

Number of rows 127 137 

Number of slices 222 348 

Anthropometric data 

The field of anthropometry encompasses a variety of human body measurements, such as weight, height, 

circumferences and lengths to represent the physical characteristics of a population. According to the trends of 

obesity among individuals, an updated database is required to represent a realistic body morphometry distribution. 

As shown in Figure 1, the results of anthropometric reference data from 1999 to 2014 reflect the obesity prevalence 

in the US population [25]. In the present study, morphometric parameters in seven age groups from 20 to 80 years 

old were obtained from the recently published NHANES (2011-2014) database. Height-weight grids obtained from 

the combination of height and weight percentile data (10%, 15%, 25%, 50%, 75%, 85% and 90%) and BMI range, 

indicating the ratio of weight to squared height, were carefully selected to limit unrealistic physical properties. 
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Figure 1. Trends in obesity prevalence among adults aged 20 and over, United States, 1999–2000 through 2013–2014. 

Fat free mass and waist circumference target values  

Since the extraction of a precise model for calculation of fat percentage and related fat free mass (FFM) percentage 

correlated with anthropometric parameters is not straightforward, the average values of different models reported 

in the literature were derived. The results show that FFM percent increases by increasing the height and decreases 

by increasing BMI [26-28]. Although both BMI and waist circumference measure the level of obesity, waist 

circumference may be more important because it is more sensitive to the distribution of body fat than BMI. To 

construct a more realistic body shape, waist circumference data extracted from NHANES (2011–2014) was 

combined with a linear model of waist circumference proportional with BMI using demographic data obtained 

from NHANES (2003) [29, 30]. 

Correlation between organ masses and anthropometric parameters 

One of the most important factors influencing radiation dosimetry calculations is the mass of organs, which 

substantially vary between different subjects owing to specific anatomical characteristics. In the absence of person-

specific imaging data, the estimation of organ masses relies on their correlation with external physical parameters. 

To this end, organ mass data were extracted from anthropometric parameters including age, standing height, body 

weight, and BMI of an individual. A survey of published articles reporting organ masses in correlation with 

morphometric parameters is given in Table 2. In this work, 13 organ masses including brain, heart, right and left 

lungs, liver, spleen, thyroid, right and left kidneys, pancreas and three genital organs for each gender were derived 

from autopsies and diagnostic measurements [13, 31-42]. Information on organ masses from different scientific 

publications has been culled in a software to extract the masses of 13 organs based on specific anthropometric 

parameters. 

Methodology for automated model deformation 

In this work, an automated algorithm was developed to remodel the reference phantom into various anthropometric 

and anatomical data. Computer software written in MATHEMATICA 7 (Wolfram Research Inc, Champaign, IL, 

USA) coupled with MATLAB 8.1 scripts (The MathWorks Inc., Natick, MA, USA) was used to implement the 

whole deformation process schematically displayed in Figure 2. In the reference phantoms, the blood vessels were 

inwardly replaced in 2D to avoid losing the vessels located in the residual tissue region during the adjustment of 

the fat mass for thin phantoms. The first step to reach the target anthropometric parameters consists in adjusting 

the height. Once the height is exactly matched, deforming the whole frame of phantoms using FFM percent was 

done by rescaling the phantom in 2D. To adjust organ masses, the deformation process was applied on each organ 

to fine tune the volume, considering the conservation of organ’s center of mass position. In addition to the 13 

organs scaled in association with anthropometric parameters, 4 other organs including gall bladder, stomach, 

thymus and urinary bladder were scaled to ICRP reference masses. The scaled organs were embedded into the 

body where the centroid position of each organ was kept constant through the phantom. To avoid the overlap of 

adjacent organs, a priority was defined for organs to be embedded according to their volume as well as their 

sensitivity to radiation. In the next step, for adjusting total body mass, firstly the waist circumference was 

considered as the estimation of belly fat. To this end, the outer contour of the phantom was detected, then adding 
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or removing fat layer of the trunk was iterated until waist circumference was achieved. Waist circumference was 

measured at the uppermost lateral border of the hip crest (ilium) by measuring the perimeter of the outer body 

contour. Secondly, by tuning fat mass in the legs and arms, the target total body mass excluding the skin mass was 

fixed to within 3% of reference values. Lastly, the whole body phantom was checked for some intersections or 

holes and smoothness of outer contour, and the skin layer with a thickness equal to in-plain resolution was coated. 

After completion of the deformation process, each deformed phantom was visually analyzed in 2D and 3D to 

check the anatomical structures as well as whole body habitus. 

 

Table 2. Summary of the main publications reporting on organ mass estimation based on correlations with anthropometric 

parameters. 
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Mandal et al.  [31] 300 

Brain, heart, lungs, liver, 

spleen, thyroid, kidneys, 

Uterus/prostate 

    ✓ ✓ M/F Linear correlation 

Higher organ masses in higher BMI 

(both genders) and younger ages 

(liver, spleen, kidney) 

Sheikhazadi et al.  [32] 1222 

Brain, heart, lungs, liver, 

spleen, thyroid, kidneys, 

pancreas, testis, 

Uterus/prostate 

✓   ✓ ✓ M/F Linear correlation 

organ masses increase with body 

height and BMI values 

Organ masses decrease with age 

except for heart, thyroid and 

prostate Grandmaison et al.  [13] 684 
Heart, lungs, liver, spleen, 

thyroid, kidneys, pancreas 
✓   ✓ ✓ M/F Linear correlation 

Molina & DiMaio  [34] 232 
Brain, lungs, liver, spleen, 

kidneys 
      ✓ M Statistical categorization Reference range 

Molina & DiMaio  [33] 102 
Brain, lungs, liver, spleen, 

kidneys 
      ✓ F Statistical categorization Reference range 

Molina & DiMaio  [36] 232 Heart ✓ ✓   ✓ M 
Strong Linear 

correlation Reference range/ 

heart mass increases linearly with 

increase in body weight Molina & DiMaio  [35] 102 Heart ✓ ✓   ✓ F 
Strong Linear 

correlation 

He et al.  [37] 111 Brain, liver, spleen, kidneys ✓ ✓ ✓   M/F 
Multi-correlation 

formula 

MRI study/ smaller organ masses at 

higher ages, except heart 

Heymsfield et al.  [38] 411 Brain, liver ✓   ✓   M/F 
Exponential 

approximation 

Liver scaled with height (power≈2), 

male brain (power≈0.83) 

Chouker et al.  [43] 728 Liver   ✓ ✓ ✓ M/F 
Multi-correlation 

formula 

Liver mass increases with weight, 

decreases with age older than 50-60 

y 

Kelsey et al.  [44] 59994 Ovary     ✓   F 
Statistical categorization 

/ polynomial 

MRI study/ 69% of the variation in 

ovarian volume is due to age 

Perven et al.  [39] 140 Ovary     ✓   F Statistical categorization 
Ovarian volume shrinking with age 

in adults 

Kelsey et al.  [40] 1418 Uterus     ✓   F 

Statistical 

categorization/polynomi

al 

Age: 0-40 y/ 84% of the variation 

in uterus volumes is due to age 

Xia et al.  [42] 1301 Prostate     ✓   M Statistical categorization Prostate volume growth with age 

Zhang et al.  [41] 1000 Prostate     ✓   M Polynomial formula Prostate volume growth with age 

Heymsfield et al.  [28] 13183 FFM ✓   ✓   M/F 
Exponential 

approximation 
FFM scale to height with power ~2 

Meeuwsen et al. [26] 23627 FM       ✓ M/F curvilinear relationship 
FM percent rose compared to an 

increase in BMI Schutz et al.  [27] 5635 FM, FFM       ✓ M/F curvilinear relationship 

Bozeman et al.  [30]  WC       ✓ M/F linear correlation NHANES (2003) 

M (male), F (female), FFM (fat free mass), FM (fat mass), WC (waist circumference) 
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Figure 2. Flowchart of the deformation process. 

Monte Carlo calculations-based organ dose assessment 

1) Internal dose estimation 

The absorbed doses to three morphometrically different computational phantoms from 18F-FDG as PET tracer 

were estimated through Monte Carlo simulations using the N-Particle eXtended (MCNPX) code. 18F positron-

emitting source with an average energy of 0.2498 MeV was simulated in 6 source regions according to 18F-FDG 

biokinetic data reported in ICRP 106 [45]. A total number of 107 primary particles were generated to reach less 

than 1% statistical uncertainty in most cases [46, 47]. 

In the MIRD formalism, the radiation absorbed dose from any source organ rS delivered to target tissue rT is 

given by Equation (1) [48]: 

𝐷(𝑟𝑇 , 𝑇𝐷 ) = ∑ ∫ 𝐴(𝑟𝑠, 𝑡)𝑆(𝑟𝑇 ← 𝑟𝑠)𝑑𝑡

𝑇𝐷

0𝑟𝑠

= ∑ �̃�(𝑟𝑠, 𝑡) 𝑆(𝑟𝑇 ← 𝑟𝑠)

𝑟𝑠

 

 

(1) 
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where �̃�(𝑟𝑠, 𝑡) is the time integrated activity in the source organ during the dose-integration period 𝑇𝐷, 

𝑆(𝑟𝑇 ← 𝑟𝑠) is the S-value defining the equivalent dose rate in the target organ per unit activity in the source organ. 

Using MCNPX tally card ∗F8, S-values were estimated per particle. Time-integrated activity in the source organs 

were obtained from ICRP 106 [45] and the administered activity of 18F-FDG was similar to PET/CT acquisition 

protocols used in our department (3.5 MBq/kg with a maximum of 350 MBq for patients heavier than 100 kg). 

The effective dose was calculated based on ICRP definition: 

𝐸 = ∑ 𝑊𝑇 ∑ 𝑊𝑅𝐷𝑇,𝑅 (2) 

 

where E denotes the effective dose, WR is the radiation weighting factor, DT,R is the absorbed dose in tissue or 

organ T, and WT is the tissue weighting factor. 

2) External dose estimation  

To benchmark the CT radiation dose calculation using the developed library, the dose report of a female patient 

with high BMI who underwent a CT examination in our department under an IRB approved protocol was selected 

for comparison of the results with the corresponding phantom in the developed series. The characteristics of the 

patient and phantom are tabulated in Table 3. 

 

Table 3. Morphometric characteristics of the patient and Female40y-25h-75w phantom (40-50 years age group, 25th percentile 

height and 75TH percentile weight). 

Characteristics Patient Female40y-25h-75w 

Sex Female Female 

Age 50 y 40 -50 y 

Weight 88 Kg 85.3 Kg 

Height 160 cm 158.1 cm 

BMI 34.37 34.12 

 

Examination details were extracted from the DICOM header. The study was performed on the Discovery CT 

750 HD scanner (GE Healthcare, Waukesha, WI) with a scan range covering the thorax and abdomen using the 

following acquisition parameters: a table speed of 55 mm/rot, 0.7 sec revolution time, 1.37 pitch factor, and 40 

mm total collimation width. A tube voltage of 120 kVp with tube current modulation (varying between 296 and 

495 mA) were applied. CT dose was obtained using Radimetrics Enterprise Platform™, a dose monitoring 

software tool using Monte Carlo simulations (Bayer HealthCare) [49]. Radimetrics calculates patient-specific 

absorbed dose by adjusting the CT images of a patient with Cristy & Eckerman stylized computational phantom 

[50] considering sex, age and size of body (diameter). To estimate the effective dose and absorbed dose in target 

organs of Female40y-25h-75w, the CT acquisition parameters, a model of the 750 HD CT scanner and exposed 

phantom geometry were used as input to MCNPX [51, 52]. 

III. Results 

Anthropomorphic parameters 

The percentile data including 10%, 15%, 25%, 50%, 75%, 85% and 90% of height and weight, extracted from the 

recent version of NHANES (2011-2014) database, were combined to provide 49 height-weight grids for each age 

group. To restrict unrealistic body morphometries, BMI percentile data varying from 19.8 to 40.7 kg/m2 for adult 

females and from 20.5 to 36.9 kg/m2 for adult males was assigned to the height-weight bins. Once BMI data were 

applied on grids, a total of 249 grids for females and 230 grids for males felt within acceptable BMI range. Figure 

3 display the height-weight grids of this library in seven age groups for females and males, respectively. Different 

categories of weight status include underweight individuals with BMI below 18.5, healthy people with BMI within 

the range 18.5–24.9, overweight, obese and morbidly obese within BMI ranges 25.0–29.9, 29.9–39.9 and 

exceeding 40.0, respectively [20]. By combining weights and heights in this library, 33.7% of female models fall 

into the normal BMI category, 23.2% in overweight, 40.9% in obese and 2% in morbidly obese. For male models, 

27.8% of phantoms fall in healthy BMI class, 34.3% in overweight and 37.8% in obese category. 
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The FFM percent and waist circumference were considered in this library as secondary parameters. The BMI and 

waist circumference parameters are widely used in the characterization of obesity. As depicted in Figure 4, waist 

circumference increases with increasing BMI values, while the FFM is inversely proportional to BMI. 

The diversity of organ masses as a function of four morphometric variables is illustrated in Table 4. These data 

are sampled based on anthropometric parameters of the phantoms belonging to the current library. The mean values 

of organ masses calculated by multiple correlation considering anthropometric variables show a deviation from 

ICRP reference organ masses, but still in the same order of magnitude. The difference between calculated organ 

masses and ICRP reference data falls within the range 0.4% - 51%. 

 

 

Figure 3. Targeted grid for female (left)/ male (right) phantoms in seven age groups 

    

Figure 4. plots of waist circumference (left) versus bmi for males (MWC) and females (FWC) and ffm percent (right) 

versus bmi for males (MFFM) and females (FFFM). 

 

Table 4. Organ masses correlated with anthropometric parameters for female and male phantoms. 

Organs 
Female organ mass (g) Male organ mass (g) 

Mean ± SD ICRP Range Mean ± SD ICRP Range 

Brain 1226.9±20.64 1300 1184.46-1265.37 1380.9±20.57 1450 1336.53-1419.57 

Lung 491.83±9.2 475 471.32-502.27 621.24±17.17 600 587.15-649.48 

Kidney 126.85±2.2 137 122.4-129.46 159.31±6.57 160 143.63-174.73 

Spleen 149.52±12.13 130 127.32-180.99 197.01±22.04 150 153.60-250.99 

Pancreas 99.672±3.618 120 92.87-105.97 123.73±3.59 140 114.87-127.55 

Liver 1406.1±90.04 1400 1201.13-1601.02 1719.2±112.8 1800 1448.91-1942.58 

Heart 595.95±9.618 620 571.42-605.24 879.71±14.80 840 847.05-902.42 

Thyroid 17.455±0.8127 17 16.24-18.54 23.911±0.72 20 22.16-25.3 

Ovary 3.64±1.988 5.5 1.872-6.76 - - - 

Uterus 69.11±5.787 80 61.54-79.16 - - - 

Testes - - - 21.312±0.177 17.5 20.96-21.51 

Prostate - - - 32.289±7.33 17 21.50-42.15 
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Deformed phantoms 

To demonstrate the variability of the morphometry of the developed phantoms, frontal and rotated views of the 

ICRP female reference model compared with two female phantoms at 30-40 years age group at 10th percentile 

standing height and 75th percentile of body weight (Female30y-10h-75w) and 90th percentile of standing height and 

50th percentile of body weight (Female30y-90h-50w) are depicted in Figure 5. The male ICRP reference model is 

compared in Figure 6 to two male phantoms at 20-30 years age group, at 10th percentile standing height and 75th 

percentile of body weight (Male20y-10h-75w) and 90th percentile of standing height and 50th percentile of body weight 

(Male20y-90h-50w). 

We considered the diversity of internal organ masses between individuals to go one step closer to person-

specific phantoms as standard models. 

In this work, an initial database of 13 internal organ masses was culled using the surveyed dependence of organ 

masses and anthropometric parameters shown in Table 2. In Figure 7 (left), transaxial slices of two 

morphometrically different female phantoms with the same height but at different age groups and weight 

displaying obvious differences for the liver are shown. 

The total body masses of the developed series were adjusted to target percentile values within 2% and waist 

circumference within 3% of target values. Evaluation of phantom anatomies was performed by scaling 17 organ 

masses correlated with morphometric parameters to agree within ±5% of target values. However, some cases have 

shown a larger deviation from the target data because of interpolation errors for small organs and the overlap 

correction of adjacent organs. The deformation process was implemented on a PC with Intel® Xeon® Processor 

of 2.4 GHz. The computational time required for deforming the internal organs of the phantom is less than 2 

minutes. Adjusting all of the anthropometric parameters takes in average about 20 minutes depending on the 

amount of fat mass requiring amendment. 

Monte Carlo-based dosimetry calculations 

1) Internal dose from 18F-FDG 

Absorbed dose to organs was calculated for three anthropomorphically different phantoms in both genders 

including female phantoms at age group 30-40 years representing Female30y-10h-10w (10th height and weight 

percentiles) and Female30y-90h-90w (90th height and weight percentiles) as well as ICRP female reference phantom 

           
 

 Female
30y-10h-75w             ICRP female phantom           Female

30y-90h-50w                 Female
30y-10h-75w      ICRP female phantom     Female

30y-90h-50w 

 

 

Figure 5. Frontal and rotated views of the adult female phantoms at 30-40 year age group at 10th percentile standing height 

and 75th percentile of weight (Female30y-10h-75w), ICRP voxel adult female phantom, 90th percentile of height and 50th 

percentile of weight (Female30y-90h-50w). 
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They were also calculated for male phantoms in age group 30-40 years Male30y-10h-15w (10th height and 15th weight 

percentiles) at age group 50-60 years Male50y-75h-50w (75th height and 50th weight percentiles) in addition to ICRP 

male reference phantom. The simulation was designed for a whole body 18F-FDG PET/CT protocol. Absorbed 

doses to six phantoms with different sex, age and anthropometric parameters are reported in Table 5. The absorbed 

dose per unit administered activity for the ICRP female reference phantom is about 35% higher than that of the 

obese female phantom (Female30y-90h-90w). It is about 8.34% less in comparison with the thin phantom (Female30y-

10h-10w). The absorbed dose per unit administered activity for the ICRP male reference phantom is about 14.5% 

higher than the male obese phantom (Male50y-75h-50w). It is about 1.5% less than that of the thin phantom (Male30y-

10h-15w). The total absorbed dose increases by increasing the body weights since the injected activity is proportional 

to patient weights (Table 5). 

 

Table 5. Summary of 18F-FDG absorbed doses for female phantom at second age group and 10th-10th height and weight 

percentiles, respectively (Female30y-10h-10w), ICRP reference female phantom ICRPfemale, and female phantom at second age 

group and 90th-90th height and weight percentiles, respectively (Female30y-90h-90w). Same as above for the male phantom at 

second age group and 10th-15th height and weight percentiles, respectively (Male30y-10h-15w), ICRP reference male phantom 

ICRPmale, and male phantom at fourth age group and 75th-50th height and weight percentiles, respectively (Male50y-75h-50w). 

The differences between the ICRP reference phantom and other phantoms are also shown. 

Phantom ID 

W
ei

g
h

t 
(k

g
) 

H
ei

g
h

t 
(c

m
) 

B
M

I 
(k

g
/m

2
) 

Absorbed dose per unit 

administered activity 
Absorbed 

dose for our 

protocol 
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Difference 

(%) 

Female30y-10h-10w 54.75 153.8 23.145 1.51E-02 +8.34 2.89 

ICRPfemale 60 163.0 22.58 1.39E-02 - 2.92 

Female30y-90h-90w 106.3 172.5 35.93 9.04E-03 -35.0 3.16 

Male30y-10h-15w 72.2 167.1 25.88 1.20E-02 +1.5 3.04 

ICRPmale 73 176.0 23.63 1.18E-02 - 3.02 

Male50y-75h-50w 89.2 181.3 27.23 1.01E-02 -14.5 3.16 

 

 

                       
 

           Male
20y-10h-75w             ICRP male phantom               Male

20y-90h-50w               Male
20y-10h-75w           ICRP male phantom               Male

20y-90h-50w 

 

Figure 6. Frontal and rotated views of adult male phantoms at 20-30 year age groups, at 10th percentile standing height and 

75th percentile of weight (Male20y-10h-75w), ICRP voxel male phantom, 90th percentile of height and 50th percentile of weight 

(Male20y-90h-50w). 
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The effective doses and absorbed doses per unit administered activity in target organs for female and male 

phantoms are illustrated in Figure 8. The five organs receiving the highest absorbed doses in the simulated 

phantoms are the heart, bladder, brain, liver and prostate for the male (uterus for female) phantom. The differences 

of absorbed doses in target organs between the ICRP female reference phantom and the habitus-dependent 

phantoms vary from -39% to 55.8%. They range between -37% and 28.7% for the male ICRP reference phantom. 

The differences of organ absorbed dose among phantoms depends on differences in body structures and organ 

masses due to the different sex, age, and anthropomorphic characteristics. From the radiation protection standpoint, 

the effective dose as a single metric provides a practical information to compare different radiation exposure 

scenarios. The effective dose differences (in mSv/MBq) between ICRP female reference model and Female30y-90h-

90w is about -15.6% and about 4.8% with Female30y-10h-10w. For the ICRP male reference phantom, this difference 

is about -3.2% for Male50y-75h-50w and 7.6% with Male30y-10h-15w. 

 

2) External dose from CT examination 

The absorbed dose in target organs of the patient extracted from Radimetrics package were compared with the 

results of morphometrically corresponding phantom Female40y-25h-75w (female phantom in age group 40-50 years, 

25th percentile of height and 75th percentile of weight) under the same CT scanning conditions. Coronal and 

sagittal slices of patient CT images and Female40y-25h-75w phantom are shown in Figure 7 (right). 

The comparison of absorbed doses for 8 important organs and effective doses estimated by Radimetrics and our 

Monte Carlo calculations is illustrated in Figure 9. In most organs, the absorbed doses estimated by Radimetrics 

agree well with simulated results of Female40y-25h-75w with an average bias of about 16.6% (range 1.35% - 

43%). The lungs present the largest deviation (about 43%). Radimetrics reported an effective dose of 17.51 mSv 

whereas our simulations using Female40y-25h-75w resulted in an effective dose of 14.35 mSv. 

 

 

Figure 8. Effective doses and absorbed doses per unit administered activity (mSv/MBq) in target organs for female phantoms 

(left) at second age group and 10th-10th height and weight percentiles (Female30y-10h-10w), 90th-90th height and weight 

percentiles, respectively (Female30y-90h-90w) and the ICRP reference female phantom (ICRPfemale) and male phantoms (left) at 

second age group and 10th–15th height and weight percentiles, (Male30y-10h-15w), forth age group and 75th–50th height and 

weight percentiles, respectively (Male50y-75h−50w) and the ICRP reference male phantom (ICRPmale). 

    

Figure 7. (right)Transaxial views of female phantoms displaying liver volume differences showing (a) 85th percentile of 

height and weight at age group 20-30 years and (b) 85th percentile of height and 25th percentile of weight at age group 60-

70 years. (left) Coronal and sagittal views of (a) Female40y-25h-75w phantom and (b) patient CT images. 
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IV. Discussion 

The construction of more realistic models representative of the adult population is highly desired for Monte Carlo-

based simulation studies targeting a number of research applications in diagnostic and therapeutic radiology. A 

new series of anthropomorphic phantoms extended from the ICRP reference phantoms covering not only the 

diversity of anthropometric characteristics but also anatomical diversities are developed in this work. Firstly, 

standing height and total body mass were adjusted as the primary parameters of this library. Secondly, FFM percent 

was tuned by 2D scaling to make a more realistic proportion with anthropometric parameters between unscaled 

organs, such as muscles and bones. Although different body shapes are not defined in this work, tuning the FFM 

percent helps to appropriately change the body style of phantoms. In a few cases, such as 10th percentile of weight 

in the first age group of male phantoms, FFM percent was not applied on the reference phantom to reach the target 

waist circumference. By sampling from derived multiple correlations between organ masses and external 

anthropometric parameters (age, standing height, body weight and BMI), organ mass data does not follow a normal 

distribution. According to the organ mass values in the library, the brain mass increases with increasing height and 

decreases with increasing age. For the lung, kidney, spleen, and pancreas, it can be concluded that their masses 

increase by increasing the body weight and BMI without following a meaningful correlation with height and age 

variations. The liver and heart masses are strongly proportional to the total body mass and consequently to BMI. 

The behavior of the thyroid is a little different since it firstly increases and then decreases with increasing standing 

height. Moreover, it has a smooth increase with age and weight. As mentioned earlier, genital organs strongly 

depend on the age, except testis mass which increases with weight and BMI. The mass of the ovaries decreases 

sharply after 35 years whereas the uterus mass reaches a peak at about 45 years and decreases at higher ages. The 

prostate mass increases strongly with age. The masses of remaining organs, such as the muscles, bones, blood 

vessels, …etc. change after 3D scaling as reported by Johnson et al. [9]. The masses of most organs deviate from 

the mean value by about 3%-21% while it exceeds 50% for genital organs. 

 

The internal radiation dose was estimated in the context of a whole-body 18F-FDG PET protocol for 

morphometrically different phantoms for both genders. The calculated absorbed doses per administered activity in 

target organs are in agreement with those reported by the ICRP 106 [45]. The effective dose for habitus-dependent 

phantoms varies between 1.82 and 2.26 (mSv/100MBq) for females, and between 1.67 and 1.85 (mSv/100MBq) 

for males, while the ICRP 106 reports an effective dose of 2.31 (mSv/100MBq). As expected, a significant dose 

from 18F-FDG is delivered to the heart, bladder, brain, liver, prostate for male and uterus for female. The heart, 

brain and liver receive a considerable dose because of their high metabolic rate and hence rapid blood supply. The 

accumulation of radioactive urine in the bladder not only causes a significant self-absorbed dose but also leads to 

a high cross-organ dose to the uterus and prostate. Overall, thin patients receive a higher internal radiation dose 

because the cross-irradiation between internal organs is stronger than other patients. This can be justified by the 

lack of subcutaneous and visceral fat which directly influences cross-organ doses. 
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Female40y-25h-75w phantom. 
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The organ-level doses and effective dose for the CT examination calculated for the anthropomorphic fitted 

phantom from the developed series show acceptable dose estimation accuracy for radiation protection purposes. 

Since each subject has exclusive anatomical characteristics, using an independent phantom library instead of a 

patient-specific model may cause a deviation from the actual absorbed dose. However, it definitely provides a 

more accurate estimate compared to the calculations using stylized phantoms, such as the Cristy & Eckerman 

stylized computational phantoms [50] implemented within Radimetrics software. During the course of this study, 

we created a patient-specific model by segmenting a clinical CT study and compared the dose delivered to the 

patient-specific model, considered as reference, to results generated using the corresponding anthropomorphic 

phantom from our library and Radimetrics. The effective dose for the patient-specific model was estimated to be 

11.72 mSv. The discrepancy between the effective dose calculated using the patient-specific model and the best 

fitting model from our library was 22.2%, whereas it was up to 49.2% when calculated using Radimetrics. As 

reported by Xie et al. [52], in addition to the anthropometric parameters, the organ-surface distance (average 

distance from the skin to organs) or body size shows a significant correlation with organ absorbed dose. It appears 

that Radimetrics overestimates the absorbed dose in target organs, particularly for the lungs. 

In this work, the diversity of organ masses is considered. However, for reliable modeling, a broad database is 

required to derive organ masses correlated with anthropomorphic variables. In addition, defining different 

somatotypes for the phantoms library makes it more comprehensive. Sheldon et al. introduced three types of main 

somatotypes: mesomorphs who are athletically built with a low percent of body fat, ectomorphs who are 

underweight with a narrow skeleton frame, and endomorphs who are overweight with a pear-shaped body style 

[53]. In the present work, we set the FFM percent for different BMIs to consider body style in addition to the 

height and weight. By considering different styles in the future studies, the distribution of fat percent through the 

body of phantoms would be more realistic. Although the volume of intra-abdominal adipose tissue encompassed 

the organs is an important factor in the calculation of cross-organ dose, adjustment of this type of fat percent called 

visceral fat was ignored due to the lack of information, and total body mass was set by adjusting the subcutaneous 

fat mass. 

Recent advances in deep learning are promoting a number of applications in computer vision and medical 

image analysis research that could be useful for constructing patient-specific models through automatic 

segmentation of body contours and internal organs. Considering the scarcity of large clinical databases and time-

consuming classification techniques required for organs labeling, generative networks can be used for developing 

data-hungry deep learning algorithms. Novel unsupervised models, such as variational auto-encoders [54] or 

generative adversarial networks [55] have shown potential in medical image analysis and look promising for 

applications involving the generation of synthesized medical images to fulfill the requirement of large training 

datasets, e.g. auto-segmentation [56]. 

V. Conclusion 

An algorithm was developed to consider the diversity of organ masses along with the morphometric parameters to 

construct a library by automatic remodeling the voxel-based ICRP adult reference phantoms. Data on 13 organ 

masses is culled based on information from autopsies and diagnostic examinations. Using the specific 

anthropometric data of each individual, it is possible to derive organ masses data and automatically construct 

habitus-specific phantoms according to the specific input parameters. 

By using habitus-dependent anthropomorphic libraries, the calculation of absorbed doses for individuals 

exposed to external or internal radiation is likely to be more accurate by considering the anthropomorphic and 

anatomical diversity among the population. The move towards subject-specific phantoms is a major improvement 

taking advantage of the availability of habitus-dependent phantoms associated with morphometric parameters and 

classified in different somatotypes. 
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Abstract 

Purpose: Diagnostic imaging procedures require optimization depending on the medical task at hand, the 

apparatus being used and patient physical and anatomical characteristics. The assessment of the radiation dose and 

associated risks plays a key role in safety and quality management for radiation protection purposes. In this work, 

we aim at developing a methodology for personalized organ-level dose assessment in x-ray CT imaging. 

Methods: Regional voxel models representing reference patient-specific computational phantoms were generated 

through image segmentation of CT images for four patients. The best fitting anthropomorphic phantoms were 

selected from a previously developed comprehensive phantom library according to patient’s anthropometric 

parameters, then registered to the anatomical masks (skeleton, lung and body contour) of patients to produce a 

patient-specific whole-body phantom. Well established image registration metrics including Jaccard’s coefficients 

for each organ, organ mass, body perimeter, organ-surface distance and effective diameter are compared between 

the reference patient model, registered model and anchor phantoms. A previously-validated Monte Carlo code is 

utilized to calculate the absorbed dose in target organs along with the effective dose delivered to patients. The 

calculated absorbed doses from the reference patient models are then compared with the produced personalized 

model, anchor phantom and those reported by commercial dose monitoring systems. 

Results: The evaluated organ-surface distance and body effective diameter metrics show a mean absolute 

difference between patient regional voxel models, serving as reference, and patient-specific models around 4.4% 

and 4.5%, respectively. Organ-level radiation doses of patient-specific models are in good agreement with those 

of the corresponding patient regional voxel models with a mean absolute difference of 9.1%. The mean absolute 

difference of organ doses for the best fitting model extracted from the phantom library and Radimetrics™ 

commercial dose tracking software are 15.5% and 41.1%, respectively. 

Conclusion: The results suggest that the proposed methodology improves the accuracy of organ-level dose 

estimation in CT, especially for extreme cases (high BMI and large skeleton). Patient-specific radiation dose 

calculation and risk assessment can be performed using the proposed methodology for both monitoring of 

cumulative radiation exposure of patients and epidemiological studies. Further validation using a larger database 

is warranted. 
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I. Introduction 

The use of x–ray computed tomography (CT) in the clinic has skyrocketed in the last decade and has been 

accounted as a major contributor to total radiation exposure of the population in developed countries [1, 2]. As the 

workhorse of radiology and medical imaging, CT scans can provide fast and accurate diagnostic medical images, 

guide surgical interventions and help planning therapeutic procedures [3]. Despite the overwhelming medical 

benefits of CT, there are concerns about potential cancer risks owing to the utilization of ionizing radiation. 

Overall, the radiation risks from CT imaging to patients are small as the absorbed doses commonly range from 1 

mSv to 30 mSv depending on the CT study type [4]. However, owing to the large number of CT examinations 

performed annually (more than 100 million worldwide) [5], even small risks may translate into a large-scaled 

number of future cancers. In light of these risks, accurate estimation of the absorbed dose profile and associated 

risk factors for the exposed patients in CT examinations is necessary [6, 7]. Different approaches have been 

adopted to estimate the absorbed dose to patients from CT scans, including experimental measurements using 

dosimeters embedded witin physical anthropomorphic phantoms and Monte Carlo calculations using 

computational models. However, these approaches inherently bear a number of limitations including the difficulty 

of matching physical phantoms to the location of internal organs within the patient’s body, the heavy workload 

involved for constructing patient-specific computational models and the inherent assumptions in measurements 

and simulation setups, which might contribute significant uncertainties to the estimated absorbed dose. A patient-

specific phantom represents a realistic model enabling accurate estimation of organ-level dose; however, the 

segmentation of patient images is time consuming and not feasible for clinical routine applications. A potential 

alternative for person-specific organ dose estimation is to use a library of computational models where habitus-

specific phantoms could serve as alternative models covering various anthropometric and anatomical 

characteristics of patients [8]. Several habitus-dependent phantom series have been developed to perform patient-

specific dose estimation by matching anthropometric characteristics of patients, such as gender, age, height and 

body weight [9-11]. Stepusin et al. [12] suggested to match patient’s data to a computational phantom from a 

predefined library using height-and-weight matching for patient-specific CT dosimetry. The construction of 

patient-specific models from regional CT images is another alternative for patient-specific dosimetry, which was 

adopted in a number of studies by mapping the segmented model of patient CT images to a template anatomy 

through a deformable registration process [13, 14]. However, this is not practical for routine clinical usage owing 

to the labor-intensive manual segmentation process. Kalender et al. [15] proposed to construct patient-specific 

whole body models from regional CT images using a simple protocol-based appending of the scan range to a 

reference phantom to take out-of direct field-of-view scattered radiation and over-scanning effects into account. 

Similar to the above mentioned method, this technique also suffers from time-consuming manual organ 

segmentation required for dosimetry calculations. Gao et al. [16] estimated organ doses for a large number of 

pediatric patients using patient-specific information implemented into VirtualDose™ CT dose calculation 

software. The Radimetrics™ commercial dose tracking software (Bayer HealthCare) [17] calculates patient-

specific absorbed doses by matching CT images of each patient with Cristy & Eckerman stylized computational 

phantoms [18], taking into account the physical and anatomical characteristics of the patient. The ImPACT CT 

patient dosimetry calculator estimates organ-level absorbed doses and effective dose based on spreadsheet tools 

and adult stylized phantoms [19]. Although this approach is practical, it is impaired by the dosimetric uncertainties 

resulting from the large differences between the anatomy of patients and simulated computational phantoms 

(categorized by gender and age) in addition to the inherent uncertainties associated with protocol-based mapping 

of the scan location on the computational models [20]. Since Monte Carlo calculations using patient-specific 

models are commonly considered as reference for organ dose estimation from diagnostic imaging procedures [21], 

the implementation of an easy to use and reliable framework enabling to estimate patient-specific organ dose for 

individual patients in clinical setting is highly desirable. 

In this work, we propose a methodology for constructing patient-specific computational models based on 

deformable registration of patient CT regional images on a habitus-dependent anchor phantom. Unlike previous 

works that simply append the scan range to an existing reference anthropomorphic phantom, which requires labor-

intensive and time-consuming manual segmentation or definition of patient’s organs inside the appended region, 

we employ the structural deformation of the best-fitting phantom from an existing large library of computational 

models through automated registration to estimate the patient-specific model. We adopted three computational 
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models for patient-specific CT dose estimation: the regional patient model developed by segmenting a series of 

CT images, the best fitting/matching anchor model selected from a phantom library based on sex, age, height-and-

weight and patient-specific computational model constructed through image registration. Patient-specific radiation 

doses are calculated using the three computational models used as input to the N-Particle eXtended (MCNPX) 

Monte Carlo code. The results obtained using the anchor phantom and registered model are compared to the 

regional patient model serving as reference to investigate the influence of the computational model on the accuracy 

of patient-specific radiation dose estimation. 

II. Materials and methods 

Patient’s regional voxel model based on CT image segmentation  

The institutional ethics committee approved this retrospective study. Written informed consent was waived. CT 

images of four patients with different gender, age and physical characteristics referred to Geneva University 

Hospital for diagnostic CT examinations were included in this work. Semi-automated image segmentation was 

performed using the 3DSlicer software [22] enabling to identify 10 organs/tissues, including the lungs, heart wall, 

liver, kidneys, spleen, stomach wall, pancreas, gall bladder, urinary bladder and skeleton. The segmented organs 

were validated by an experienced radiologist and integrated in a voxel matrix to produce a patient regional 

computational model. The chemical compositions and material density for each organ were assigned according to 

the ICRP report 89 [23]. 

Patient-specific computational phantom 

In previous work, we reported on the construction of a phantom library [24] extended from ICRP reference models 

covering different body morphometries, consisting of about 230 male and 249 female voxel adult phantoms scaled 

to specific age, height and weight grids based on the NHANES (2011-2014) database [25]. In these series, 

anatomical diversity, specifically organ masses, is implemented using a multi-correlation model to estimate organ 

masses based on gender, age, height, weight and BMI.Therfore, the best-fitting adult phantom is selected from the 

extended library to match the patient’s anthropometric and anatomical characterisitics. For the pediatric models, 

the anchor phantoms were generated by scaling the male and female ICRP adult reference phantoms to match the 

height and weight of actual patients. Thereafter, anatomical masks for the skeleton, lung and body contour were 

generated from patients’ regional CT images using auto-segmentation algorithms. Subsequently, the whole body 

anchor phantom is deformably registered to the patient anatomical mask model using automatic affine registration 

to produce a new whole body personalized computational phantom with well-defined anatomical structures, 

matching patient images obtained from CT examinations. Image registration was performed using the Insight 

Toolkit (ITK) [26]. The registration was performed in two steps: In the first step, the voxelized patient regional 

model was registered to the anchor phantom through automatic affine registration and the affine matrix warping 

the patient’s regional model to the anchor phantom calculated. In the second step, the inverse affine matrix is 

applied to the anchor phantom to produce a new personalized computational model. The registration algorithm 

uses the regular step gradient descent implemented within the ITK software package and the mean squares metric 

between two images. The resulting model after registration is referred to as "patient-specific model" and includes 

140 identified organs. Figure 2 shows representative patient-specific computational phantoms along with the 

regional model of corresponding patients as well as the selected best-fitting models. 

Dosimetry calculations 

Computational models are commonly coupled with Monte Carlo techniques for dosimetry calculations through 

full simulation of the CT scanner and parameters used by the scanning protocol under which the patients were 

examined. The studies were acquired on the GE 750HD CT scanner (GE Healthcare, Waukesha, WI). The 

geometry of the system was accurately modelled and validated against experimental measurements as described 

in previous work [27]. The patient-specifc acquisition parameters, including the table speed, revolution time, pitch 

factor, total collimation width, tube voltage and modulated tube current , extracted from the DICOM headers, were 

modeled in this simulation setup. The examined body part was defined automatically through mapping the skeletal 

mask obtained from patient CT images to the whole body computational phantoms. Obtaining the complete tube 
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current modulation profile was not possible owing to the lack of sufficient information (proprietary data 

undisclosed by the manufacturer). We therefore extracted the longitudinal tube current modulation from the 

DICOM header file of patient’s CT images and didn’t consider angular tube current modulation [16]. The absorbed 

doses to predefined target organs were calculated using a previously validated C++ computer code [27, 28]. The 

simulations of each helical CT scan were repeated six times with x-ray tube starting at angles differing by 60 

degrees since the actual tube starting angles in the actual examinations was unknown. The effective dose was 

estimated according to ICRP report 103 [29]: 

𝐸𝐷 = ∑ 𝜔𝑇 ∑ 𝜔𝑅𝐷𝑅,𝑇𝑅𝑇 ,   (1) 

where E is the effective dose, 𝜔𝑅 is the radiation weighting factor for radiation type R, 𝐷𝑅,𝑇 is the contribution 

of radiation type R to the absorbed dose, and 𝜔𝑇 is the tissue weighting factor for organ or tissue T reflecting its 

relative radiation sensitivity. 

Subsequently, clinical CT images of the patients were imported into RadimetricsTM dose tracking software [17] 

for calculation of organ absorbed doses and effective dose. RadimetricsTM collects CT scans directly from the 

hospital’s picture archiving and communication system and matches patient images with Cristy & Eckerman 

stylized computational phantoms [18] according to age, gender and body size. The software extracts scanning 

parameters (tube voltage, mAs, scan range, etc.) from the DICOM files’ header information and calculates 

overnight patient-specific absorbed dose at the organ level through Monte Carlo simulations. 

In this work, the results obtained from Monte Carlo simulations of the patient’s regional model were considered 

as reference to which dose profiles calculated using computational models and dose monitoring software were 

compared. 

Quantitative analysis 

To investigate the impact of anatomical metrics of computational models on radiation dose estimation, habitus-

dependent parameters of the computational models were compared using established metrics including the 

Jaccard’s coefficient for each organ, organ mass, mean body perimeter, organ-surface distance and mean body 

effective diameter. The similarity between the patient regional model and patient-specific model and the selected 

best-fitting model was evaluated through the Jaccard’s coefficient: 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
=

|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
  (2) 

where A refers to the organ volume of the patient’s regional model whereas B refers to the volume of the same 

in the patient-specific model or the selected best-fitting model. This metric enables the assessment of organs 

overlap between the two investigated models. The mean body perimeter was determined by the average outer 

perimeter of the patient in the scan range. Surface-organ distance is defined as the average distance from the skin 

to the organ in all slices. The body effective diameter is defined based on lateral (LAT) and anterior-posterior (AP) 

dimentions: 

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = √𝐴𝑃 × 𝐿𝐴𝑇       (3) 

III. Results 

Computational models 

Figure 1 shows the segmented regional model of the considered patients along with the original CT images. The 

best-fitting model for adult patients were selected from the extended phantom library [24] based on age, gender 

and height-weight matching, while for the pediatric patients, the best-fitting models were constructed by deforming 

the ICRP reference model to reach the height-weight target values. The anthropomorphic characteristics of the 4 

patients included in this study are summarized in Table 1. Subsequently, the selected best-fitting model was 

registered to the patient’s regional model to generate a patient-specific model. Figure 2 shows representative 

patient-specific computational models together with regional computational models of the corresponding patients 

and best-fitting phantoms. 

 

 

 



46 

 

Table 1. Anthropomorphic characteristics of the patients and the best-fitting models (matched by gender, age, height and 

weight). 

Physical 

parameters 

Patients Best-fitting model 

#1 #2 #3 #4 #1 #2 #3 #4 

Sex AF AM PM PM AF AM PM PM 

Age (y) 50 25 7 3 40-50 20-30 - - 

Weight (kg) 88 104 26 13 89.3 105.7 26 13 

Height (cm) 160 185 131 93 158.1 184.3 131 93 

BMI (kg/cm2) 34.37 30.38 15.1 15 35.77 31.22 15.1 15 

Body region Th-Ab Th-Ab Th-Ab Th-Ab WB WB WB WB 

AM: Adult Male, AF: Adult Female, PM: Pediatric Male, Th-Ab: Thorax-Abdomen, WB: Whole body 

 

 

 
Figure 1. Representative slices showing coronal views of segmented regional patient models for patient case #1 (top left), case 

#2 (top right), case #3 (bottom left), and case #4 (bottom right).  

The differences in terms of anthropometric metrics between the different computational models are 

summarized in Tables 2-6. When the results obtained using the patient’s regional model serve as reference, the 

magnitude of the relative difference is reported based on the subtraction of the target metric from the reference 

value. The mean Jaccard coefficient, which describes the similarity between models, for the best fitting models 

and the patient-specific models are 0.2 ± 0.17 and 0.19 ± 0.18, respectively (Table 2). The absolute difference of 

organ mass between the actual patient and the best-fitting model ranges from -241.4% to 83.6% while the 

difference between the patient and the patient-specific model ranges from -251.8% to 82.2%. The mean body 

perimeter in the range of each organ of the patients are in the range 81.6 ± 23 cm, while the mean absolute 

difference for the best-fitting model and patient-specific model are 10% and 9.8%, respectively. The organ-surface 

distances of the patient are in the range 13.5 ± 4.1 cm for different organs while the mean absolute difference 

between the patient and the best-fitting model and patient-specific model are 7.1% and 4.4%, respectively. The 

body effective diameters for each organ of the patient are in the range 24.6 ± 7.9 cm, while the mean absolute 

differences for the best-fitting model and patient-specific model are 6.6% and 4.5%, respectively. 
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Figure 2. Three-dimensional views of, from left to right, patients’ regional models, the corresponding anchor phantoms, and 

patient-specific phantoms. Patient case#1 (top left), case#2 (top right), case#3 (bottom left), case#4 (bottom right). 

 

Table 2. Jaccard’s coefficients for organs between the patient regional model and other computational models. 

 JACCARD COEFFICIENTS 

 Best-fitting phantom Patient-specific phantom 

Organs #1 #2 #3 #4 #1 #2 #3 #4 

Lung 0.345 0.48 0.44 0.54 0.56 0.48 0.47 0.50 

Heart 0.054 0.19 0.13 0.17 0.12 0.19 0.16 0.17 

Liver 0.346 0.37 0.49 0.52 0.52 0.38 0.35 0.53 

Kidney 0.287 0.15 0.15 0.22 0.21 0.16 0.14 0.19 

Stomach 0.069 0.04 0.07 0.09 0.05 0.03 0.07 0.07 

Pancreas 0.122 0.08 0.07 0.04 0.16 0.07 0.16 0.02 

Bladder 0.016 0.04 0.0 0.04 0.01 0.04 0.09 0.05 

Spleen 0.306 0.01 0.24 0.16 0.08 0.02 0.02 0.18 
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Table 3. Comparison of organ masses between the regional patient models, best-fitting and registered models. 

 ORGAN MASS DIFFERENCE (%) 

 Patient vs. best-fitting model Patient vs. patient-specific model 

Organs #1 #2 #3 #4 #1 #2 #3 #4 

Lungs 29.9 39.7 46.5 -44.7 -54.0 37.9 46.6 -59.5 

Heart -24.5 -22.5 0.9 31.1 -1.9 -26.2 2.1 22.5 

Liver 33.1 -51.7 17.3 46.8 0.0 -55.6 17.2 41.3 

Kidneys 31 -10.8 -15.3 68.6 -1.0 -14.2 -13.7 65.5 

Stomach -20.2 -188.0 -121.8 39.7 0.0 -192.2 -122.0 36.3 

Pancreas 15.7 -241.4 -17.5 -225.6 2.8 -251.8 -14.3 -241.1 

Bladder -30.8 -233.3 21.5 51.1 -68.9 -242.2 20.5 44.6 

Spleen 45 27.6 63.3 83.6 1.9 26.4 63.3 82.2 

 

Table 4. Comparison of mean body perimeter at organ longitudinal scan range between the regional patient model and best-

fitting phantom and registered models. 

 MEAN BODY PERIMETER DIFFERENCE (%) 

Organs Patient vs. best-fitting model Patient vs. patient-specific model 

 #1 #2 #3 #4 #1 #2 #3 #4 

Lungs 14.4 -15.5 -12.2 -22.1 -28.8 -19.1 -26.1 -31.1 

Heart 20.3 -17.3 -10.7 -20.6 -21.2 -21.2 -24.4 -29.5 

Liver 22.1 -5.5 -5.4 -3.5 -17.1 -9.8 -18.7 -11.0 

Kidneys 16.4 -0.9 -1.2 -1.9 -25.0 -5.2 -13.9 -9.3 

Stomach 18.3 -5.5 -0.6 -1.8 -22.5 -9.9 -13.3 -9.1 

Pancreas 16.3 -3.2 -0.1 2.2 -24.8 -7.8 -12.8 -5.1 

Bladder -4.3 -7.1 -9.3 -22.9 -52.7 -10.1 -23.0 -31.9 

Spleen 21.4 -7.6 -5.7 -3.8 -18.0 -11.9 -19.0 -11.1 
 

Table 5. Comparison of organ-surface distances between the regional patient model and best-fitting phantom and registered 

models. 

 ORGAN-SURFACE DISTANCE DIFFERENCE (%) 

 Patient vs. best-fitting model Patient vs. patient-specific model 

Organs #1 #2 #3 #4 #1 #2 #3 #4 

Lungs 19.2 -6.2 -0.5 -14.1 -5.2 -9.9 -12.8 -22.7 

Heart 22.5 -7.6 -0.7 -11.8 -3.2 -11.8 -13.0 -20.2 

Liver 19.9 -1.1 -1.0 0.7 -4.9 -5.0 -13.4 -6.9 

Kidneys 17.4 -1.4 0.7 0.5 -8.7 -5.6 -11.3 -7.2 

Stomach 16.1 -5.7 4.7 1.5 -9.9 -10.3 -7.0 -6.2 

Pancreas 16.6 1.3 2.7 5.8 -9.8 -3.1 -9.2 -1.5 

Bladder -2.5 -2.4 -5.5 -13.6 -35.3 -6.6 -18.5 -22.4 

Spleen 18 -3.9 -0.5 1.4 -6.3 -7.8 -12.8 -6.1 
 

Table 6. Comparison of mean body effective diameters at organ longitudinal scan range between the different computational 

models. 

 Mean Body Effective Diameter Difference (%) 

 Patient vs. best-fitting model Patient vs. patient-specific model 

Organs #1 #2 #3 #4 #1 #2 #3 #4 

Lungs 20.2 -3.1 2.9 -9.7 -7.0 -7.9 -8.9 -18.1 

Heart 24.7 -4.6 3.3 -10.4 -2.1 -9.4 -8.4 -18.7 

Liver 18.4 1.2 0.6 0.0 -9.5 -3.4 -11.6 -7.7 

Kidneys 13.7 4.5 3.0 0.7 -14.7 0.0 -8.6 -7.1 

Stomach 16.5 0.8 4.2 1.7 -11.4 -3.8 -7.6 -5.8 

Pancreas 12.3 2.9 3.5 3.8 -14.9 -1.6 -8.1 -264.4 

Bladder 3.1 2.9 -4.6 -14.5 -29.2 -1.7 -17.3 -23.3 

Spleen 19.3 0.1 0.6 0.4 -7.5 -4.5 -11.8 -7.1 

 

 



49 

 

Organ absorbed dose and effective dose 

Organ radiation doses to the studied patients were calculated using the MCNPX Monte Carlo code using three 

computational models as input. The results were compared with the values estimated by Radimetrics™ dose 

monitoring software. Figure 3 shows the organ absorbed doses from CT examinations for regional computational 

models of patients included in this study. The mean absorbed doses to the patients are 9.2 mGy for the lung, 8.78 

mGy for the heart, 10.14 mGy for the liver, 10.2 mGy for the kidney, 9.48 mGy for the stomach, 8.7 mGy for the 

pancreas, 9 mGy for the bladder and 10.63 mGy for the spleen. 

As shown in Figure 4, when the results calculated using the patient’s regional model serve as reference, the 

mean absolute discordance of organ doses of the best-fitting model, the patient-specific model and Radimetrics™ 

are 15.5%, 9.1% and 41.1%, respectively. The effective dose to the patient models are 11.74 mSv, 5.96 mSv, 10.52 

mSv and 9.5 mSv for case#1, case#2, case#3 and case#4, respectively. Conversely, the values calculated using the 

best-fitting model, patient-specific model and Radimetrics™ are within the range of 9.5 ± 3.3 mSv, 9.2 ± 2.14 

mSv and 10.5 ± 5.5 mSv, respectively. The absolute difference between the effective dose reported for the patient 

regional model and the best-fitting model, the patient-specific model, and Radimetrics™ are 15%, 5.7%, and 

58.6%, respectively. 

 

 
Figure 3. Absorbed doses for segmented target organs. 

IV. Discussion 

The patients’ dose profiles from CT scans were calculated using different computational phantoms: the regional 

patient model, the best-fitting model selected using height-and-weight matching from previously developed 

phantom library and the registered patient-specific model. When the regional patient model is used as reference, 

the registered patient-specific model is superior to the selected best-fitting model in terms of error in estimated 

organ dose. The results extracted from RadimetricsTM dose tracking software showed a considerable deviation 

from the reference even though the morphometric characterisitics of the patient have been taken into account. 

Through image registration, the proposed approach allows matching the patient’s data to a whole-body phantom 

presenting with similar location and anatomical morphometry. The evaluated metrics, including organ mass, body 

perimeter, organ-surface distance and effective diameter increased in patient-specific models owing to the 

nonlinear deformation of the best-fitting phantom during the registration process to match the obtained anatomical 

masks (skeleton, lung and body contour) of patients to the corresponding anchor phantom. The Jaccard coefficients 

do not show a good similarity in some cases owing to the dependency of this index on organs’ volume and the 

spatial location of organs for the different computational models (Table 2). 
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Figure 4. Relative differences of absorbed doses in segmented target organs for (top-left) best-fitting models, (top-right) 

Radimetrics software and (bottom) patient-specifc model with respect to patient regional models. 

 

In this work, we selected a group of patients presenting diverse anatomical characteristics to evaluate our 

methodology on a representative patient population: Case #1, a patient with high BMI and large skeleton size, 

selected to evaluate our methodology on extreme cases and case #3, a pediatric patient presenting with a large 

skeleton structure. In these two cases, there is a noticeable difference in dose estimates between the reference 

values and the best fitting model selected from the phantom library, even though matching patient age, height and 

weight were carried out. Patient-specific models for these cases improve the dosimetric results by about 15%. Case 

#2, is an athletic male with small-sized internal organs whereas case #4 is a morphometrically normal pediatric 

patient where the best-fitting model provides organ dose estimates deviating by ~10% from the reference values 

without any remarkable improvement in organ dose calculation using patient-specific models. 

The habitus-dependent phantom library approach suffers from the limited number of anatomies and 

morphometries that cause an uncertainity in dose estimation [30]. This approach provides acceptable organ doses 

for anthromorphically and anatomically normal patients. The current methodology building patient-specific 

computational models from patients’ CT images demonstrated noticeable improvement in the accuracy of organ 

dose calculation for extreme cases. The calculated absorbed dose in the lungs is significantly improved owing to 

the excellent matching between the lungs mask obtained from patient CT images and the best-fitting phantom. 

Although RadimetricsTM dose tracking software estimates patient size from the scout scan and the examined 

anatomical region is determined using image registration methods, the deviation from the reference doses can be 

caused by the oversimplified anatomy and body contour of stylized models and the limited number of phantoms 

available that do not cover the diversity of different anatomies and morphometries. In addition, implementing the 

scan range into the simulation based on predefined CT acquisition protocols (anatomical landmarks) is another 

source of errors in Radimetics™. 

This study bears a number of limitations, including the construction of the regional patient models for 

evaluation of the domestric results and the development of the phantom library. Regarding the regional patient 

model, the segmentation of internal organs was performed manually, where prior anatomical knowledge guides 

identification of organs and delimitation of their boundaries. This approach is not feasible for routine clinical 

application. Fortunately, the body countour, skeleton and lungs can be automatically segmented from CT images 
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and used during model registration to produce a patient-specific model. Likewise, assumptions regarding chemical 

compositions and density for organs may also introduce errors in dose estimations. Another limitation related to 

the selection of the best-fitting model is that the developed library contains a limited number of phantoms and 

cannot cover all patient morphometries. This limitation may potentially be addressed by expanding the library in 

future work. The limited number of patients included in this study is among the limitations of this work. In addition, 

the posture differences of the anchor phantom and patient studies (arms up vs. arms down) may introduce a 

displacement of internal organs. The registration of the anchor phantom to regional patient images can be further 

optimized to improve the matching of the patient-specific model and patient regional model. The TCM model 

adopted in the simulation process didn’t consider the angular modulation owing to the lack of sufficient 

information (proprietary raw data format undisclosed by the manufacturer). Other limitations of this work include 

the few organs considered and the use of only one CT scanner model. The construction of patient-specific models 

for accurate dosimetry calculations remains a challenging issue requiring further research and development efforts 

[31]. Deep learning approaches have brought revolutionary advances in the field of medical image analysis that 

could be useful for constructing patient-specific models through automatic segmentation of medical images (body 

contours and internal organs). 

V. Conclusion 

The aim of this study is to quantify the dosimetric characteristics of patient-specific computational models in CT 

dose estimation. Although using height-weight matching to select the best-fitting model from a comprehensive 

phantom library is feasible in clinical setting, the estimated organ dose may differ from the reference by up to 36% 

as demonstrated in this study. If, however, patient CT images are available, a reference computational model can 

be matched to the patient data to produce a patient-specific computational model for radiation dosimetry 

calculations, thus improving the accuracy of organ dose estimation. 
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Abstract 

The clinical value of x-ray computed tomography (CT) has skyrocketed in the last decade while at the same time 

being the main source of medical exposure to the population. Concerns regarding the potential health hazards 

associated with the use of ionizing radiation were raised and an appropriate estimation of absorbed dose to patients 

is highly desired. In this work, we aim to validate our developed Monte Carlo CT simulator using in-phantom dose 

measurements and further assess the impact of personalized scan-related parameters on dosimetric calculations. 

We developed a Monte Carlo-based CT simulator for personalized organ level dose calculations, in which the CT 

source model, patient-specific computational model and personalized scanning protocol were integrated. The CT 

simulator was benchmarked using an ionization chamber and standard CT Dose Index phantom while the 

dosimetry methodology was validated through experimental measurements using thermoluminescent dosimeters 

(TLDs) embedded within an anthropomorphic phantom. Patient-specific scan protocols extracted from CT raw 

data and DICOM image metadata, respectively, were fed as input into the CT simulator to calculate individualized 

dose profiles. Thereby, the dosimetric uncertainties associated with using different protocol-related parameters 

were investigated. The absolute absorbed dose difference between measurements and simulations using the 

ionization chamber was less than 3%. In the case of the anthropomorphic phantom, the absolute absorbed dose 

difference between simulations and TLD measurements ranged from −8.3% to 22%, with a mean absolute 

difference of 14% while the uncertainties of protocol-related input parameters introduced an extra absolute error 

of 15% to the simulated results compared with TLD measurements. The developed methodology can be employed 

for accurate estimation of organ level dose from clinical CT examinations. The validated methodology can be 

further developed to produce an accurate MC simulation model with a reduced computational burden.  
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I. Introduction 

Computed Tomography (CT) has become a key diagnostic imaging modality in clinical diagnosis of a wide range 

of diseases. The number of CT scans in the US had an average annual increase of 10% between 1995 and 2015 [1, 

2]. The sharp utilization trend of CT imaging in clinical setting has raised health concerns regarding potential risks 

of ionizing radiation on patients undergoing CT examinations. Although medical exposure brings individual 

benefits to the patient, it should still follow the principles of justification and optimization [3, 4]. In this context, 

each medical radiological procedure has to be optimized for the specific task and individual patient. Efforts devoted 

to designing patient-specific CT scanning protocols depending on the target task, scanner model and patient 

anatomy, can greatly benefit from a unified methodology for radiation dose estimation [5, 6]. 

Direct measurement of energy deposition in the different tissues/organs within the patient’s body is not 

conceivable in clinical setting. Therefore, experimental measurements using dosimeters embedded within physical 

phantoms and Monte Carlo simulations using realistic anthropomorphic computational phantoms served as 

substitutes. Monte Carlo simulation, deemed to be the gold standard technique for dosimetry calculations, should 

be carefully validated against experimental measurements because the input parameters related to the imaging 

system, patient’s anatomical model and the scanning protocol dictate the accuracy of the obtained results. A 

number of studies reported on the use of Monte Carlo programs benchmarked using standard CT Dose Index 

(CTDI) and other anthropomorphic physical phantoms [7-10]. The paradigm shift introduced by advances in 

personalized medicine and precision medicine stimulated the development of strategies for patient-specific 

dosimetry and protocol optimization during the last few years. In this context, Segars et al. constructed 

personalized computational models by mapping the segmented model of patient CT images to a template 

anatomical model using a deformable registration algorithm [11]. Li et al. developed a Monte Carlo code for 

patient-specific dose calculation [12] by constructing patient-specific computational models through manual 

segmentation that are fed as input to the Monte Carlo program. Kalender et al. constructed personalized whole‐

body phantoms from regional CT images through appending the scan range to an anchor phantom to assess the 

effect of scatter and overscanning on organ doses [13]. Xie et al. proposed a methodology for constructing patient-

specific computational models based on deformable registration of patient CT regional images on a habitus-

dependent anchor phantom [14, 15]. They employed the structural deformation of the best‐fitting phantom from a 

previously developed library of computational models through automated non-rigid registration to estimate the 

patient‐specific model [16]. They calculated patient’s organ-level radiation dose using the obtained personalized 

computational phantom and imaging protocol implemented into the MC simulation. The Radimetrics™ 

commercial dose tracking software (Bayer HealthCare, Berlin, Germany) provides Monte Carlo-based organ-level 

dose profile from patient CT images where the scan parameters are extracted from CT image DICOM header 

information [17]. Radimetrics™ simply maps the patient’s regional CT images on Cristy & Eckerman 

mathematical computational phantoms categorized by age and gender [18]. It further adjusts the phantom’s 

diameter according to the effective diameter of the patient obtained from CT images. 

The dosimetric impact of scan parameters (e.g. x-ray energy spectrum, beam filtration, tube current modulation, 

tube start angle, over-ranging, etc ) fed into Monte Carlo simulations has been investigated in previous studies [19-

22] and more comprehensively in the recent AAPM report No. 246 [23]. The input data are commonly provided 

by CT scanner manufacturers, experimental measurements, or extracted directly from scanner control console or 

the generated radiation dose structured report after the examination. However, there are uncertainties associated 

with all sources of input parameters. Muryn et al. examined the impact of deviations related to the input parameters 

on the simulated dose profiles [24]. They studied the parameters linked to the CT scanner (e.g. x-ray spectrum, 

beam filtration, beam width) and the scan setup (e.g. tube start angle, scan length, isocenter position) to address 

the uncertainties introduced on the simulated dose when the input parameters deviate from the actual values. 

However, in this work, the tube current modulation and the impact of patient’s anatomy were not taken into 

account. Lee et al. performed organ-level dose estimation for a large cohort of CT examinations to investigate the 

dosimetric impact of uncertainties on patient-related and empirical scan-related parameters [25]. 

In this work, we aimed to provide a computationally-efficient framework for accurate patient-specific dose 

estimation. To this end, we developed a unified methodology for patient-specific dosimetry from CT examinations. 

Unlike previous works requiring manual segmentation of CT images to construct patient-specific computational 

model, we adopted methodology that automatically builds patient-specific computational models from CT images. 
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Subsequently, the validated CT source model, patient-specific computational phantom and scan parameters were 

integrated in the Monte Carlo code to calculate organ-level absorbed dose. Therefore, the dosimetry results were 

benchmarked against experimental measurements. To further assess the impact of uncertainties associated with 

simulation input parameters on the organ level personalized dosimetry, we compared different scenarios where the 

patient-specific scan-related parameters were extracted from the CT image DICOM header file and more detailed 

CT raw data, respectively. 

II. Materials and methods 

Monte Carlo simulations 

In Monte Carlo-based CT dosimetry studies, three essential components are incorporated into the simulations. This 

includes the CT source model, computational phantom and protocol-related parameters. CT data were acquired on 

the Somatom Definition Edge scanner (Siemens Healthcare, Erlangen, Germany). The geometry of the CT system 

was realistically modelled by using an x-ray energy spectrum generated using SpekCalc [26] and tuning the 

inherent filtration of the scanner’s x-ray tube and half value layer (HVL) associated with the x-ray energy. The 

applied inherent filtration and HVL were extracted from system owner manual [27] and were matched with the 

results reported by Yang et al. [28]. The Bowtie or shaped filter and beam collimators, including dynamic 

collimators as well as fixed collimation components were elaborately modelled based on the information provided 

by the manufacturer. The geometry of the gantry (e.g. focal spot size, the distance between focal spot and 

isocenter), fan angle, etc. were taken into account in the simulation as shown in Figure 1. This CT source model 

was created within the MCNPX general purpose Monte Carlo radiation transport code (version 2.6) [29]. The 

computational phantom with its detailed anatomy was constructed using a previously developed methology based 

on automated registration of the patient’s CT images to an anchor phantom [5]. The protocol-related parameters, 

including scan mode, tube potential, total beam collimation, revolution time, exposure time, table speed, pitch 

factor and tube current modulation were extracted from DICOM header information using a MATLAB (The 

MathWorks Inc., Natick, MA, USA) function and implemented in the simulation code. The tube current 

modulation (longitudinal and angular), tube start angle and over-ranging information were extracted from the 

DICOM header information of both CT images and CT raw data and used in the simulation setup. 

Validation of the CT scanner model 

The conversion of the relative MCNPX dose tallies to absolute dose value was performed by conducting free in 

air measurement using a 10 cm RaySafeTM Solo pencil ionization chamber (Unfors RaySafe GmbH, Germany). 

The ionization chamber was placed at the isocenter of the CT scanner with its active volume aligned with the axis 

of gantry rotation. Free in air measurements were performed in single axial scans where the absorbed dose derived 

from simulations was calculated as: 

𝐷𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝐷𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 × 𝑁 ×  𝛺 ×  𝑚𝐴𝑠 ×  𝐶𝐹                                 (1) 

 

where Dsimulated is the simulated absorbed dose per photon emitted from the source (F6 tally in unit of MeV/g); 

N is the number of photons emitted from the source per solid angle per mAs; Ω is the solid angle of the fan-beam; 

mAs is the effective tube current-time product value; and CF is a calibration factor to correct for uncertainties 

introduced in Monte Carlo simulations to calculate the absorbed dose values from simulations in absolute units of 

mGy. To validate the developed CT source model, we benchmarked our simulation results against standard CTDI 

phantom measurement for both head (16 cm diameter) and body (32 cm diameter) cylindrical phantoms. To this 

end, firstly, we performed free in air measurements to estimate the CF as the ratio of the absolute measured dose 

to the simulated dose. In Eq. (1), there is a linear relationship between the measured dose and mAs, which is 

regularly checked during routine CT scanner quality control procedures. While the factors N and Ω depend on tube 

potential and total collimation, respectively, the relationship between these factors and the absorbed dose is not 

ideally linear [27]. For this reason, we reduced Eq. (1) to 𝐷𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝐷𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 × 𝑚𝐴𝑠 ×  𝐶𝐹 by providing a 

unique calibration factor associated with the specific acquisition parameters (e.g. tube potential and total beam 

collimation) during CT examinations. Consequently, we measured the absolute dose in the CTDI phantom in 

helical mode with the same acquisition parameters used for free in air experiment to compare the simulation results 
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against the measurements using the estimated calibration factor. Three million photons were used in this simulation 

to achieve a statistical error less than 2%. 

Anthropomorphic phantom dose measurements 

 

 

 
To benchmark the accuracy of the developed Monte Carlo code for patient-specific dosimetry, absorbed doses 

were measured in the CIRS ATOM® dosimetry verification phantom (CIRS, Inc., Norfolk, VA, USA). This 

anthropomorphic physical phantom, axially sliced in 25 mm thick, consists of three types of materials, including 

skeleton, lung and soft tissue. The physical phantom was matched to its corresponding computational twin where 

the boundaries of all internal organs were mapped on the physical slice consistent with their delineation in the 

corresponding computational model (Figure 2). We used the previously developed program to construct the 

patient-specific phantom from CT images through automated deformable registration [5]. CT images of the ATOM 

phantom were employed to provide the anatomical masks of the skeleton, the lungs and body contour which 

constitute the basis of information used by the registration algorithm. Hence, the computational model of the 

phantom with detailed anatomy was constructed using the automated deformable registration algorithm. 

TLDs (LiF, Harshaw TLD‐100) in the form of 3.2×3.2×0.9 mm3 chips were inserted within the tissue 

equivalent dosimeter holders embedded within the phantom. TLDs were individually calibrated in terms of 

absorbed dose in water for Co-60 radiation. A correction factor was multiplied by the TLD results to account for 

the TLDs response for the specific beam quality, i.e. x-ray energy and half value layer of the beam. A total number 

of 103 TLDs were distributed in the phantom. Depending on the size of organs, from two to several measurement 

points were used enabling accurate volume-averaged organ dose calculation. The background noise was 

determined using separate dosimeters that were not exposed. The measured quantity from reading the TLDs is the 

absorbed dose in water. Calculation of the absorbed dose in other tissues involved application of a correction 

factor, calculated as the ratio of the average mass energy absorption coefficients in the tissue in question per mass 

energy absorption in water. The average of the TLD readings for each organ was used as the measured organ 

absorbed dose.  

 

Figure 1. CT source model simulated in the MCNPX Monte Carlo code (left) and experimental set-up used to measure 

dosimetric metrics in the CTDI phantom (right). 
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Patient-specific organ-level dose simulation 

Validation of the developed methodology in estimating patient-specific organ-level doses from CT examinations 

involved the comparison of simulation results with experimental measurements using the anthropomorphic 

physical phantom. The CT source model, computational model and scan parameters extracted from DICOM 

headers of both CT images and CT raw data were integrated in the MCNPX code. The acquisition parameters, 

including tube voltage, total collimation width, table speed, revolution time, pitch factor, and modulated tube 

current, start angle and over-ranging length were modelled in this simulation setup. To simulate helical whole 

body scanning (90 cm length), Monte Carlo simulations were run for 16’854 discrete source positions (576 source 

positions per rotation) taking into account the complete tube current modulation (longitudinal and angular 

modulation). Considering the linearity of the radiation output or measured dose with the mAs, the obtained energy 

deposition tally (Gy/particle) was multiplied by the mAs in each simulation point. To calculate organ doses in 

absolute units of mGy, the unique calibration factor that depends on the beam energy spectrum, filtration, and 

beam collimation was used. To calculate the specific calibration factor associated with the conducted CT 

examination, the value representing scan-specific radiation output (CTDIvol) was simulated according to the 21 

CFR 1020.33 guidelines [30]. Thereby, the scan-specific calibration factor was defined as the ratio of the simulated 

CTDIvol to the CTDIvol appearing in the dose report of anthropomorphic phantom CT examination. To evaluate the 

effect of dynamic collimation on dosimetric results, a correction factor defined as the time-weighted average of 

collimator during the scan, divided by the nominal collimator width for the scan was applied to the simulation 

results. The absorbed radiation dose associated with the topogram scan was also added to the simulation results. 

To evaluate the accuracy of the developed simulation framework, organ-level dose profiles obtained from 

experimental TLD measurements were compared with simulation results as well as the doses reported by 

RadimetricsTM commercial dose tracking software. 

Uncertainties associated with simulation input parameters  

The accuracy of results obtained from Monte Carlo radiation transport simulations depends directly on the input 

parameters fed into the simulator. In this section, we estimated organ-level doses using the information extracted 

from DICOM header information of CT images, referred to as image-based simulation, which basically contains 

longitudinal tube current modulation and lacks information about tube start angle and over-ranging length. In the 

exact simulation where the detailed input parameters were obtained from CT raw data, the angular component has 

been also taken into account in addition to the longitudinal tube current modulation. The complete tube current 

modulation was obtained from CT raw data based on CAREDose4D module in the Siemens CT scanner, which 

 

 
 
Figure 2. (a) Frontal view of the ATOM physical phantom, (b) phantom CT images, (c) computational model, (d) registered 

anatomy on phantom CT images; (e) axial view of the physical phantom (top) and the printed computational model (bottom). 
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employs patient size information from the CT localizer scout scan to predict the longitudinal and angular 

modulation functions. Overall, the tube current value reported in the DICOM header at each table position is 

calculated from the moving average of complete tube current over one rotation while the high frequency 

components (i.e. angular modulation) are smoothed (Figure 3). To simulate a helical scan in the image-based 

simulation, the source positions were modelled based on fixed intervals in the Z direction, while the angular 

position was determined according to the gantry revolution time and table speed obtained from the DICOM header 

information. However, it has been reported that over-ranging length is around half of the collimation width. This 

parameter is proprietary information for the different manufacturers [31]. Therefore, we extracted over-ranging 

length from CT raw data to accurately simulate this feature. In the image-based simulation, the random start angle 

was modelled and the over-ranging length was ignored. Here, the dosimetric impact of the tube start angle and 

number of simulation points across the entire scan was investigated and the results compared with those obtained 

from exact simulations. 

Statistical analysis 

The comparison between the results obtained from exact simulations and experimental measurements using TLDs, 

serving as reference, underwent statistical analysis. Furthermore, the intraclass correlation coefficient (ICC), as a 

measure of the reliability of organ dose calculation methods, was considered.  

 

 

 

III. Results 

Validation of Monte Carlo simulation model  

The CT source model was defined in the MCNPX code based on information provided by manufacturer by 

combining simple geometries. The model was validated through comparison with experimental measurements 

using the standard CTDI head and body phantoms. The acquisition parameters associated with the examination 

and the corresponding calibration factors obtained from free in air measurements are illustrated in Table 1. Table 

2 summarizes the central and peripheral CTDI100 and CTDIvol for the protocols specified in Table 1 demonstrating 

absolute mean differences between simulations and measurements around 6.4%. The computational model of the 

ATOM physical phantom derived from CT images is shown in Figure 2. To validate the developed methodology 

Figure 3. Extracted tube current modulation profile overlaid on phantom topogram. The solid blue line represents the complete 

modulated tube current schemes extracted from the raw projection data. The solid red line represents the longitudinal modulated 

tube current (moving average over one rotation). The dashed green line represents the effective time-product tube current (mAs) 

across the entire scan (mean mAs/pitch). The orange arrow represents pre- and post-spiral over-ranging. 
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for patient-specific organ-level dosimetry, the experimental CT acquisition illustrated in Table 1 using the physical 

phantom was performed (CTDIvol = 4.97 mGy). The results from the in-phantom measurements were considered 

as reference and compared with simulation results as well as organ dose profiles reported by Radimetrics™ 

software. The mean absolute difference between TLD measurements and MC simulations is about 14% (range [-

8.3 - 22%]), while it exceeds 33% for Radimetrics™ (Figure 4). The effective dose obtained from TLD 

measurements was about 11.44 mSv while the effective dose calculated from simulation and Radimetrics™ was 

about 12.44 mSv and 7.35 mSv, respectively. 

 

Table 1. CT acquisition parameters for experimental measurements performed in the CTDI phantoms and the anthropomorphic 

physical phantom. 

Acquisition parameters 

Head 

standard 

(perfusion) 

Head 

standard 
Body standard 

Physical phantom 

(whole-body) 

Tube voltage (KeV) 80 120 120 100 KeV 

Total collimation (mm) 64*0.6 12*1.2 64*0.6 64*0.6 

Tube current (mA) 200 350 252 (ref)/210 (eff) 268 (ref)/126 (eff) 

Rotation time (sec) 1 1 0.5 0.5 sec 

Pitch factor - - - 0.8 

Mode axial axial axial helical 

Calibration factor 25.3 67.7 48.7 77.6 

 

Table 2. Comparison between measured and Monte Carlo-based calculations of the 𝐶𝑇𝐷𝐼100
𝐶

 (central),𝐶𝑇𝐷𝐼100
𝑃  (peripheral) 

and CTDIvol in body and head CT dosimetry phantoms. 

Acquisition 

type 

Voltage 

(KeV) 

Measurements Simulations CTDIvol 

Difference 

(%) 𝐂𝐓𝐃𝐈𝟏𝟎𝟎
𝑪  

(mGy) 

𝐂𝐓𝐃𝐈𝟏𝟎𝟎
𝑷  

(mGy) 

CTDIvol 

(mGy) 

𝐂𝐓𝐃𝐈𝟏𝟎𝟎
𝑪  

(mGy) 

𝐂𝐓𝐃𝐈𝟏𝟎𝟎
𝑷  

(mGy) 

CTDIvol 

(mGy) 

Head 

standard 

(perfusion) 

80 8.39 8.94 8.76 7.68 8.47 8.21 6.3 

100 16.95 17.61 17.39 14.95 17.57 16.70 4.0 

Body 

standard 
120 7.88 14.71 12.43 6.91 17.53 13.99 12.5 

Head 

standard 
120 7.14 7.34 7.28 7.25 7.62 7.5 3.0 

 

Uncertainties associated with input parameters 

To assess the impact of input parameters on the simulation results, we obtained the input data from two sources: 

CT raw data and DICOM header. The complete tube current modulation obtained from CT raw data was compared 

with longitudinal tube current modulation obtained from DICOM header (Figure 3). The organ dose resulted from 

image-based simulation was compared with reference values and results from exact simulation. The mean absolute 

difference between the absorbed dose from the image-based simulation compared with reference organ dose values 

is about 29%. The effective dose from the image-based simulation was calculated about 11.68 mSv. 

 



62 

Figure 4. Comparison between (a) absolute organ absorbed doses and (b) relative differences of organ absorbed doses measured 

using TLDs against estimated using Monte Carlo simulations based on raw projection data information (exact simulation) and 

DICOM header information (image-based simulation) and Radimetrics™ dose-tracking software. 

To illustrate the dosimetric impact of tube start angle parameter on the simulation results, Figure 5 shows the 

results from energy deposition tally over one complete rotation around the concerned organs. The absolute 

difference of the total deposited energy for the thyroid between simulation results based on exact tube start angle 

compared with those produced using 90° and 180° deviated start angle is about 137% and 27.5%, respectively. 

For the liver, this difference reduces to 26% and 23%, respectively. 

The sources of uncertainties in organ dose simulation studied in this work originated from tube current 

modulation, tube start angle and the number of simulation points. To investigate the dosimetric impact of these 

factors, organ doses obtained from different simulation scenarios were compared against exact simulations in terms 

of percent difference, illustrated in Figure 6. By implementing only the longitudinal modulation scheme to the 

simulated dose values the absolute mean difference compared to the organ doses resulted from exact simulation 

was about 3.9% while the absolute difference for small peripheral organs like thyroid and testis exceeds 10% and 

13 %, respectively. By implementing the reported effective time product tube current as a fixed tube current into 

the simulation, the absolute mean difference of estimated organ doses against exact simulation was calculated 

about 15.15% while it exceeds 50% for brain and eye lenses.  

The dosimetric impact of the number of simulation points on the organ doses was investigated by modelling 

the different simulation intervals in the z-direction where the projection angles were conserved according to the 

exact tube start angle and fixed table speed. The absolute mean difference between the results from exact 

simulation compared to 2 mm interval, 6 mm interval and 10 mm interval is about 11.5, 11.45 and 13%. The mean 
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absolute difference between exact simulation against approximate ones starting at 50°, 90° and 180° with 2 mm 

interval of simulation points in z direction is about 12%, 13.8% and 14%, respectively. 

 

 
Figure 6. Heat map displaying the relative differences between organ absorbed doses obtained from exact Monte Carlo 

simulations (information extracted from raw projection data) and image-based simulations (information extracted from CT 

image DICOM header information) considering longitudinal tube current modulation, fixed tube current (effective mAs), 

simulation point intervals in Z direction (2 mm, 6 mm and 10 mm) and start angle deviation from the actual angle (50°, 90° 

and 180°). 

Statistical analysis 

The differences between experimental measurements using TLDs and exact simulations were not statistically 

significant (P-value=0.53). The ICC showed that the results obtained from exact simulations are in excellent 

agreement with experimental measurements with a consistency of 0.98 and absolute agreement of 0.97. 

 

Figure 5. Deposited energy per particle over one rotation for different tube start angles in (a) the thyroid and (b) the liver. 
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IV. Discussion 

We developed a Monte Carlo framework for radiation dose assessment from CT examinations toward patient‐

specific organ-level dose monitoring. To this end, we integrated a CT source model, computational 

anthropomorphic phantom and protocol parameters into a dedicated Monte Carlo program. Experimental 

measurements using an ionization chamber and TLD chips were performed to validate the developed methodology. 

Considering the dependency of the calibration factor on CT acquisition parameters, we calculated, for each 

scenario, a unique calibration factor associated with scan-specific parameters. Since the CTDIvol index represents 

the radiation output of a specific CT scan, we used this value to benchmark the developed CT source model. The 

calibration factor was determined as the ratio of the reported CTDIvol on the scanner control console and CTDIvol 

obtained from simulation. Furthermore, it has been previously reported that the variation of organ doses obtained 

from scanner-specific simulations across different scanner manufacturers are close to the variation in scanner-

specific CTDIvol [32]. In this context, calculation of a unique calibration factor associated with a specific CT 

examination (scanner-specific and scan-specific) enables to utilize our Monte Carlo program for a variety of 

protocols and scanner models. 

A reasonable agreement was observed between experimental in-phantom measurements and Monte Carlo 

simulations in organ-level dosimetry. The TLD results had an uncertainty of 7% where standard dosimeter 

calibration, background noise subtraction, and response correction for specific energy range of x-ray beams has 

been taken into account. Likewise, there is a statistical uncertainty associated with Monte Carlo simulation results, 

estimated to be less than 2% for all simulations carried out in this work. The simulated organ doses overestimated 

the measured ones in most of the cases. These deviations are mainly caused by the differences between the 

constructed computational model and the actual physical phantom employed for measurements. These errors are 

partly caused by the registration process between the computational model and the physical phantom, partly related 

to differences in terms of material composition, since the physical phantom is made of three different tissue 

equivalent materials (bone, lung, and soft tissue), while the elemental compositions of the different organs have 

been implemented into the simulations according to the ICRP report 89 [33]. For skeleton dose measurements, 

most of the TLDs were inserted in the spinal cord while in simulations all bones contributed to skeleton dose, 

resulting in 8.3% underestimation. Radimetrics™ software underestimated organ doses compared to TLD 

measurements by a mean absolute difference of 26% for most organs, except the brain and eyes. A slight 

misalignment of CT images of the physical phantom with the stylized phantom used by Radimetrics™ was 

observed in the head region, which explains the overestimation of the absorbed dose to these two organs by about 

73%. However, the physical phantom utilized in this work is anthropomorphically similar to the reference man 

computational phantom, whereas the stylized computational phantom used by Radimetrics™ doesn’t reflect the 

anatomical features of this model. Radimetrics™ provides a simple protocol-based registration of CT scan 

localizer or topogram to predefined anatomical landmarks in the stylized phantom without resorting to any form 

of deformable registration. The acquisition parameters that Radimetrics™ used in this simulation were extracted 

from DICOM header information and may introduce extra errors to the results. Therefore, the results presented in 

Figure 4 confirm the good agreement between exact simulations and experimental measurements (within the range 

[-8.3% - 22%]). The differences between estimated organ doses obtained from TLD measurements and exact 

simulations were not statistically significant (P-value=0.53). 

The accuracy of organ dose estimation is directly dependent on the accuracy of the constructed computational 

model representing patient’s anatomy and the modelling of exposure conditions [23]. The uncertainty associated 

with the construction of patient-specific computational phantoms was investigated in our previous study, where 

the mean absolute differences between organ doses estimated from a reference model (manual segmentation) and 

those estimated from the constructed patient-specific model were within the range [0.5% - 29%] with a mean value 

of 9.1% [5]. In this work, we further analysed the organ dose uncertainties associated with irradiation conditions. 

In this context, the patient’s dose profile calculated from exact simulations (input parameters obtained from raw 

CT projection data) against image-based simulations (input parameters derived from DICOM header of CT 

images) was investigated. The extra errors introduced to the simulation results caused by the smoothed tube current 

modulation, lack of knowledge about tube start angle and ignoring the overranging distance were considered. In 

the exact simulations, we simulated 16’854 projection points where the mAs values were known for each point. 

For the image-based simulation, the number of simulation points was determined based on the intervals in the Z 

direction (scan length / Z-interval) and the mAs values were reported in each axial slice of CT images. According 
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to Figure 6, using only longitudinal current modulation introduces an extra error within the range [-10% - 13%] 

(mean=3.85%) to the simulation results. The value of total tube current time product of the examination obtained 

from CT raw data is 6.6% higher than that calculated from CT DICOM images owing to the smoothing of the 

angular current modulation. As seen in Figure 6, there are substantial differences between organ doses produced 

by exact simulations and the results based on the deviated tube starting angles within the range [-22% - 110%]. 

The impact of tube start angle on the calculated doses for small and superficial organs (e.g. thyroid and testes) is 

significant. The overranging length and dynamic collimation was modelled in this simulation. The dose efficiency 

of dynamic collimation has been reported to be in the range of 90% in case of full beam collimation on Siemens 

CT scanners, which significantly reduces the dosimetric impact of overranging [27]. The impact of the number of 

simulation points on organ doses was investigated in the condition where the start angle was exactly modelled 

according to the information extracted from CT raw data and accordingly the angular positions of the simulated 

source points were exactly matched to the exact simulation scenario. By increasing the simulation intervals in the 

z-direction, the uncertainty for estimation of the organ dose slightly increases. However, the difference between 2 

mm interval and 6 mm interval does not show any significant impact on the dosimetric results. For large organs, 

the impact of simulation parameters on organ absorbed doses is less than that for small organs like the testis and 

thyroid. Since Monte Carlo simulations provide the mean deposited energy per particle for a specific source 

position, organ absorbed doses are calculated based on the summation of the deposited energy multiplied by the 

tube current time product for all simulated source positions. Therefore, it is expected that for large organs, the 

simulation parameters are compensated during this summation while for small organs or partially irradiated organs 

in the border of CT examination, the simulation parameters play important roles in organ level dosimetry. We also 

anticipate improved modelling accuracy using the new version of MCNP code (version 6.2). 

This study bears a number of inherent limitations. First, the experimental measurements using the 

anthropomorphic phantom were performed only once using a limited number of TLDs, which might introduce 

some statistical uncertainties. Second, this study is limited to a single CT scanner and a single set of acquisition 

parameters. Third, a single physical phantom (adult male) was studied while it can be extended to other categories, 

e.g. female and paediatrics. Lastly, the personalized computational model was constructed using deformable 

registration where the uncertainties associated with the registration algorithm introduced some extra errors to the 

simulation results. Thanks to advances in deep learning algorithms, patient-specific dosimetry is becoming feasible 

in the clinic. Using deep neural network algorithms, patient-specific computational models can be constructed 

from CT images through automated segmentation [15, 34]. Furthermore, the dose map of an individual patient 

commonly obtained from computationally expensive Monte Carlo simulations can be directly generated through 

deep learning approaches [35]. 

V. Conclusion 

An experimental setup was performed in this work to evaluate the accuracy of Monte Carlo-based personalized 

organ-level dosimetry from CT examinations. Individual patient dose profiles can be accurately estimated using 

the developed simulation framework. Investigations considering different CT scanners and scanning protocols can 

be conducted to optimize CT technologies and scanning protocols. The validated CT scanner model could be 

employed in personalized CT dosimetry where the patient-specific computational model is constructed using 

different approaches. We also assessed the dosimetric impact of input parameters in organ-level dose simulation. 

It can be concluded that, when the information from the CT raw projection data is not available, the simulation 

results could be acceptable if the input parameters obtained from CT image DICOM header are correctly employed 

in the simulation setup. In this context, the longitudinal tube current modulation should be implemented at least 

by averaging simulations with three random tube start angles. The number of simulation points should be defined 

appropriately in the Z direction and in case of dynamic collimation, over-ranging length can be ignored. Hence, 

the methodology can be further expanded to produce an accurate MC simulation toolkit with a reduced 

computational burden. 
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Abstract 

This review  sets out to discuss the foremost applications of artificial intelligence (AI), particularly deep learning 

(DL) algorithms, in single-photon emission computed tomography (SPECT) positron emission tomography (PET) 

imaging. To this end, the underlying limitations/challenges of these imaging modalities are briefly discussed 

followed by a description of AI-based solutions proposed to address these challenges. This review will focus on 

mainstream generic fields, including instrumentation, image acquisition/formation, image reconstruction and low-

dose/fast scanning, quantitative imaging, image interpretation (computer-aided detection/diagnosis/prognosis), as 

well as internal radiation dosimetry. A brief description of deep learning algorithms and the fundamental 

architectures used for these applications is also provided. Finally, the challenges, opportunities, and barriers to 

full-scale validation and adoption of AI-based solutions for improvement of image quality and quantitative 

accuracy of PET and SPECT images in the clinic are discussed. 
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I. Introduction 

Artificial intelligence (AI) approaches, particularly deep learning (DL) techniques, have received tremendous 

attention during the last decade owing to their remarkable success in offering novel solutions to solve complex 

problems. Novel AI/DL-based solutions have created opportunities in clinical and research settings to automate a 

number of tasks deemed to depend on human cognition, and hence require his intervention to facilitate the 

decision-making process [1]. State-of-the-art AI/DL algorithms have exhibited exceptional learning capability 

from high dimensional and/or highly complex data, accomplishing daunting challenging tasks in image and data 

analysis/processing in general and multimodality medical imaging in particular. 

In the context of medical imaging, challenging tasks, such as image segmentation/classification, data 

correction (such as noise or artifact reduction), image interpretation (prognosis, diagnosis, and monitoring of 

response to treatment), cross-modality image translation or synthesis, and replacing computationally demanding 

algorithms (such as Monte Carlo calculations) have been broadly revisited and evolved ever since the adoption of 

deep learning approaches [2, 3]. AI-based solutions have been proposed to address the fundamental 

limitations/challenges faced by image acquisition and analysis procedures on modern molecular imaging 

technologies. Considering the superior performance of deep learning approaches compared to conventional 

techniques, a paradigm shift is expected to occur provided that task-specific pragmatic developments of these 

algorithms continue to evolve in the right direction.  

Single-photon emission computed tomography (SPECT) and Positron emission tomography (PET) imaging 

provide the in vivo radiotracer activity distribution maps, representative of biochemical processes in humans and 

animal species. The introduction of hybrid imaging combining functional and anatomical imaging modalities in 

the form of combined PET/CT and PET/MRI systems has remarkably thrived the widespread adoption and 

proliferation of these modalities in clinical practice. In this light, AI-based algorithms/solutions are developed to 

overcome the major shortcomings or to enhance the current functionality of these modalities. 

The applications of AI-based algorithms in PET and SPECT imaging ranges from low-level electronic signal 

formation/processing to high-level internal dosimetry and diagnostic/prognostic modeling. For developments in 

instrumentation, deep learning approaches have been mostly employed to improve the timing resolution and 

localization accuracy of the incident photons aiming at enhancing the overall spatial and time-of-flight (TOF) 

resolutions in PET. Image reconstruction algorithms are being revisited through the introduction of deep learning 

algorithms wherein the whole image reconstruction process or certain critical components (analytical models) are 

being replaced by machine learning models. A large body of literature is dedicated to quantitative SPECT and 

PET imaging aiming at reducing the impact of noise, artifact, and motion, or to correct for physical degrading 

factors, including attenuation, Compton scattering, and partial volume effects. The lack of straightforward 

techniques for generation of the attenuation map on organ-specific standalone PET scanners or hybrid PET/MRI 

systems inspired active scientists in the field to devise suitable strategies to enhance the quantitative potential of 

molecular imaging. High-level image processing tasks, such as segmentation, data interpretation, image-based 

diagnostic and prognostic models as well as internal dosimetry based on SPECT or PET imaging have 

substantially evolved owing to the formidable power and versatility of deep learning algorithms. 

 AI/DL-based solutions have been proposed to undertake certain tasks belonging to the long chain of processes 

involved in image formation, analysis, and extraction of quantitative features for the development of disease-

specific diagnosis/prognosis models from SPECT and PET imaging. In this review, the applications of AI/DL in 

these imaging modalities are summarized in six key sections focusing on the major challenges/opportunities and 

seminal contributions in the field. A concise overview of machine learning methods, in particular deep learning 

approaches, is presented in section 2. The following section describes AI-based techniques employed in PET 

instrumentation, image acquisition and formation, image reconstruction and low-dose scanning, quantitative 

imaging (attenuation and scatter corrections), image analysis and computer-aided detection/diagnosis/prognosis, 

as well as internal radiation dosimetry. The last section provides in perspective the major challenges and 

opportunities for AI/DL-based solutions in PET and SPECT imaging. 

 



71 

II. Principles of machine learning and deep learning 

Machine learning algorithms are considered as a subset of non-symbolic artificial intelligence, which tends to 

automatically recognize a pattern and create/extract a desirable representation from raw data [4]. In machine 

learning algorithms, the system attempts to learn certain patterns from the extracted features. Likewise, in deep 

learning algorithms, a subtype of machine learning techniques, feature extraction, feature selection, and ultimate 

tasks of classification or regression are carried out automatically in one step [5]. Different deep learning algorithms 

have been proposed and applied in nuclear medicine [2, 6], including convolutional neural networks (CNNs) [7], 

convolutional encoders-decoders (CEDs) [8], and generative adversarial networks (GANs) [5]. Some applications 

of machine learning algorithms, such as classification, segmentation, and image-to-image translation, have 

attracted more attention [9]. 

A number of deep learning architectures became popular in the field of medical image analysis, including 

CED networks consisting of encoder and decoder parts designed to convert input images to feature vectors and 

feature vectors to target images, respectively [8]. In addition, GANs consist of two major components: a generator, 

mostly a CED network, and a discriminator, a classifier to differentiate the ground truth from the synthetic 

images/data [8]. Different architectures based on these models were developed and applied on medical images for 

different tasks, including image segmentation and image to image translation [10]. U-Net [11] is one the most 

popular architectures built upon the CED structure via adding some skip connections for context capturing and 

for creating a symmetric expanding path, which enables more efficient feature selection. Upgrading networks with 

different modules, such as attention blocks/components [12] for highlighting salient features in the input data, and 

residual connections [13] to prevent gradient vanishing, are intended to improve the overall performance of the 

networks. Conventional GAN architectures have been upgraded in different ways, leading to conditional GAN 

(cGAN) [14] and cycle consistency GANs (Cycle-GAN) [15] models, which consist of a CED in the generator 

and discriminator components and task-specific loss functions. Cycle-GAN [15] is an unsupervised model for 

image-to-image transformation, which does not require paired (labeled) datasets. In the Cycle-GAN model, two 

generator and discriminator components are jointly involved in the training process, wherein images from two 

different domains are used as input and output within a cycle consistency scheme. In the cycle consistency scheme, 

the output of the generator component is used as input and vise versa with the calculated loss between the input 

and output acting as regularization of the generator model [15]. 

Overall, deep learning-based algorithms outperformed conventional approaches in various applications [5]. 

AI-based approaches, especially deep learning algorithms, do not require handcraft features extraction, specific 

data preprocessing, or user intervention within the learning and inferring processes [5]. The major applications of 

deep learning approaches in SPECT and PET imaging are summarized in figure 1. Deep learning methods face 

many challenges, including the fact that they are data hungry, require high computation burden for the training 

process, and their black box nature (which hampers systematic analysis of their operation/performance) [7]. To 

reach peak performance, these algorithms require a large number of clean and cured datasets for the training 

process. However, data collection remains the main challenge owing to patients’ privacy and complexity of ethical 

issues. Moreover, task-specific deep learning algorithms (i.e. for a particular organ/body region or radiotracer) 

are able to exhibit superior performance compared to more general models which are commonly more sensitive 

variability in image acquisition and reconstruction protocols scanner model, etc. Another challenge faced by the 

application of deep learning algorithms in medical imaging is the high computational burden owing to the large 

size of clinical data in terms of number of subjects and individual images (large 3-dimensional images or 

sinograms) which might cause memory or data management issues. 
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Figure 1. Main applications of deep learning-based algorithms in PET and SPECT imaging. 

III. Applications of deep learning in SPECT and PET imaging  

Instrumentation and image acquisition/formation 

Detector modules play a key role in the overall performance achieved by PET scanners. An ideal PET detector 

should have a good energy and timing resolution and capable of accurate event positioning. Energy resolution is 

a metric that determines how accurately a detector can identify the energy of incoming photons and as a result, 

distinguish scatter and random photons from true coincidences. These parameters affect the scanner’s sensitivity, 

spatial resolution, and signal-to-noise ratio (true coincidence versus scatters or randoms). Despite significant 

progress in PET instrumentation, there are a number of challenges that still need to be addressed and where 

machine learning approaches can offer alternative solutions to complex and multi-parametric problems. 

Accurate localization of the interaction position inside the crystals improves the overall spatial resolution of 

PET scanners. Since optical photons distribution is stochastic, particularly near the edges of the crystal, and owing 

to multiple Compton scattering and reflection, accurate positioning of the interaction within the crystal is 

challenging. In comparison with other positioning algorithms, such as Anger logic and correlated signal 

enhancement, which rely on determination of the centre of gravity, machine learning algorithms led to a better 

position estimation particularly at the crystal edges [16]. In this regard, Peng et al. trained a CNN classifier that 

was fed with signals from each Silicon photomultiplier’s channel to the coordinates of the scintillation point for a 

quasi-monolithic crystal [17]. Another study applied a multi-layer perceptron to predict the 3D coordinates of the 

interaction position inside a monolithic crystal and compared the performance of this positioning algorithm with 

anger logic for a preclinical PET scanner based on NEMA NU4 2008 standards [18]. Figure 2 depicts the adopted 
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deep learning-based event-positioning scheme in monolithic detectors. To address the challenge of determining 

the depth of interaction, a gradient tree boosting supervised machine learning algorithm was used to extract the 

scintillation position, resulting in a spatial resolution of 1.4 mm full width half maximum (FWHM) for a 12 mm 

thick monolithic block [19]. Recently, Cherenkov-based detectors attracted much attention owing to their superb 

performance in terms of time and spatial resolution. Hashimoto et al. studied the performance of a deep learning 

model for 3D positioning in this type of detectors through a Monte Carlo simulation study [20]. They demonstrated 

that in comparison with conventional positioning methods, such as the centre of gravity determination and 

principal component analysis, the deep learning model led to significantly improved spatial resolution. 

Time resolution is another crucial factor in PET instrumentation which determines the achievable performance 

using TOF imaging as well as the efficiency of randoms and scatter rejection. This factor depends on the physical 

characteristics of the scintillator, photodetector quantum efficiency, and electronic circuits that convert the 

scintillation light to electrical signals. Considering the physics of photon interactions within a crystal, only a 

portion of produced scintillation photons reach the photodetector and contribute to positioning and timing. The 

consequence of this is noticeable statistical uncertainty and noise-induced bias. Straightforward approaches, such 

as feeding a CNN model with detector signals to estimate TOF information produced promising results. In a recent 

study, a training dataset (reference) obtained by scanning a 68Ga point source shifted repeatedly with steps of 5 

mm across the field-of-view of the PET scanner was used to train a deep learning algorithm [21]. The authors 

reported a TOF resolution of about 185 ps, exhibiting significant improvement with respect to conventional 

methods with a resolution of 210 to 527 ps. Gladen et al. developed a machine learning method, referred to as 

self-organized map (SOM) algorithm, for estimating the arrival time of annihilation photons in a high purity 

germanium detector (HPGe). SOM was able to cluster the TOF bins based on the signal shape and its raising edge 

[22]. 

Recent studies substantiated the applicability of deep learning techniques to reliably estimate the interaction 

position, energy, and arrival time of incident photons within the crystal with improved accuracy and robustness 

to noise. One of the major difficulties in developing such models is the creation of labelled data (used as reference), 

which require extensive experimental measurements. For example, preparing a training dataset for position 

estimation requires a precise and reproducible setup of a single pencil beam and several measurements at any 

possible spot within the field-of-view. A number of recent studies came up with novel ideas to perform these tasks 

for monolithic crystal through using uniform or fan-beam sources or applying clustering to the training dataset 

[19]. Likewise, for TOF training dataset, hundreds of point source positionings and data acquisitions are required 

to create a realistic range of TOF variations. In this regard, artificial ground-truth data creation was proposed 

through switching the PET detector waveforms forward and backward in the time domain [21]. 

Sophisticated machine learning-based algorithms for event positioning, timing, and/or calibration are 

envisioned on next generation SPECT and PET systems on the front-end electronics using dedicated application-

specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs) [23]. Furthermore, developing 

a single model for extracting time, position, and energy simultaneously from photodetector outputs would be an 

interesting approach that can potentially improve the overall performance of the nuclear imaging systems. 
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Figure 2. Deep learning-based event positioning in monolithic detectors. 

Image reconstruction and low-dose/fast image acquisition 

Deep learning algorithms have recognized capabilities in solving complex inverse problems, such as image 

reconstruction from projections. The process of image reconstruction for CT, PET, and SPECT using deep 

learning techniques entails roughly the same procedure. Overall, four strategies were adopted for image 

reconstruction using deep learning algorithms. The first approach consists of image-to-image translation in the 

image space, wherein a model is trained to convert reconstructed images to another representation to improve 

image quality through, for instance, noise removal, supper resolution modelling, motion correction, etc. [24]. The 

second approach implements the training of the deep learning model in the projection space prior to image 

reconstruction to avoid the sensitivity and dependence on reconstruction algorithms. In the third approach, a model 

learns to develop non-linear direct mapping between information in the sinogram and image domains [25, 26]. 

The fourth approach, referred to as hybrid domain learning, relies simultaneously on analytical reconstruction and 

machine learning approaches to reach an optimal solution for the image reconstruction problem [27, 28].  

Two companies released AI-based solutions for image reconstruction in CT that were approved by the FDA 

[29, 30]. DeepPET is one of the earliest works suggesting direct reconstruction from sinograms to images through 

a deep learning approach [25]. Likewise, FastPET, is a machine learning-based approach for direct PET image 

reconstruction using a simple memory-efficient architecture implemented to operate for any tracer and level of 

injected activity [31]. 

Decreasing the injected activities is often desired owing to potential hazards of ionizing radiation for pediatric 

patients or subjects undergoing multiple serial PET or SPECT scans over time for monitoring of disease 

progression or in longitudinal studies. Moreover, decreasing the acquisition/scanning time increases scanners 

throughput and enhances patients’ comfort, particularly elderly patients and those suffering from 

neurodegenerative diseases where the risk of involuntary motion during scanning is more common. 

Reducing the injected activity amplifies Poisson noise, thus impacting image quality, lesion detectability, and 

quantitative accuracy of PET images. Devising optimized low-dose scanning protocols that preserve the critical 

information in the images is desirable. Although there is a fundamental difference between fast and low-dose 

scanning, both approaches have been interchangeably used in the literature. While both strategies produce noisy 

images, the content and information collected by these scanning modes are completely different. In a fast scan, 

the acquired data reflect the radiotracer kinetics in a short time course. For instance, if the scan starts right after 

injection, much information would be missing owing to insufficient and/or slow uptake in some organs. Fast 

acquisition protocols are also less sensitive to motion artifacts, though the patient’s effective dose is similar to 

standard protocols. Conversely, low-dose scanning is performed with standard acquisition time, with a much 

lower injected activity, which obviously decreases the effective dose. 

There might be a need to redesign/optimize reconstruction algorithms for low-dose scanning to reach an 

optimal trade-off between noise level and signal convergence. In low-dose/fast imaging, much critical information 
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would be buried under the increased noise level wherein an efficient denoising algorithm would be able to recover 

genuine signals [32]. 

To address the above-mentioned challenges, a number of denoising techniques to generate full-dose PET 

images from corresponding noisy/low-dose counterparts have been proposed. Conventional techniques include 

post-reconstruction processing/filtering algorithms [33, 34], anatomically-guided algorithms [35], statistical 

modelling during iterative reconstruction [36], and MRI-guided joint noise removal and partial volume correction 

[37]. Although these approaches attempted to minimize noise and quantitative bias, they still suffer from loss of 

spatial resolution and over-smoothing. By introducing image super-resolution techniques, such as sparse 

representation [38], canonical correlation analysis [39], and dictionary learning [40], effective noise reduction and 

signal recovery in low-dose images is expected with minimum artifacts or information loss. The widespread 

availability of hybrid imaging enabled to incorporate anatomical information in the reconstruction of low-dose 

PET images [41].  

In the last few years, AI algorithms have been widely used in the field of image reconstruction and 

enhancement of image quality [42]. In most previous works, low-dose images were considered as the model’s 

input whereas full-dose images were considered as the target to perform an end-to-end mapping between low-

dose and full-dose images [43-46]. Such models with a single input channel (only low-dose images) suffer from 

the lack of sufficient information (for instance anatomical structures) to distinguish noise from genuine biological 

signals. Therefore, adding anatomical priors into the training procedure would make the model more accurate and 

robust. For resolution recovery, high-resolution anatomical information obtained from MR imaging was employed 

along with spatially-variant bluring kernels to avoid information loss during image reconstruction [47]. Some 

groups devised strategies for deep learning-guided denoising models for synthesizing full-dose sinograms from 

their corresponding low-dose sinograms [48]. 

An elegant study by Xu et al. proposed a U-Net model with concatenation connection and residual learning 

for full-dose reconstruction from a single 200th low-dose image [49]. Xiang et al. presented a novel deep auto-

context CNN model for synthesizing full-dose images from low-dose images complementing T1-weighted MR 

images. In comparison with state-of-the-art methods, their proposed model was able to generate comparable image 

quality while being 500 faster [44]. Another study employed a multi-input U-Net to predict 2D transaxial slices 

of 18F-Florbetaben full-dose PET images from corresponding low-dose images, taking advantage of available T1, 

T2, and Diffusion-weighted MR sequences [43]. Liu et al. employed three modified U-Net architectures to 

enhance the noise characteristics of PET images through concurrent MR images without the need for full-dose 

PET images with a higher signal-to-noise ratio [50]. In addition, Cui et al. [51] proposed a 3D U-Net model for 

denoising of PET images acquired with two different radiotracers (68Ga-PRGD2 and 18F-FDG) where the model 

was trained with MR/CT images and prior high-quality images as input and noisy images as training labels. Using 

original noisy images instead of high-quality full-dose images makes the training of the model more convenient. 

Unsupervised networks are always desirable in medical image analysis due to the fact that data collection with 

accurate labels is challenging and/or time-cosuming. A foremost drawback of the above-mentioned models is that 

model training was performed in 2D rather than 2.5D or 3D. 

The 3D U-Net architecture was able to reduce the noise and PET quantification bias while enhancing image 

quality of brain and chest 18F-FDG PET images [52]. To compensate for the limited training dataset, they pre-

trained the model using simulation studies in the first stage and then fine-tuned the last layers of the network with 

realistic data. Kaplan et al. [53] trained a residual CNN separately for various body regions, including brain, chest, 

abdomen, and pelvis to generate full-dose images from 1/10th of the standard injected tracer activity. Training and 

testing of the model were performed on only two separate whole-body 18F-FDG PET datasets. 

GAN networks are widely used for image-to-image transformation tasks, especially image denoising. 

Conditional GANs (cGAN) and cycle GANs (Cycle-GAN) are two well-established architectures commonly used 

for style and domain transformation. In cGAN, unlike regular GAN, the generator and discriminator’s output is 

regularized by an extra-label. For instance, Wang et al. estimated the generator error and used it beside the 

discriminator loss to train the generator of a 3D cGAN more efficiently for denoising low-dose brain PET images 

[45]. 

Cycle-GAN models do not necessarily require paired images as the model can learn in an unsupervised way 

to map input images from source to target domains. Because of the iterative feature extraction process and the 

presence of the inverse path in this architecture, the underlying characteristics of input/output data can be extracted 
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from unrelated images to be used in the image translation process. Zhou et al. proposed a 2D Cycle-GAN for 

generating full-dose with around 120 million true coincidences (for each bed position) from a low-dose image 

with only one million true coincidences [54]. Lei et al. claimed that their Cycle-GAN model is able to predict 

whole-body full-dose 18F-FDG PET images from 1/8th of the injected activity [55]. They used a generator with 

residual blocks to learn the difference between low-dose and full-dose images to effectively reduce the noise. The 

same group presented a similar model incorporating CT images to guide low-dose to full-dose transformation 

using a relatively small dataset [56]. Their results revealed that the incorporation of CT images can improve the 

visibility of organ boundaries and decrease bias especially in regions located near bones. 

More recent studies implemented the training process using deep learning models in the projection space 

instead of image space, demonstrating that training a model in the sinogram space could lead to more efficient 

learning compared to training in the image space. Sanaat et al. trained a U-Net model with a dataset consisting of 

120 brain 18F-FDG PET full-dose studies in the sinogram space [48]. The proposed model predicted full-dose 

from low-dose sinograms and demonstrated the superior performance of deep learning-based denoising in the 

sinogram space versus denoising in the image space (Figure 3). Furthermore, another study proposed a prior 

knowledge-driven deep learning model for PET sinogram denoising [57]. Hong et al. [58] combined Monte Carlo 

simulations and deep learning algorithms to predict high-quality sinograms from low-quality sinograms produced 

by two PET scanners equipped with small and large crystals, respectively. In whole-body PET imaging, Sanaat et 

al. compared the performance of two state-of-the-art deep learning approaches, namely Cycle-GAN and ResNet, 

to estimate standard whole-body 18F-FDG PET images from a fast acquisition protocol with 1/8th  of the standard 

scan time [59]. Cycle-GAN predicted PET images exhibited superior quality in terms of SUV bias and variability 

as well as the lesion conspicuity. 

Though most of the above-described approaches could be applied to SPECT imaging, few studies dedicatedly 

addressed low-dose and/or fast SPECT imaging studies. Recently, a supervised deep learning network was 

employed to reduce the noise in myocardial perfusion SPECT images obtained from 1/2th, 1/4th, 1/8th, and 1/16th 

of the standard-dose protocol across 1052 subjects [60]. Similarly, Shiri et al. exploited a residual neural network 

to predict standard SPECT myocardial perfusion images from half-time acquisitions [61]. Raymann et al. used a 

U-Net architecture and XCAT phantom simulation studies of different regions of the body to reduce noise in 

SPECT images [62].  

Generalizability and robustness of deep learning models are two significant factors that show how much a 

model is trustable and the results robust and reproducible for normal/abnormal unseen datasets. These two factors 

are largely linked to the diversity and number of training samples. It is very common to exclude abnormal cases 

prior to training or evaluation of a model to create a homogeneous training/test sample. Although this results in 

better results, it will reduce robustness to a realistic dataset with a broad range of abnormalities. It is strongly 

recommended to use both healthy/normal and unhealthy/abnormal subjects with a realistic distribution of the 

samples. Moreover, to avoid overfitting and guarantee effective training of the model, application of relevant data 

augmentation techniques is also recommended. 

Using recurrent neural networks to decrease the scanning time and/or injected activity, especially in low-count 

dynamic PET imaging studies would be an interesting field of research. In addition, applying self-attention 

concepts to deep learning models would effectively enhance the performance of these models through indirect 

down-weighting/elimination of irrelevant regions and information in low-dose images while emphasizing the 

prominent/meaningful properties/information during the training process. Using realistic simulations to produce 

gold standard data sets beside clinical images would help deep learning models to learn noise distributions from 

a larger representative sample. 
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Figure 3. Comparison between full-dose and low-dose brain PET image predictions in the sinogram and image domains. 
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Quantitative imaging 

A significant number of emitted photons undergo attenuation and Compton scatter interactions before they reach 

PET and SPECT detectors. Scatter and attenuation lead to over- and under-estimation of activity concentration, 

consequently resulting in large quantification errors [63]. To link the detected photons to the radiotracer activity 

concentration, attenuation and scatter correction (ASC) should be performed in SPECT and PET imaging [63, 

64]. In hybrid PET/CT and SPECT/CT images, the attenuation maps reflecting the distribution of linear 

attenuation coefficients are readily provided by CT images. 

The main challenge for ASC arises in SPECT-only, PET-only, as well as PET/MR and SPECT/MR imaging 

since MR images are not directly correlated to electron density, and as such, do not provide information about 

attenuation coefficients of biological tissues [65, 66]. For SPECT-only and PET-only systems, emission-based 

algorithms have been developed to address this issue [67]. The main advantage is the capability to account for 

metallic implants and truncation artefacts [65, 66]. Including TOF information and anatomical prior improved the 

quantitative accuracy of emission-based algorithms [68-70]. However, application of this methodology across 

different radiotracers warrants further investigation. 

In addition to emission-based algorithms, MR image-based algorithms, including segmentation and atlas-

based algorithms have been developed to estimate attenuation coefficients from concurrent MR images [66]. In 

segmentation-based algorithms, different MR sequences, including T1, T2, ultra-short echo (UTE), and zero-time 

echo (ZTE) have been used to delineate major tissue classes followed by assignment of pre-defined linear 

attenuation coefficients to each tissue class. In Atlas-based algorithms [71, 72], pairs of co-registered MR and CT 

images (considered as template or atlas) are aligned to the target MR image to generate a continuous attenuation 

map. The main disadvantage of atlas-based algorithms is the high dependence on the atlas dataset and sub-optimal 

performance for subjects presenting with anatomical abnormalities [73, 74]. 

Deep learning-based algorithms were proposed to address the challenges of conventional ASC approaches in 

PET and SPECT imaging [2, 6]. Liu et al. [75] proposed converting non-attenuation corrected (NAC) brain PET 

images to synthetic CT (sCT) images. A GAN model was trained using 100 patients (in 2D mode) and tested on 

28 patients achieving a relative error of less than 1% within 21 brain regions. Dong et al. [76] applied a similar 

approach in whole-body PET imaging using Cycle-GAN [76] reporting a mean PET quantification bias of 0.12% 

±2.98%. Shi et al. [77] proposed a novel approach to generate sCT images in 99mTc-tetrofosmin myocardial 

perfusion SPECT imaging taking advantage of two images produced using different energy windows providing 

different representations of scattered and primary photon distributions. A multi-channel conditional GAN model 

was trained using SPECT images reconstructed using different energy windows as input to predict the 

corresponding sCT image. This model exhibited a normalized mean absolute error (NMAE) of 0.26± 0.15%. 

Hwang et al. [78] used emission-based generated activity distributions and μ-maps as input to generate high-

quality sCT images for 18F-FDG brain PET studies. They reported less than 10% errors for CT values using CED 

and U-Net models. The same group applied the same approach in whole-body PET imaging using U-Net, 

achieving a relative error of 2.22 ±1.77% across 20 subjects [79]. Arabi and Zaidi [80] proposed the estimation 

of attenuation correction factors from the different TOF sinogram bins using ResNet, reporting an absolute SUV 

bias of less than 7% in different regions of the brain. 

In addition to generating sCTs using PET emission data, direct generation of attenuation and scatter corrected 

images from NAC images was reported. Shiri et al. [81] and Yang et al. [82] trained a 2D U-Net network using 

brain 18F-FDG PET studies reporting PET quantification bias of less than 5% in different regions of the brain. 

Arabi et al. [83] applied this approach to different brain molecular imaging probes, including 18F-FDG, 18F-DOPA, 
18F-Flortaucipir, and 18F-Flutemetamol and reported SUV bias of less than 9% in different brain regions (figure 

4). Shiri et al. [84] trained 2D, 3D, and patch-based ResNets on 1000 whole-body 18F-FDG images and tested the 

proposed models on unseen 150 subjects. They performed ROI-based and voxel-based assessments and reported 

a relative error of less than 5%. Dong et al. [56] trained a 3D patch-based Cycle-GAN for whole-body 18F-FDG 

images and reported a mean relative error of less than 5% calculated on malignant lesions. Emission-based ASC 

approaches using deep learning algorithms are summarized in Table 1. 

The generation of sCT from MR images using deep learning-based regression approaches were reported in a 

number of studies. Li et al. used a 2D CED model to generate a 3-class probability map from T1-weighted images 

for 18F-FDG brain images and reported an average bias of less than 1% in different brain regions [85]. Arabi et 

al. reported on the development of a novel adversarial semantic structure GAN model using T1-weighted MR 
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images to generate synthetic CT images for brain PET studies [86]. They reported a relative error of less than 4% 

in 64 anatomical brain regions. Leynes et al. used ZTE and Dixon MR sequences in a multi-channel input 

framework to train a U-Net model [87]. The network was trained on 10 subjects using a patch extraction strategy 

and tested on 16 subjects consisting of the external validation set, reporting a quantification bias less than 5% in 

different ROIs defined on bones and soft tissues of 18F-FDG and 68Ga-PSMA-11 PET images. Ladefoged et al. 

evaluated 3D U-Net architectures with UTE MR sequence as input and reported a mean relative error of -0.1% in 

brain tumours [88]. The main contributions of deep learning-assisted MRI-guided attenuation and scatter 

correction in emission tomography are summarized in Table 2. 

Most deep learning-based ASC studies focused on brain imaging, which is less challenging compared to 

whole-body imaging where the anatomical structures are more complex with juxtapositions of various tissues 

having diverse attenuation properties and irregular shapes. There is obviously a need to evaluate these algorithms 

in more challenging heterogeneous regions, such as the chest and abdomen [84]. Moreover, the majority of these 

studies were performed using only one radiotracer (mostly 18F-FDG) which raises questions regarding the 

generalizability of the models and the need for retraining and reevaluation on other tracers [83]. The size of 

training and evaluation sets is another limitation of deep learning-based ASC as the performance of these 

algorithms depends on the training sample. To the best of our knowledge, only two studies, one focusing on brain 

imaging [89] and the other on whole-body imaging [84], which used a large number of training sets. Most deep 

learning-based ASC studies were performed in PET imaging with a limited number of works reported for SPECT 

imaging [77, 90].  

 

 

Figure 4. Comparison of PET images corrected for attenuation using CT‐based, segmentation-based (containing background 

air and soft-tissue) (SegAC), and deep learning-guided (DLAC) approaches together with the reference CT image for 18F-

FDG, 18F-DOPA, 18F-Flortaucipir, and 18F-Flutemetamol radiotracers. Difference SUV error maps are also presented for 

segmentation- and deep learning-based approaches. 

18F-Flutemetamol

18F-FDG 18F-DOPA

18F-Flortaucipir

PET-CTAC PET-SegAC PET-DLAC

-0.15 SUV

0.15 SUV

-0.15 SUV

0.15 SUV

0 SUV

3 SUV

0 SUV

2.4 SUV

-0.6 SUV

0.6 SUV

-0.8 SUV

0.8 SUV

0 SUV

5 SUV

0 SUV

3 SUV

PET-CTAC PET-SegAC PET-DLAC
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Table 1.Summary of studies performed for emission-based ASC using deep learning algorithms. 

Authors Modality Radiotracer Approach Algorithm 
Body 

region 
Training Training/Test Input Output Evaluation Outcome 

Loss 

Function 

Liu et al. 

[75] 
PET 18F-FDG NAC to sCT CED Brain 2D (200×180) 100/28 NAC sCT 

21 VOIs + 

whole brain 

Average  PET 
quantification 

bias 

− 0.64 ± 1.99 

L2 

Armanious 

et al. [91] 
PET 18F-FDG NAC to sCT GAN Brain 2D (400×400) 50/40 NAC sCT 

7 VOIs + 

Whole brin 

< 5% Average  

PET 

quantification 
bias 

Perceptual 

Dong et al. 
[76] 

PET 18F-FDG NAC to sCT Cycle-GAN 
Whole-
body 

Patches 
(64×64×16) 

80/39 NAC sCT 

7 VOIs in 

different 

regions 

0.12% ±2.98% 

Mean PET 
quantification 

bias 

Adversarial 

loss +  cycle 
consistency 

loss 

Colmeiro et 

al. [92] 
PET 18F-FDG NAC to sCT GAN 

Whole-

body 

3D 

(128×128×32) 
108/10 NAC sCT --- 

SUV not 
reported 

MAE 88.9 ± 

10.5 (HU) 

 

Shi et al. 
[77] 

SPECT 
99mTc-

tetrofosmin 
NAC to sCT 

GAN 
Conditional 

Cardiac 
3D (16×16 

×16) 
40/25 

Photo peak 
(126–155 

keV) and 

(114–126 
keV) 

sCT Voxelwise 
NMAE 

0.26%± 0.15% 
L2+LGDL 

Arabi et al. 

[80] 

 

PET 18F-FDG 
NAC to 

ACF 
ResNet Brain 

2D (168×200) 

7 input 
channels and 1 

output channel 

68/4 CV 

TOF 

sinogram 

bins 

attenuation 

correction 
factors 

(ACFs) 

63 brain 
regions 

< 7% absolute 

PET 
quantification 

bias 

L2norm 

Hwang et 

al. [78] 
PET 18F-FP-CIT 

MLAA to 

sCT 

CAE and  

U-Net 
Brain 2D (200×200) 40/5 CV 

MLAA-

generated 
activity 

distribution 

and μ-map 

sCT 
4 VOIs of 

brain 

PET 
quantification 

bias ranging 

from −8% to 
−4% 

 

L2-norm 

Hwang et 

al. [79] 
PET 18F-FDG 

MLAA to 

sCT 
U-Net 

Whole-

body 

Patches 

(64×64×16) 
80/20 

MLAA-
generated 

activity 

distribution 
and μ-map 

sCT 

bone lesions 

+ soft-

tissues 

PET 
quantification 

bias bias% 

Bone lesions: 

2.22 ±1.77% 

Soft-tissue 

lesions: 1.31% 
± 3.35%) 

L1 norm 

Shi et al. 

[93] 
PET 18F-FDG 

MLAA to 

sCT 
U-Net 

Whole-

body 

Patches 

(32×32×32) 
80/20 

MLAA-

generated 
activity 

distribution 

and μ-map 

sCT Region-wise NMAE 3.6% 
Line-integral 
projection 

loss 
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Shiri et al. 

[81] 
PET 18F-FDG 

NAC to 

MAC 
U-Net Brain 2D (256×256) 111/18 NAC AC 83 VOIs 

PET 
quantification 

bias − 0.10 ± 

2.14 

MSE 

Yang et al. 

[82] 
PET 18F-FDG 

NAC to 

MAC 
U-Net Brain 2D (256×256) 25/10 NAC AC 116 VOIs 

PET 

quantification 

bias 4.0% ± 
15.4% 

Mean 
squared error 

(or L2 loss) 

Arabi et al. 

[83] 
PET 

18F-FDG 

18F-DOPA 
18F-

Flortaucipir 

18F-
Flutemetamol 

NAC to 

MAC 
ResNet Brain 2D (128×128) 180 NAC AC 

7 brain 

regions 

< 9% Absolute 
PET 

quantification 

bias 

L2norm 

Dong et al. 

[56] 
PET 18F-FDG 

NAC to 

MAC 
Cycle-GAN 

Whole-

body 

Patches 

(64×64×64) 

25 leave-one-

out + 10 
patients × 3 

sequential 

scan tests 

NAC AC 
6 VOIs in 

lesions 

ME 2.85 ± 
5.21 

 

Wasserstein 

loss 

Shiri et al. 
[84] 

PET 18F-FDG 
NAC to 
MAC 

ResNet 
Whole-
body 

2D (154×154) 
Patch 

(64×64×64) 

3D 
(154×154×32) 

1000/150 NAC AC 

Voxelwise 

and region-

wise 

RE % < 5 % L2norm 

Xiang et al. 
[90] 

SPECT 90Y 

Input: µ-

map + 
SPECT 

projections, 

Output: 
scatter 

projections 

DCNN 

(VGG and 

ResNet) 

Chest + 
Abdomen 

2D (128×80) 
Phantom + 
6 patients 

Projected 
attenuation 

map 

SPECT 
projection 

Estimated 

scatter 

projections 

Voxelwise NRMSE 0.41 MSE 

CED: Convolutional Encoder Decoder, GAN: Generative Adversarial Network, NAC: Non-Attenuation Corrected, sCT: Pseudo CT, VOI: Volume of Interest, HU: Hounsfield Unit, MAE: Mean Absolute Error, ACF: 

Attenuation correction factor, CV: Cross-Validation, TOF: Time of Flight, ME: Mean Error, RE: Relative Error, NRMSE: Normalized Root Mean Square Error 
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Table 2. Summary of studies performed on MRI-guided synthetic CT generation using deep learning approaches. 

Authors Modality Radiotracer Approaches Algorithm Organ Training Training/Test Input Output Evaluation Error 
Loss 

Function 

Bradshaw 

et al. [94] 
PET 18F-FDG MRI to tissue 

labeling 
DeepMedic Pelvis 

Patch 

(25×25×25) 
12/6 T1/T2 

4-class 
probability 

map 

16 soft-tissue 

lesions 
MSE 4.9% 

Cross-entropy 

loss 

Jang et al. 

[95] 
PET 18F-FDG MRI to tissue 

labeling 
SegNet Brain 2D (340 ×340) 

Pretraining: 30 

MRI, Training 6 
MRI 

Evaluation: 8 

MRI 

UTE sCT 
23 VOIs+ 

whole brain 
< 1% 

Multi-class  
soft-max 

classifier 

Liu et al. 

[85] 
PET 18F-FDG MRI to tissue 

labeling 
CED Brain 2D (340×340) 

30/10 MRI to 

label 5 PET/MRI 

T1-

weighted 

3-class 
probability 

map 

23 VOIs + 

whole brain 

Average error 

<1% in 

the whole 
brain 

Cross-entropy 

Arabi et al. 
[86] 

PET 18F-FDG MRI to tissue 
labeling 

GAN Brain 
3D (224 × 224 

× 32) 
40 /2 CV T1 

3-class 

probability 

map 

63 brain 
regions 

less than 4% Cross-entropy 

Mecheter 

et al. [96] 
PET 18F-FDG MRI to 

Segment 
SegNet Brain 

2D (256×256) 

 
12/3 T1/T2 3 Tissue − − Cross-entropy 

Leynes et 
al. [87] 

PET 

18F-FDG 
68Ga-PSMA-

11 

MRI to sCT U-Net Pelvis 
Patch 

(32×32×16) 
10/16 

ZTE and 

Dixon 
(fat/water) 

multi-input 

sCT 

30 bone 

lesions and 60 
soft-tissue 

lesions 

RMSE 2.68% 

in bone and 
4.07% in soft-

tissues 

L1-loss, 

gradient 
difference loss 

(GDL), and 

Laplacian 
difference loss 

(LDL) 

Gong et al. 

[97] 
PET 18F-FDG MRI to sCT U-Net Brain 2D (144×144) 40 /5 CV 

Dixon and 

ZTE 
sCT 

8 VOIs + 

whole brain 
MRE 3% L1 norm 

Ladefoged 

et al. [88] 
PET 18F-FET MRI to sCT U-Net Brain 

3D (192 
×192×16) 

 

79/4 CV UTE sCT 
36 brain 

tumor VOIs 

Mean relative 
difference  

-0.1% 

Mean squared- 

error 

Blanc-

Durand et 
al. [98] 

PET 18F-FDG MRI to sCT U-Net Brain 
Patch 

(64×64×16) 
23/47 ZTE sCT 

70 VOIs + 

whole brain 

Average error  

-0.2% 

Mean squared 

error 

Spuhler et 

al. [99] 
PET 

11C-WAY-

100635 
11C-DASB 

MRI to sCT U-Net Brain 
2D (256 × 

256) 
56/11 T1 sCT 

20 brain 

regions 
(VOIs) 

PET 

quanitifaction 
error within 

VOIs 

−0.49±1.7% 
11C-WAY-

100635 

−1.52±0.73% 
11C-DASB 

L1 error 
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Torrado-
Carvajal et 

al. [100] 

PET 
18F-FDG 

18F-choline MRI to sCT U-Net Pelvis 
2D (256 × 

256) 
28/4 CV 

Dixon-

VIBE 
sCT 

Regionwise 

and voxelwise 
< 1% 

Mean absolute 

error 

Gong et al. 
[101] 

PET 

11C-PiB 
18F-MK6240 

 

MRI to sCT U-Net Brain 

2D (160×160) 

Multichannel 
input of 5 and 

35 

35/5 CV 

1 UTE 

image 
and 6 

multi-echo 

Dixon with 
different 

TEs 

sCT 8 VOIs < 2% L1-norm 

Gong et al. 

[102] 
PET 18F-FDG MRI to sCT Cycle-GAN Brain 

Patch 

(144×144×25) 
32 /4 CV Dixon sCT 16 VOIs < 3% L1-norm loss 

Ladefoged 

et al. [89] 
PET 18F-FDG MRI to sCT U-Net Brain 

3D (192× 192 
×16) 

Multichannel 

732/305 

 

Dixon 

VIBE 

T1 
UTE 

sCT 16 VOIs < 1% 
Mean squared 

error 

Leynes et 

al. [103] 
PET 

18F-FDG 
68Ga-PSMA-

11 
68Ga-

DOTATATE 

MRI to sCT 

Bayesian 

DCNN 
U-Net 

 

Pelvis 

Patch 

(64×64×32) 
10/19 

Dixon 

ZTE 
sCT 

ROIs on 

lesion 
< 5% 

L1-

loss +gradient 
difference loss 

(GDL(+ 

Laplacian 
difference loss 

Pozaruk et 
al. [104] 

PET 

68Ga-PSMA-

11 
 

MRI to sCT 
GAN, U-

Net 
Pelvis 2D (192×128) 18/10 Dixon sCT 

ROIs on the 
prostate 

< 3% 
mean absolute 
error 

Tao et al. 
[105] 

PET Not reported MRI to sCT 
Conditional 

GAN 
Brain 

2D (256×256) 
 

9/2 ZTE sCT Voxel wise 
<5% CT 
HU bias 

L1 loss and 
GAN loss 

CV: Cross-Validation, ROI: Region of Interest, VOIs: Volume of Interest, HU: Hounsfield Unit. 
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Image interpretation and decision support 

Image segmentation, registration, and fusion 

Computer-aided tools for the analysis and processing of medical images have been developed to improve the 

reliability and robustness of the extracted features. Advanced machine-learning techniques are being developed to 

learn 1) effective similarity features, 2) a common feature representation, or 3) appearance mapping, in order to 

provide a model that can match large appearance variations [106, 107]. 

Accurate organ/tumor delineation from molecular images is mainly used in the context of oncological PET 

imaging studies for quantitative analysis targeting various aspects, including severity scoring, radiation treatment 

planning, volumetric quantification, radiomic features extraction, etc. However, this is challenging owing to the 

poor spatial resolution and high statistical noise of molecular images. In current clinical practice, image 

segmentation is typically performed manually, which tends to be labor-intensive and prone to intra- and inter-

observer variability. A number of recent studies explored the potential of DL-based automated tumor segmentation 

from PET or hybrid PET/CT examinations [108, 109]. Zhao et al. used a U-Net architecture for tumor delineation 

from 18F-FDG PET/CT images within the lung and nasopharyngeal regions [110, 111]. Blanc-Durant et al. 

demonstrated the feasibility of 18F-fluoro-ethyl-tyrosine (18F-FET) PET lesion segmentation using a CNN model 

[112]. Leung et al. developed a modular deep-learning framework for primary lung tumor segmentation from 

FDG-PET images with a small-size clinical training dataset, generalized across different scanners, achieving a 

Dice index of 0.73. They addressed the limitations of the small size of the training dataset as well as the accuracy 

and variability of manual segmentations used as ground truth by using a realistic simulation dataset [113]. Wang 

et al. proposed a deep learning-assisted method for automated segmentation of the left ventricular region using 

gated myocardial perfusion SPECT [114].  

Roccia et al. used a DL algorithm to predict the arterial input function for quantification of the regional cerebral 

metabolic rate from dynamic 18F-FDG PET scans [115]. Park et al. developed an automated pipeline for 

glomerular filtration rate (GFR) quantification of 99mTc-DTPA from SPECT/CT scans using a 3D U-Net model 

through kidney segmentation [116]. 

 

AI-assisted diagnosis and prognosis 

AI algorithms have been employed to build models exploiting the information extracted from medical images to 

perform a specific clinical task, e.g. object detection/classification, severity scoring, clinical outcome prediction, 

treatment planning, and monitoring response to therapy [117]. Numerous works reported on automated detection 

and classification of various pathologies (e.g. malignant vs. benign) in nuclear medicine [118]. For benign diseases, 

cardiovascular SPECT and brain PET imaging were the main focus of AI applications [119]. Xu et al. developed 

an automated pipeline using two cascaded V-NETs for lesion prediction and segmentation to detect multiple 

myeloma bone lesions from 68Ga-Pentixafor PET/CT [120]. Togo et al. demonstrated the feasibility of cardiac 

sarcoidosis detection from 18F-FDG PET scans using Inception-v3 network (83.9% sensitivity and 87% 

specificity), which outperformed conventional SUVmax- (46.8% sensitivity and 71.0% specificity) and coefficient 

of variance (CoV)-based (65.5% sensitivity and 75.0% specificity) approaches [121]. Ma et al. modified a 

DenseNet architecture for the diagnosis of thyroid disease using SPECT images into three categories: Graves’ 

disease, Hashimoto, and subacute thyroiditis [122]. 
18F-FDG PET is extensively used as a diagnostic tool in neurodegenerative disorders, especially Alzheimer 

Disease (AD) to improve diagnosis and monitor disease progression. The role of AI in AD diagnosis has been 

recently reviewed by Duffy et al. [123]. Lu et al. developed an AI-based framework for the early diagnosis of AD 

using multimodal 18F-FDG PET/MR and multiscale deep neural network (82.4% accuracy and 94.23% sensitivity) 

[124]. Choi and Jin proposed a straightforward deep learning algorithm based on only 18F-FDG PET images for 

early detection of AD (84.2% accuracy) that outperformed conventional feature-based quantification approaches, 

e.g. Support-Vector-Machine (76.0% accuracy) and VOI-based (75.4% accuracy) techniques [125]. Machine 

learning algorithms have shown promising results in the classification of AD using brain PET images. Liu et al. 

proposed a classification algorithm of FDG PET images composed of 2D CNNs and recurrent neural networks 

(RNNs) [126]. The CNN model was trained to extract the features in 2D, while the RNN extracted the features in 

3D mode (95.3% accuracy for AD vs controls and 83.9% for mild impairment vs controls). In a follow-up work, 
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they proposed a cascaded CNN model to train the multi-level features of multimodal PET/MRI images. First, a 

patch-based 3D CNN was constructed, and then, a high-level 2D CNN followed by a softmax layer was trained to 

collect the high-level features. Finally, all features were concatenated followed by a softmax layer for AD 

classification [127]. The flexibility of AI algorithms enables learning the characteristics from heterogeneous data 

that have meaningful correlations but not obvious for the human interpreter. Zhou et al. developed a deep learning 

model for AD diagnosis using genetic input data, e.g. single nucleotide polymorphism in addition to radiological 

brain images that outperformed classification performance relative to other state‐of‐the‐art methods [128]. 

 

Radiomics and precision medicine 

Radiomics refers to a quantitative set of features, e.g. intensity, texture, and geometrical characteristics obtained 

from radiological images to discriminate quantifiable phenotypes that cannot be extracted through qualitative 

assessment of images. A radiomics model is commonly built through 4 steps: i) image acquisition/reconstruction; 

ii) VOI segmentation; iii) quantification/hand-crafted feature extraction; iv) statistical analysis [129]. While data-

driven deep learning approaches are different from feature-driven approaches, deep learning has the ability to 

directly learn discriminative features from data in their natural raw form without the necessity to define VOIs or 

extract engineered features [130].  

SPECT and PET images represent biological and physiopathological characteristics that can be quantitatively 

expressed using radiomics. Most studies focused on 18F-FDG PET images for prognosis (staging) or outcome 

prediction using handcrafted radiomics [131-133]. Delta radiomics, as a metric for treatment outcome, has been 

developed based on multiple time-point images [134]. Some studies investigated the advantage of using hybrid 

images, e.g. PET/CT and PET/MR [135], extending the feature extraction to non-primary tumor volumes, such as 

bone marrow and metastatic lymph nodes [136], and deriving features from parametric PET images [137]. 

Application of radiomics in SPECT has also been recently investigated by Ashrafnia et al. for prediction of 

coronary artery calcification in [99mTc]-sestamibi SPECT myocardial perfusion scans [138]. Rahmim et al. 

evaluated the extraction of radiomic features from longitudinal Dopamine transporter (DAT) SPECT images for 

outcome prediction in Parkinson’s disease [139]. DL-based radiomics was compared with feature-driven methods 

to highlight the advantages of CNNs compared to handcrafted radiomics for response prediction of chemotherapy 

in oesophageal cancer [140]. Wang et al. reported that CNNs did not outperform traditional radiomics in the 

classification of mediastinal lymph nodes of non-small lung cancer. Yet, it was preferred, since it was more user-

friendly and required less data handling, and was less prone to feature selection bias [118]. 

 

Internal radiation dosimetry 

AI has significantly impacted other fields of nuclear medicine through developing methods for radiation dose 

monitoring, dose reduction strategies, building theranostic decision trees, and dose limit compliance. In the era of 

precision medicine, personalized dosimetry is increasingly used in nuclear medicine. Targeted Radionuclide 

Therapy (TRT) has been recently merged with the concept of theranostics, a promising technique in radiation 

oncology. Despite the growing interest in dosimetry-guided patient-specific TRT, the one-fits-all approach is still 

used in routine clinical practice. In the context of individualized dose profiling, the construction of patient-specific 

computational models is the first step toward this goal [141]. Numerous works focused on the development of 

pipelines for the construction of patient-specific computational models applicable in personalized dosimetry in 

either therapy or diagnostic procedures [142-144]. Fu et al. developed a framework for automated generation of 

computational phantoms from CT images  [145]. They used cascaded modules consisting of i) registration of 

patient CT images to an anchor phantom, ii) segmentation of organs using UNet structure, and iii) registration of 

segmented organs inside the deformed anchor phantom to generate an individualized computational model that is 

applicable for personalized dosimetry in both diagnostic and therapeutic procedures. Besides, the automatic 

segmentation of organs at risk for various application sites of TRT has been extensively studied. Jackson et al. 

developed a framework for automated monitoring of absorbed dosed in the kidneys of patients undergoing 177Lu-

PSMA therapy [146]. They used a 3D CNN architecture for kidney segmentation to provide organ-level dosimetry 

from post-treatment SPECT imaging to estimate renal radiation doses from TRT. Tang et al. proposed a CNN-

based algorithm for liver segmentation for personalized selective internal radiation therapy [147]. Kidney 

segmentation has been conducted using a 3D UNet architecture on 177Lu SPECT images for uptake quantification 

and dosimetry [148]. 
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MC simulations using patient-specific anatomical and metabolic features constitute the current gold standard 

for internal dosimetry calculations. However, the approach suffers from exhaustive computational burden. 

Recently deep learning approaches have been employed in patient-specific dosimetry for monitoring or treatment 

plan optimization using molecular images (SPECT and PET). Akhavanallaf et al. developed an AI-based 

framework based on ResNet architecture for personalized dosimetry in nuclear medicine procedures [149]. They 

extended the key idea behind the voxel-based MIRD (Medical Internal Radiation Dose ) approach through the 

prediction of specific S-values according to the density map derived from CT images followed by calculation of 

the cumulated activity map from the predicted specific kernels (Figure 5). A physics-informed deep neural network 

(DNN) was designed to predict the energy deposited in the volume surrounding a unit radioactive source in the 

center of the kernel. The input channel was fed with a density map whereas the output was MC-based deposited 

energy maps of the given radiotracer, referred to as specific S-value kernels. Lee et al. proposed a methodology 

employing deep learning for the direct generation of dose rate maps from 18F-FDG PET/CT images [150]. Gotz et 

al. used a modified U-Net network for dose map reconstruction of patients receiving 177Lu-PSMA [151]. They 

further extended their work for patient-specific dosimetry of 177Lu compounds by predicting specific dose voxel 

kernels using AI algorithms [152]. Xue et al. developed a GAN model to predict post-therapy dosimetry for 177Lu-

PSMA therapy using pre-therapy 68Ga-PSMA PET/CT examinations [153]. 

 

 

Figure 5. Schematic representation of the voxel-scale dosimetry procedure. The top and bottom panels show the deep learning-

based specific S-value kernel prediction and MIRD-based voxel dosimetry formalism. Adapted from Ref. [149]. 

 

Despite the substantial growth and widespread adoption of patient-specific TRT, the “one-size-fits-all” 

approach is still commonly used in the clinic. Del Prete et al. reported that in TRT, organs at risk rarely reach the 

conservative threshold dose while most tumors receive submaximal doses, thus leading to undertreatment of 

patients [154]. Therefore, retrospective studies involving patients receiving TRT allows the evaluation of the 

treatment response to the one-dose-fits-all approach and would demonstrate the critical nature of the transition to 

adaptive dosimetry-guided treatment planning. This technique requires a tool incorporating a module for automatic 

segmentation of tumors/organs at risk along with a fast and accurate personalized dosimetry module. 
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IV. Challenges/opportunities and outlook 

Over the past decade, there have been significant advances in deep learning-assisted developments which have 

impacted modern healthcare. The potential of AI-based solutions in various molecular imaging applications has 

been thoroughly explored in academic and corporate settings during the last decade. This article may, therefore, 

be viewed as an early album covering some of the many and varied snapshots of this rapidly growing field. At this 

time, these tools are still available only to experts in the field but there are many reasons to believe that it will be 

potentially available for routine use in the near future.  

The proposed AI-based solutions in PET and SPECT imaging can be divided into two groups: (i) Techniques 

solely proposed to replace the current algorithms/frameworks due to their superior performance and (ii) approaches 

that have rendered previously impractical/unfeasible scenarios/frameworks using conventional methods feasible. 

In the first category, the promise of deep learning approaches consists in providing even slightly better 

functionality/performance compared to existing methods rather than undertaking an unprecedented functionality 

previously inconceivable. For example in PET instrumentation, Anger logic is used to determine the location of 

the interaction within the detector modules. Novel approaches based on deep learning methods tend to solely 

replace the Anger logic to achieve better localization and energy resolution. In this regard, novel deep learning 

approaches play the same role and compete with existing methods. 

Likewise, in MRI-guided synthetic CT generation, deep learning approaches serve as alternative to atlas- or 

MRI segmentation-based techniques, whereas in the domain of noise reduction, current analytical 

models/algorithms are being replaced by deep learning methods. In this regard, the proposed deep learning 

methods would not revolutionarily alter the current frameworks or produce a paradigm shift, though they hold the 

promise of providing more accurate outcomes or requiring less human intervention, and easy adaptability to new 

input data. In this light, this category of AI-based solutions are more likely to be fully employed in clinical practice 

or on commercial systems since less standardization, protocols and frame redefinition, and staff retraining is 

required. For instance, deep learning-guided CT image reconstruction developed by GE Medical Systems obtained 

FDA approval [30]. 

Conversely, the extraordinary power of deep learning approaches has rendered many previously 

impractical/nonfeasible scenarios/frameworks feasible. This includes tasks, such as attenuation and scatter 

correction in the image domain, estimation of synthetic CT images from the non-attenuation corrected emission 

images, object completion of truncation date, image translation, and internal dosimetry. These processes are 

inherently ill-posed and in many cases, there is a lack of a mathematical framework associated with these problems. 

Such AI-based solutions, though offering unprecedented opportunities in PET and SPECT imaging, face 

thoughtful challenges with respect to their deployment in clinical practice as they require extensive validation 

using large clinical databases and a wide range of conditions. 

Overall, a clear distinction should be made between the applications of AI-based solutions as processing or 

decision support tools or the replacement of experts or clinicians in clinical practice. Considering the superior 

performance of deep learning approaches, some algorithms are sufficiently mature and robust to be deployed in 

clinical practice as decision support tools. These algorithms are supposed to replace conventional methods owing 

to their superior performance or robustness. In this regard, any possible failure of the AI-based solution would be 

treated in a similar way to existing approaches. Conversely, AI-based solutions deemed to fully replace the experts 

are still considered as fantasy or science-fiction. Such algorithms still require additional development and 

remarkable evolution to be independently employed in clinical setting. Nevertheless, these algorithms could play 

a significant role in the short run as decision support tools to create a synergy between the capabilities of AI and 

human expertise. 

It is gratifying to see in overview the progress that AI has made, from early developments in neural networks 

to complex deep learning architectures, and more recently towards continuous learning AI in radiology [47]. 

Challenges remain, particularly in the areas of clinical validation and liability towards wider adoption, ethical and 

legal aspects and a number of other issues that need to be settled [155]. 
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Abstract 

Objectives The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning 

approach suitable for clinical diagnosis of COVID-19 patients. 

Methods In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as 

input/output as training, test and external validation set, respectively, to implement the full-dose prediction 

technique. A residual convolutional neural network was applied to generate full-dose from ultra-low-dose CT 

images. The quality of predicted CT images was assessed using root mean square error (RMSE), structural 

similarity index (SSIM) and peak signal-noise ratio (PSNR). Scores ranging from 1 to 5 were assigned reflecting 

subjective assessment of image quality and related COVID-19 features, including Ground-glass opacities (GGO), 

Crazy Paving (CP), Consolidation (CS), Nodular Infiltrates (NI), Bronchovascular thickening (BVT) and Pleural 

effusion (PE). 

Results The radiation dose in terms of CT dose index (CTDIvol) was reduced by up to 89%. The RMSE decreased 

from 0.16±0.05 to 0.09±0.02 and from 0.16±0.06 to 0.08±0.02 for the predicted compared to ultra-low-dose CT 

images in the test and external validation set, respectively. The overall scoring assigned by radiologists showed an 

acceptance rate of 4.72±0.57 out of 5 for reference full-dose CT images, while ultra-low-dose CT images rated 

2.78±0.9. The predicted CT images using the deep learning algorithm achieved a score of 4.42±0.8.  

Conclusions The results demonstrated that the deep learning algorithm is capable of predicting standard full-dose 

CT images with acceptable quality for the clinical diagnosis of COVID-19 positive patients with substantial 

radiation dose reduction. 
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Abbreviations 

SARS: Severe acute respiratory syndrome 

COVID-19: Coronavirus disease 2019 

CT: Computed tomography 

GGO: Ground glass opacities 

RT-PCR: Real-time reverse transcription-polymerase chain reaction 

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2 

WHO: World Health Organization 

DLP: Dose-length product  

ED: Effective dose 

SNR: Signal-to-noise ratio 

CNR: Contrast-to-noise ratio 

GAN: Generative adversarial network 

CNN: Convolutional neural network 

AEC: Automatic exposure control 

FBP: Filtered backprojection 

ADMIRE: Advanced modeled iterative reconstruction 

CP: Crazy Paving  

CS: Consolidation  

NI: Nodular Infiltrates  

BVT: Bronchovascular thickening  

PE: Pleural effusion 

CTDI: CT dose index  
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I. Introduction 

The emergence of novel coronavirus in December 2019 in Wuhan, China, known as severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) was recognized as a global public health concern by the World Health 

Organization (WHO) [1]. SARS-CoV-2 disease 2019 or COVID-19 is an infectious disease that affects the upper 

and lower respiratory tract and induces mild to severe respiratory syndromes, including pneumonia [2]. Real-time 

reverse transcription-polymerase chain reaction (RT-PCR) is considered the standard method for COVID-19 

diagnosis but is prone to a number of limitations, including the time of preparation and false-positive and false-

negative rates in different clinical samples [3]. Conversely, early studies confirmed that computed tomography 

(CT) is a feasible approach for COVID-19 diagnosis [4]. Until recently, a wide range of clinical studies have been 

conducted on the feasibility of CT findings in the early detection and management of COVID-19 patients. 

However, there are still considerable knowledge gaps in the recognition of CT features linked to COVID-19 [4, 

5]. 

As CT examinations account for the major cause of radiation exposure to the general public from diagnostic 

medical imaging procedures, the development of low-dose CT imaging protocols is highly desirable. A recent 

study demonstrated that DNA double-strand breaks, and chromosome aberrations increased in patients undergoing 

a standard-dose CT examination while no effect on human DNA was detected in patients undergoing low-dose CT 

scans [6]. Although a plethora of hardware and software technological advances in CT dose reduction have been 

reported, including high-sensitivity detectors, new automatic exposure control (AEC) systems, adaptive x-ray tube 

voltage and new image reconstruction algorithms, CT is still not a low-dose imaging modality [7]. Therefore, the 

level of radiation exposure from this modality is still a matter of concern [8]. Task-specific low-dose imaging 

protocols devised in both academic and corporate settings were adopted in clinical setting  [9]. Zhou et al. [10] 

suggested a low-dose CT protocol enabling to significantly reduce the dose-length product (DLP) and effective 

dose (ED) without sacrificing signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Nevertheless, 

converting from conventional full-dose to low-dose CT imaging protocols is not a simple task owing to the fear of 

increasing the false positive rate due to the elevated level of noise and missing anatomical structures. 

A number of professional societies, scientists and clinicians proposed appropriate low-dose CT protocols for 

COVID-19 [11-14]. However, these protocols are not widely deployed in clinical centers for the same above 

mentioned reasons. Clinicians and radiologists often tend to use established protocols employing full dose CT 

imaging and often lack time or are reluctant to develop or adopt new protocols, especially during emergency 

situations, such as during the COVID-19 outbreak. 

In addition to conventional denoising approaches [15, 16], a number of deep learning algorithms have been 

proposed for medical image analysis [17-19], PET [20] and SPECT [21] denoising as well as CT image denoising 

and enhancement of image quality [10, 22-25]. Yang et al. [22] applied a generative adversarial network (GAN) 

with Wasserstein distance and perceptual loss to denoise low-dose CT images. In another study, Kim et al. [23] 

investigated the effect of different loss functions on convolutional neural network (CNN)-based image denoising 

performance using task-based image quality assessment for various signals and dose levels. Shin et al. [24] 

compared image quality of low-dose CT images obtained using a deep learning-based denoising algorithm with 

low-dose CT images reconstructed using filtered-backprojection (FBP) and advanced modeled iterative 

reconstruction (ADMIRE). They reported that deep learning techniques achieved better noise properties compared 

to FBP and ADMIRE reconstructions of low-dose CT images. In this work, we aimed to use deep learning 

algorithms on ultra-low-dose COVID-19 CT images to generate high quality images for a comparable diagnostic 

accuracy with full-dose CT images. 

II. Materials and Methods 

Data acquisition 

This retrospective study was approved by the ethics committees of the participating centers. Written consent was 

waived with approval. We included 1141 volumetric chest CT exams from 9 medical centers, among which 312 

volumetric CT images were from PCR-positive COVID-19 patients. COVID-19 patients were collected from three 

centers and various scanner models, including Emotion 16 (Siemens Healthcare), NeuViz Dual (Neusoft Medical 
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Systems) and Optima CT580 (GE Healthcare). All CT images were acquired in each center using the same protocol 

and were reconstructed using a filtered back-projection (FBP) algorithm (Table 1). 

 

Table 1. Acquisition parameters of full-dose and low-dose chest CT protocols. 

Parameters Full-dose CT Low-dose CT 
CTDI

vol
 (mGy) 6.5 (4.16-10.5) 0.72 (0.66-1.03) 

Voltage (kVp) 100-120 90 
Tube current (mA) 100-150 20-45 

Pitch factor 1.3-1.8 0.75 
 

Ultra-low-dose CT simulation 

Based on Beer-Lambert law (𝐼 =𝐼0exp(− ∫𝜇(𝑒, 𝑥)𝑑𝑥)), the incident flux level of the ultra-low-dose scan (𝐼0) can 

be calculated by adequately scaling the incident flux level of the corresponding full dose scan. According to the 

physics of CT transmission data (Eq. 1), we simulated ultra-low-dose CT projection data from full-dose projections 

in the sinogram domain by adding a statistically independent Poisson noise distribution and a Gaussian noise 

distribution. 

𝐼 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐼0)+ Gaussian(𝑚𝑒 , 𝜎𝑒
2)                                        (1) 

 

where Î is the measured noisy signal recorded in the detector channels, 𝐼0 is the mean number of photons 

passing through the patient determined based on a linear relationship with tube current (mAs). me and 𝜎𝑒
2 are the 

mean and variance of the electronic noise, respectively. The whole procedure is as follows: 

 

1. Converting Hounsfield Units (HUs) to linear attenuation coefficients according to tube voltage in the full-

dose image (𝜇𝑡𝑖𝑠𝑠𝑢𝑒 =
𝐻𝑈×(𝜇𝑤𝑎𝑡𝑒𝑟−𝜇𝑎𝑖𝑟)

1000
+ 𝜇𝑤𝑎𝑡𝑒𝑟), 

2. Generating projection data (𝑝𝑠𝑑) from the attenuation map (𝜇𝑡𝑖𝑠𝑠𝑢𝑒) using the Radon transform on the 

full-dose image with the following setups: parallel beam geometry and 1080 projection angles in one 

rotation, 

3. Converting projection data to the transmission data, i.e. 𝑇𝑠𝑑=exp(−𝑝𝑠𝑑), 

4. Generating ultra-low-dose transmission data by multiplying ultra-low-dose scan incident flux by full-

dose transmission data, i.e. 𝑇𝑢𝑙𝑑 = 𝐼0
𝑢𝑙𝑑 × 𝑇𝑠𝑑 , 

5. Simulating the noise in ultra-low-dose scan by adding Poisson noise and Gaussian noise to the 

transmission data, i.e. 𝐼𝑢𝑙𝑑 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑇𝑢𝑙𝑑) +Gaussian(𝑚𝑒 , 𝜎𝑒
2), 

6. Calculating ultra-low-dose projection data in the sinogram domain, i.e. 𝑝𝑢𝑙𝑑 = log(
𝐼0
𝑢𝑙𝑑

𝐼𝑢𝑙𝑑
), 

7. Reconstruction of the ultra-low-dose images using FBP algorithm, 

8. Converting the reconstructed attenuation map to HU using the equation in step 1. 

 

In the above-mentioned steps for simulating ultra-low-dose scan, three parameters should be determined, 

namely, the ultra-low-dose scan incident flux (𝐼0
𝑢𝑙𝑑), the mean (me) and the variance (𝜎𝑒

2) of electronic noise. In 

modern CT scanners, these parameters can be determined during routine calibration procedures. However, this is 

not practical for multi-centric clinical database. Hence, these parameters were set based on fitting noise level of 

the simulated ultra-low-dose CT images with a real ultra-low-dose CT image-set serving as reference. The 

reference ultra-low-dose CT images were acquired under a task-specific ultra-low-dose protocol for the diagnosis 

of COVID-19 on the MX 16-slice CT scanner (Philips Healthcare) with a reduced CT dose index (CTDIvol) of 

about 0.72 mGy. The acquisition parameters of the protocol were as follows: tube potential of 90 kVp, tube current 

range of 20-45 mA, 0.5 sec rotation time, and pitch factor of 0.75 with the FBP image reconstruction procedure. 

To quantify the noise level of the simulated ultra-low-dose CT images, the noise index was produced based on the 

method proposed by Christianson et al. [26]. The incident flux level (𝐼0
𝑢𝑙𝑑) was determined when the magnitudes 

of noise levels in soft-tissue and lungs between simulated ultra-low-dose images were within 10% interval 
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compared to that in the reference images. In electronic systems, me is usually calibrated to be zero whereas the 

variance of electronic noise was initialized based on the method proposed by Zeng et al. [27] for the Definition, 

Edge CT scanner (Siemens Healthcare). Subsequently, an observer study was performed to evaluate the quality of 

simulated ultra-low-dose images against the full-dose images. Three physicists took part in this study to visually 

score the apparent Poisson noise and streak artifacts owing to statistical errors originating from low photon 

scanning and Gaussian noise. We categorized our dataset into multiple groups according to the scanner model and 

imaging protocol used. Consequently, three image-sets were randomly selected from each group for the evaluation 

process. Two ROIs (5×5 cm2) were drawn in the soft-tissue (upper part of the liver) and lung regions without 

including adjacent anatomic structures. The average standard deviation (STD) across the ROIs was calculated. The 

simulation parameters were updated to obtain the same STD in two ROIs drawn on soft-tissue and lungs, while 

the visual similarity between simulated ultra-low-dose image and full dose image was preserved. 

Deep learning algorithm 

Network architecture 

We applied a deep residual neural network (ResNet) for image to image transformation in an attempt to predict 

full-dose from ultra-low-dose CT images [28]. The residual model proposed by Wenqi et al. [28] for image 

classificaltion was modified for regression application in this study. Figure 1 presents the architecture of ResNet 

employed in the current study. This network combines 20 convolutional layers, including two seven and one six 

convolutional layers for low, medium, and high-level features extraction. For effective feature extraction, the 

ResNet architecture adopts a dilated convolution with factors of 2 and 4 for seven intermediate and six last layers. 

In this combination, every two convolutional layers are linked to a residual connection where a leaky rectified 

linear unit (LReLU) acts as an activation function. The ResNet implemented in TensorFlow (version 1.12.1) was 

utilized to transform ultra-low-dose to full dose chest CT images. 

In this work, a 3×3×1 kernel was applied for all convolutions  .The ResNet network has residual connections 

that bypass the parameterized layers through combining the input and output of a block to render a smooth 

information propagation, thus enhancing the training speed/quality. The ResNet architecture benefits from 9 

residual blocks that proved efficient for improving the feature extraction process. This work avoids a large number 

of trainable parameters. More detail of ResNet architecture is presented in Figure1. 

Implementation details 

In this study, 800 (112 COVID-19), 170 (100 COVID-19), and 171 (100 COVID-19) pairs of ultra-low-dose and 

full-dose CT studies were used as input/output as training, test and external validation set, respectively, to 

implement the full-dose prediction technique. The ResNet model with an architecture of a 2D spatial window equal 

to 512×512voxels was employed (CT images were cropped to eliminate the bed and background air). To train the 

network, Adam optimizer and L2norm loss function were adopted. The training of the network for full-dose 

prediction took about 50 hours using a 2080TI GPU, Intel(R) Xeon 2.30 GHz 7i CUP, and 64 GB RAM. After ten 

epochs, the training loss reached its plateau. 

 

Figure 1. Architecture of the deep residual neural network (ResNet) along with details of the associated layers. Red color layer: 

layer with dilation 1, yellow color layer: layer with dilation 2, brown color layer: layer with dilation 4. Conv: convolutional 

kernel; LReLu: leaky rectified linear unit; SoftMax: Softmax function; Residual: residual connection. 
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Quantitative evaluation 

Our qualitative and quantitative evaluation of the framework was performed on 170 tests and 171 external 

validation set. To this end, ultra-low-dose and predicted images were compared to reference full-dose images. The 

quality of CT images was assessed using voxel-wise root mean square error (RMSE). Moreover, the structural 

similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were used as quantitative measures of the quality 

of the predicted CT images. 

Clinical evaluation 

All patient chest CT images were categorized into three groups, including full-dose, ultra-low-dose and predicted 

by lung windowing. Blind qualitative assessment of CT images was performed by a radiologist with ten years of 

experience. The radiologists’ clinical evaluations were based on qualitative assessment, including appraisal of 

lesion density, shape, position, and margin in addition to the analysis of lesion type. For the qualitative assessment, 

scores ranging from 1 to 5 were assigned to each image as follows: excellent: 5, good: 4, adequate, 3, poor: 2 and 

uninterpretable: 1. This scoring scheme was separately used for overall assessment of image quality, i.e.margin, 

shape, and density as well as for lesion type. Lesion types included Ground-glass opacities (GGO), Crazy Paving 

(CP), Consolidation (CS), Nodular Infiltrates (NI), Bronchovascular thickening (BVT) and Pleural effusion (PE). 

To categorize lesions based on their location, they were attributed to any of the following anatomical regions in 

the lung: left lung, right lung, upper zone, lower zone, middle zone, superior segment, posterior segment, central 

and peripheral areas. 

III. Results 

The mean value of CTDIvol for the ultra-low-dose protocol based on which the simulation parameters are 

determined is about 0.72 mGy (range 0.66-1.02 mGy) (Table 1). In contrast, this index ranges from 4.16 to 10.5 

mGy with an average of 6.5 mGy for the full-dose protocol. According to the adopted methodology, the incident 

flux was determined in the range 3.5- 4×103 for different scanner models. 

The quantitative metrics, including RMSE, PSNR and SSIM for predicted full-dose and ultra-low-dose CT 

images in the test and external validation sets are plotted as box plots in Figure 2 and summarized in Table 2. The 

RMSE in units of normalized HU decreased from 0.16±0.05 to 0.09±0.02 and from 0.16±0.06 to 0.08±0.02 for 

predicted full-dose images from ultra-low-dose CT images in test and external validation set, respectively. The 

SIMM and PSNR increased from 0.89±0.07 to 0.97±0.01 and from 29.40±4.94 to to 33.60±2.70 for predicted full-

dose images in external validation set, respectively. 

 

Table 2. Mean and STD of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and root mean square error 

(RMSE) for the predicted and ultra-low-dose CT images in the test and external validation sets and statistical difference 

between preicted and ultra-low-dose images. 

Parameters Images Test External Validation 

RMSE 
Predicted 0.09±0.02 0.08±0.02 

Ultra-Low-Dose 0.16±0.05 0.16±0.06 

P-Value  P < 0.0001 P < 0.0001 

    

PSNR 
Predicted 32.97±2.60 33.60±2.70 

Ultra-Low-Dose 28.44±3.87 29.40±4.94 

P-Value  P < 0.0001 P < 0.0001 

    

SSIM 
Predicted 0.97±0.02 0.97±0.01 

Ultra-Low-Dose 0.89±0.07 0.89±0.07 

P-Value  P < 0.0001 P < 0.0001 
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Figure 2. Mean and STD of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and root mean square error 

(RMSE) for the predicted and ultra-low-dose CT images in the test (top) and external validation (bottom) sets. 

Overall results associated with assessment of image quality are shown in figure 3a wherein high image quality 

variations can be observed in ultra-low-dose scans, while the predicted full-dose images are mostly scored good 

or excellent. Overall scoring shows that the full-dose images received the highest score (4.72±0.57) whereas the 

ultra-low-dose images were rated with the lowest scores (2.78±0.9). In figure 3b, the frequency of occurrence of 

each lesion type in the different series of images is shown. As can be seen, GGO has the highest occurence in all 

images, whereas mixed (all) had the same occurence for all images. Changes in the essence of features are as 

follows: in the ultra-low-dose group, GGO is shifted to normal feature whereas consolidation is turned to GGO. 

Lesion detectability scoring results are shown in figure 4. The excellent score (score=5) for CS in full-dose 

images is in about 60% of the cases while it exceeds 90% in predicted full-dose CT images. CP, NI, and PE 

achieved an excellent score (100%) in predicted images is more than 40%, 70%, and 40% of the cases, respectively. 

The overall image quality scores assigned by human observers for different lesions are summarized in Table 3. 

Table 4 presents the visual scoring of different images for different aspects of CT findings, including lesion status, 

margin, shape, and density. 
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Figure 3. Image quality scoring of different images (a), Lesion type frequency in different images (b). Ground-glass opacities 

(GGO), Crazy Paving (CP), Consolidation (CS), Nodular Infiltrates (NI), Bronchovascular thickening (BVT), and Pleural 

effusion (PE). Scores (excellent: 5, good: 4, adequate, 3, poor: 2 and uninterpretable: 1) 

Figure 5 and supplemental figures 1 and 2 presents a representative example of a full-dose, ultra-low-dose, and 

predicted full-dose CT images. The predicted CT images improved image quality, thus enabling most lesions to 

be easily classified. Figure 6 and supplemental figures 3 and 4 shows an example of an outlier in which image 

quality was improved; however, some relevant anatomical details were missing. Hence, the network failed to 

recover the full detail of images and GGO lesion converted to CS. For an outlier in the predicted group, GGO was 

shifted to consolidation. 

 

Table 3. Image quality scores assigned by human observers for different lesions. Ground-glass opacities (GGO), Consolidation 

(CS), Crazy Paving (CP), Nodular Infiltrates (NI), Bronchovascular thickening (BVT) and Pleural effusion (PE). Scores 

(excellent: 5, good: 4, adequate, 3, poor: 2 and uninterpretable: 1). 

Lesions Full-dose Ultra-low-dose Predicted 

GGO 4.70±0.47 2.67±0.61 3.90±1.09 

CS 4.52±0.87 3.36±0.64 4.92±0.28 

CP 5.00±0.00 3.00±0.00 4.50±0.71 

NI 5.00±0.00 3.25±0.50 4.75±0.50 

BVT 4.79±0.41 2.44±1.11 4.44±0.56 

PE 5.00±0.00 2.50±1.05 4.50±0.55 
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Table 4. Image quality assessment through visual scoring of different images documenting different aspects of CT findings. 

Scores (excellent: 5, good: 4, adequate, 3, poor: 2 and uninterpretable: 1). 

CT findings Full-dose Low-dose Predicted 

L
es

io
n

 S
ta

tu
s 

Laterality 
Left Lung 4.66±0.55 3.14±0.69 4.52±0.51 

Right Lung 4.70±0.53 3.12±0.65 4.52±0.51 

Cephalocaudal distribution 

Upper 4.44±0.63 2.94±0.44 4.25±0.45 

Lower 4.68±0.54 3.10±0.60 4.48±0.51 

Middle 4.71±0.53 3.23±0.56 4.48±0.51 

Location 

Central 4.67±0.58 3.33±1.15 5.00±0.00 

Peripheral 4.76±0.44 3.12±0.70 4.71±0.47 

Superior 4.65±0.59 3.25±0.64 4.60±0.50 

Posterior 4.68±0.54 3.23±0.62 4.65±0.49 

Central & Peripheral 4.63±0.62 3.19±0.54 4.44±0.51 

Margin Ill Defined 4.48±0.75 2.30±0.91 4.19±0.56 

Well Defined 4.67±0.55 3.15±0.60 4.93±0.27 

Shape Nodular 5.00±0.00 4.00±0.00 5.00±0.00 

Wedged 5.00±0.00 3.33±0.82 5.00±0.00 

Elongated 4.00±1.41 2.00±1.41 4.50±0.71 

Confluent 4.54±0.66 3.00±0.66 4.54±0.51 

Density  Part Solid 4.83±0.41 2.40±1.14 3.60±1.52 

Solid 4.60±1.26 3.40±0.70 4.80±0.42 

Pure GGO 4.63±0.49 2.79±0.66 3.96±1.27 

GGO and CS 5.00±0.00 2.80±0.84 4.40±0.55 

 

IV. Discussion 

Despite the controversies and heated debates around the potential haphazardous effects of low-levels of ionizing 

radiation and the linear-no-threshold theory [29], concerns from radition exposure are still current [30]. Since CT 

imaging is widely used in clinical diagnosis, prognosis, and assessment of response to treatment and follow-up of 

a number of diseases, it is an incremental source of radiation dose to patients in modern healthcare [7, 31]. With 

respect to the current COVID-19 crisis, chest CT imaging is the fastest diagnostic approach. However, it remains 

a high dose imaging modality, and as such, developing a ultra-low-dose protocol enabling to maintain optimal 

image quality is clinically relevant in public health management. Therefore, as a reponse to this outbreak and the 

subsequent demand for CT imaging for mass population, an ultra-low-dose imaging approach was proposed to 

minimize radiation exposure of the population. This is achieved through a deep learning approach introduced for 

COVID-19 patients diagnosis by generating high-quality full-dose from ultra-low-dose CT images. It was shown 

that although the simulated ultra-low-dose CT images were diagnostically compromised, the generated full-dose 

images were appropriate for the task at hand. The proposed ultra-low-dose approach based on deep learning 

algorithms succeded to reduce the CTDIvol by up to 89%, reflecting a substantial reduction of the radiation dose 

associated with diagnostic CT examinations. 

A number of studies have assessed the role of low-dose CT for COVID-19 management [11-14]. Agostini et 

al. [12], evaluated the feasibility and diagnostic reliability of a low-dose, long-pitch dual-source chest CT protocol 

for COVID-19 patients in terms of signal-to-noise and contrast-to-noise ratio and Likert scales. They reported that 

their low-dose CT protocol achieved significant dose reduction, lower motion artifacts with optimum signal and 

contrast-to-noise ratio. However, this protocol is only applicable on third-generation dual-source CT scanners, and 

as such, it not applicable on older CT imaging systems. Dangis et al. [14] examined the accuracy and 

reproducibility of low-dose sub-millisievert chest CT for the diagnosis of COVID-19. They demonstrated that low-

dose CT has excellent sensitivity, specificity, positive predictive value, negative predictive value, and accuracy 

for diagnosis of COVID-19 with a mean effective dose of 0.56±0.25 mSv. In the current study, the simulated ultra- 
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low-dose CT images represent the outcome of a protocol with a significant reduction of CTDIvol (up to 89%) 

compared to the corresponding full dose CT images, which is a good metric for comparing patient effective dose 

and risks of ionizing radiation [32]. This is a commended effort in view of the current recommendations in radiation 

protection [33], particularly for the diagnosis and follow up of sensitive population, such as pediatric patients and 

pregnant women. 

The results of this study demonstrated that by using CNNs, we could generate images with a significantly lower 

dose and acceptable image quality. Although image quality in the predicted images was not exactly identical to 

full-dose CT images, most COVID-19 features, including nodular infiltrate, consolidation, and crazy paving 

features obtained high scores, almost similar to full-dose CT images. 

We also demonstrated that the texture of COVID-19 lesions could be erroneously altered in the predicted CT 

images, which would skew the diagnosis/scoring. We observed that in the ultra-low-dose group, GGO was shifted 

to normal feature, whereas consolidation was shifted to GGO. In the low-dose group, the shift of GGO to normal 

features might be due to closeness of mean HU value of GGO to normal. In addition, as the differences between 

the HU value of GGO and consolidation lesions are located in the normal neighborhood, they may be depicted and 

diagnosed as similar features. Likewise, in the predicted group, GGO was shifted to consolidation owing to the 

Figure 4. Image quality scoring of different images. Ground-glass opacities (GGO), Crazy Paving (CP), Consolidation (CS), 

Nodular Infiltrates (NI), Bronchovascular thickening (BVT), and Pleural effusion (PE). Scores (excellent: 5, good: 4, adequate, 

3, poor: 2 and uninterpretable: 1). 
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local induced bias noise pattern in ultra-low dose images, heterogeneity of lesions, and smoothing effect of deep 

learning in some outlier cases. The low-dose simulation would result in overall zero bias (zero-mean noise signal) 

with elevated noise variance depending on the underlying signals/textures and level of simulated low dose 

scanning. Due to the fine texture as well as relatively low density (low CT numbers) of GGO lesions, the streak-

like noise patterns led to mostly positive bias and rougher textures in these lesions. As such, the likelihood of 

misinterpretation of GGO with CP increased in the resulting synthetic standard-dose CT images. In addition, the 

minimum widely used learnable kernel employed in the current study is (3×3), which would slightly smooth the 

structures of the resulting synthetic images. The local positive noise-induced bias alomg with the smoothness of 

the structures in the resulting CT images led to the misidentification of some GGO lesions with CP. 

Although ultra-low-dose CT can be equally effective in COVID-19 detection and diagnosis as the full-dose 

CT, it suffers from a number of limitations, particularly the increased noise level caused by photon deprivation. 

One of the limitations of the present study was that during the clinical assessment, the ultra-low-dose images could 

be easily identified by radiologists because of the high of noise present. This might have led them to be 

subconsciously biased, hence assigning lower scores to these images. We reported outliers originating mostly from 

the low quality of the simulated ultra-low-dose CT images (high noise level and/or noise-induced artifact) caused 

by photon starvation in simulated corpulent patients. Application of the current method in COVID-19 imaging 

warranted a thorough investigation of outliers owing to inter/intra-patient variation and noise variability. 

 

 

Figure 5. Representative full-dose 

image and corresponding ultra-

low-dose and predicted full-dose 

images. 
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V. Conclusion 

Ultra-low-dose CT imaging of COVID-19 patients would result in loss of critical information about lesion types. 

However, the results presented in this work indicated that ResNet is an optimal algorithm for generating ultra-low-

dose CT images for COVID-19 diagnosis. Nevertheless, the deep learning solution failed to recover the correct 

lesion structure/density for a number of patients and as such, further research and development is warranted to 

address these limitations. 
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Figure 6. Outlier report: CT 

images of a patient where the deep 

learning algorithm improved image 

quality but changed the patchy 

lesion to consolidation in predicted 

images. The red arrows pinpoint 

changes in the identified lesions. 
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Supplemental material 

 

 

Supplemental Figure 1. Representative full-dose image and corresponding ultra-low-dose and predicted full-dose images 

case-2. 
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Supplemental Figure 2. Representative full-dose image and corresponding ultra-low-dose and predicted full-dose images 

case-3. 
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Supplemental Figure 3. Outlier report: CT images of a patient where the deep learning algorithm improved image quality but 

changed the patchy lesion to consolidation in predicted images case 2. 
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Supplemental Figure 4. Outlier report: CT images of a patient where the deep learning algorithm improved image quality but 

changed the patchy lesion to consolidation in predicted images case 3. 
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Abstract 

Purpose: Computed tomography (CT) is among the most widely used medical imaging modalities in clinical 

setting. Estimating patient-specific radiation dose and associated radiation risks is critical in optimization 

procedures. We propose a deep learning-guided approach to generate voxel-based dose maps from whole-body 

CT acquisitions. 

Methods: Sixty-three whole-body CT images were converted to density maps with 5 mm3 isotropic voxel size. 

The voxel-wise dose maps corresponding to each source position/angle were calculated using Monte Carlo (MC) 

simulations considering patient- and scanner-specific characteristics (SP_MC). The dose distribution in a uniform 

cylinder was computed through MC calculations (SP_uniform). The density map and SP_uniform dose maps were 

fed into a residual deep neural network (DNN) to predict SP_MC through as an image regression task. The whole-

body dose maps reconstructed by the DNN and MC were compared in the 11 test cases scanned with two tube 

voltages through transfer learning with/without tube current modulation (TCM). The voxel-wise and organ-wise 

dose evaluations, such as mean error (ME, mGy), mean absolute error (MAE, mGy), relative error (RE, %), and 

relative absolute error (RAE, %), were performed. 

Results: The model performance for the 120 kVp and TCM test set in terms of ME, MAE, RE, and RAE voxel-

wise parameters was -0.0302 ± 0.0244 mGy, 0.0854 ± 0.0279 mGy, -1.13 ± 1.41 %, and 7.17 ± 0.44 %, 

respectively. The organ-wise errors for 120 kVp and TCM scenario averaged over all segmented organs in terms 

of ME, MAE, RE, and RAE were -0.144 ± 0.342 mGy, and 0.23 ± 0.28 mGy, -1.11 ± 2.90 %, 2.34 ± 2.03 %, 

respectively. The performance of our model was almost similar in the external test set, considering the fixed tube 

current and tube current modulation scenarios. 

Conclusion: Our proposed deep learning model is able to generate voxel-level dose maps from a whole-body CT 

scan with reasonable accuracy suitable for organ-level dose estimation. Through the generation of a dose 

distribution from a single source position, our model can generate accurate and personalized dose maps in few 

seconds for a wide range of acquisition parameters. 
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Abbreviations 

CT: Computed Tomography 

TCM: Tube Current Modulation 

DL: Deep Learning 

ICRP: International Commission on Radiological Protection 

MC: Monte Carlo 

SP_MC: Single Point Monte Carlo Dose 
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SP_uniform: Single Point Monte Carlo Dose in a Uniform Material 

WBCT: Whole-Body Computed Tomography 

WBDM: Whole-body Dose Map 

ME: Mean Error 

MAE: Mean Absolute Error 

RE: Relative Error 
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I. Introduction 

The capability of visualizing inside the human body through non-invasive medical imaging examinations is a 

tremendous opportunity to diagnose various pathologies. X-ray Computed Tomography (CT) is one of the 

prevalent imaging modalities used in the initial clinical diagnosis, follow-up, staging, radiation therapy planning 

and in emergency departments to provide valuable information for a wide range of indications [1]. In addition, CT 

is also commonly attached to nuclear medicine instrumentation, such as single-photon emission computed 

tomography (SPECT) or positron emission tomography (PET), for concurrent SPECT/CT [2] or PET/CT [3] 

imaging on hybrid imaging devices. At the same time, CT, one of the high-dose examinations, is responsible for 

a significant part of ionizing radiation exposure of patients [4, 5]. The International Commission on Radiological 

Protection (ICRP) [6] suggested estimating the radiation dose delivered to patients from medical imaging 

procedures toward the optimization rule known as ALARA in order to minimize the risks through the appropriate 

use of ionizing radiation. 

The recent emphasis on personalized medicine and patient-specific justification/optimization substantiates the 

critical demand to calculate specific parameters related to radiation risks [7-10]. The organ dose is a requirement 

for patient-specific dose calculation and has a good correlation with radiation risks [9]. On the other hand, it has 

been shown that the radiation dose delivered to specific organs can reach the deterministic dose levels, especially 

in serial CT examinations, which is common practice in patients follow-up, e.g., in the recent Covid-19 pandemic 

[11-13]. 

The estimation of organ doses can be performed using multiple methodologies. The most straightforward 

approach uses conversion factors specific to the scanning protocols. An alternative option is to use dedicated 

software tools, such as ImpactDose1 and Radimetrics [14]. Both above mentioned software packages proved to 

have a low correlation with organ doses calculated by more accurate Monte Carlo (MC) simulation tools using 

patient-specific or reference computational models [15, 16], particularly when the Tube Current Modulation 

(TCM) system is activated [17-19]. While MC calculations using patient-specific computational models is deemed 

to be the most accurate approach and is often regarded as the gold standard technique, its downsides, including 

computational time, high computational burden, and required expertise in computer programming, limit its 

adoption in clinical setting. Exploiting the parallel computational power of GPUs enabled MC calculations to be 

faster and more suited for adoption in clinical setting [20, 21]. Yet, the complexity associated with the technique 

remains a significant hurdle. Deep learning-based algorithms are currently used in various medical imaging 

applications, including image regression [22], registration [23], segmentation [24], radiation dosimetry calculation 

[25, 26], and optimization [27, 28]. This study aimed to develop a fully automated method to estimate patient-

specific MC-based dose maps associated with whole-body (WB) CT examinations in real-time using deep neural 

network algorithms. 

II. Materials and methods 

Study population  

This study included 63 patients (35 male and 28 females) who underwent whole-body PET/CT imaging on a 

Biograph mCT scanner (Siemens Healthineers, Erlangen, Germany). All CT scans were performed in helical mode 

using 120 kVp tube potential, and Siemens CareDose4D TCM was activated. Images were reconstructed with the 

extended 70 cm field-of-view option, voxel size equal to 1.523 mm in the axial plane, and 1.4 mm slice thickness 

using filtered-back projection algorithm. Figure 1 shows the flowchart of the different steps followed in this study 

protocol. 

 
1 https://impactdose.software.informer.com/ 
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Figure 1. Flowchart summarizing the different steps involved in the implementation of the whole process. The blue dashed 

line shows the 90 kVp generalizability test. DL: Deep learning. MC: Monte Carlo. 

Monte Carlo simulations 

CT HU values were converted to density maps using linear multi-regression models for the segmentation of CT 

images into different tissue densities, as proposed by Schneider et al. [29]. Subsequently, the resulting density 

maps were resampled to 5 mm3 cubic isotropic voxel size. The essential components incorporated into MC 

simulations, including accurate source model and protocol-related parameters, were adopted from our in-house 

MC simulation code developed and validated in a previous study [30]. The acquisition parameters, including tube 

voltage, collimation width, table speed, rotation time, pitch, and tube current modulation, were implemented in 

this simulation. This simulator is based on the MCNPX general-purpose Monte Carlo radiation transport code 

(version 2.6) [31]. 

The output of MC simulations is a 3D dose map for a single source position (SP_MC) with limited axial 

coverage. Monte Carlo simulations were run for multiple discrete source positions to simulate helical whole-body 

CT scanning. A random starting location was generated for the source owing to the lack of information about the 

tube start angle in the DICOM header. Accordingly, a spiral motion of the source position in 2 mm axial intervals 

along the Z-axis (craniocaudal axis) was modeled. Finally, considering the longitudinal tube current modulation 

(extracted from the DICOM header for TCM), simulated dose maps for each source position was multiplied by 

the corresponding tube current and were superimposed to construct the complete voxel dose distribution. 
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Data preparation 

MC calculations were performed for a total number of 63 patients with 120 kVp tube voltage. Then, by keeping 

all parameters similar, except kVp, MC calculations were repeated with 90 kVp tube voltage for patients in the 

test group (11 cases) plus 20 cases randomly selected from the train and validation groups to perform the fine-

tuning process described later in the text. The cases from the train and validation were used for performing transfer 

learning and fine-tuning. 

Monte Carlo calculation of radiation dose in a uniform cylinder at 90 and 120 kVp 

A uniform water-filled cylinder with a 715 mm diameter located within the CT gantry was simulated, and the dose 

map for a single source position (zero degrees, located at the anterior point) was calculated for a large number of 

simulated events (4×1010 particles) tracked by the MC simulator. This dose map, referred to as the single-source 

position uniform map (SP_uniform), was calculated for two tube voltages, namely 90 and 120 kVp for a single 

source. It should be mentioned that the 90 kVp uniform dose maps were used for testing the network 

generalizability through fine-tuning. 

Generation of single-source position images and corresponding density maps 

The body contour was automatically segmented on all CT images utilizing analytical image processing methods. 

All body contour segmentations were reviewed and confirmed visually. The MC output images (SP_MC) having 

a size of 96×144×17 voxels were saved, and the density map for the same axial coverage range cropped to the 

same size. The SP_uniform images were cropped to the same axial coverage body contour and normalized to a 

conversion factor (CF) calculated by Eq. (1) to compensate for the effect of attenuation taking place in the 

SP_uniform dose calculation on the large cylinder. 

CF = 𝑒(𝑑𝑆𝑃_𝑀𝐶 − 𝑑𝑆𝑃_𝑢𝑛𝑖𝑓𝑜𝑟𝑚).    Eq. (1) 

where e is Euler's number, 𝑑𝑆𝑃_𝑀𝐶  is the distance from the edge of the body contour to the x-ray tube source in 

a specific source position. 𝑑𝑆𝑃_𝑢𝑛𝑖𝑓𝑜𝑟𝑚 is the distance from the edge of a large cylinder simulated to the source in 

a specific position. Since the cylinder size was larger than the size of our largest patient, the CF was always greater 

than 1. Figure 2 shows the examples of SP_MC, SP_Uniform, and the corresponding CT slices, when the source 

is in the right lateral position. The two images of SP_uniform and SP_MC were normalized by all voxel intensities 

by a fixed value. Each source position was saved in a separate image and used for training the neural network. 

 
Figure 2. Examples of axial and coronal slices of CT, SP_Uniform, and SP_MC dose maps corresponding to a single source 

position/angle. In these cases, the x-ray tube is in the right lateral position. 
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Network architecture and training details 

From all 63 WB CT images (27,632 source positions), 11 cases (4792 source positions) were used as the untouched 

test set. Figure 1 shows the steps performed in this study and examples of mentioned three images of SP_uniform, 

SP_MC and density maps. The SP_unifrom in a unique source position/angle and the density map images were 

fed as input to the neural network to predict the SP_MC image as the output in the corresponding source 

position/angle. A deep residual network (ResNet) was trained in Python (TensorFlow) to generate the SP_MC 

images from the two mentioned inputs. The ResNet is composed of 20 convolutional layers (19 layers with kernel 

size 3×3×3 and the last layer with kernel size 1×1×1) where the image size is kept constant through the different 

layers (no down or up pooling was applied). Different feature levels, including low, medium, and high, were 

extracted by using dilation of 0 (first seven layers), 2 (six middle layers) and 4 (six last layers), respectively, in a 

convolutional kernel. Every two layers were connected using a residual connection to avoid gradient vanishing or 

exploding. The training was continued for 100 epochs using the "Adam" optimizer and L2 loss function. The initial 

learning rate of 10−3 was reduced in a piecewise method every five epochs. The trained network was tested on the 

external group datasets, and the deep neural network output was named SP_DL. 

Generalizability evaluation on 90 kVp data (Fine-tuning) 

To test the generalizability of the proposed model for kVps other than 120 kVp, we performed MC simulations to 

calculate the voxel dose maps by considering the 90 kVp spectrum on the untouched test group (11 cases) and 20 

patients selected from the train and validation group. The same pre-processing steps mentioned earlier were 

followed to derive SP_MC, SP_uniform, and density maps at 90 kVp. SP_uniform and density maps were fed to 

the trained network on 120 kVp data, and the process of fine-tuning continued for 50 epochs by body fine-tuning 

approach, i.e., the weights from the trained network on 120 kVp data served as the initial weights for 90 kVp fine-

tuning. SP_uniform and density maps were fed to the fine-tuned network on 90 kVp training datasets, and SP_DL 

images at 90 kVp were generated for the same test group (11 cases). These SP_DL images were compared to 

SP_MC images at 90 kVp. 

Dose map reconstruction from single source positions 

The dose maps from the single source position were corrected by factors related to the tube calibration described 

in a previous study [30]. The tube current was extracted from the DICOM header. Then, the dose maps 

corresponding to a single source position/angle were superimposed to reconstruct the whole-body dose maps 

(WBDM) using both SP_MC and SP_DL dose maps, referred to as WBDM_MC and WBDM_DL, respectively. 

The final WBDM was a matrix of 96×144×Z voxels, where Z is the image size along the Z-axis, and the voxel 

value is the absorbed dose in that voxel in units of milli-gray (mGy). We have considered two strategies for WBDM 

calculation, fixed 100mA tube current (FTC) and TCM activated according to the actual tube current recorded 

from the DICOM images. 

Evaluation metrics 

1) Voxel-wise quantitative dose evaluation 

The WBDM_DL images were compared with WBDM_MC images serving as the standard of reference 

(ground truth) at the voxel level. Voxel-wise parameters, including structural similarity index (SSIM), mean error 

(ME, mGy), mean absolute error (MAE, mGy), relative error (RE, %), relative absolute error (RAE, %), and 

gamma pass rate were calculated. Gamma pass rate, as described earlier by Low et al. [32] with 1 mm and 1% 

criterion, was considered. 

2) Organ-level dose evaluation 

In addition to voxel-wise errors, eight organs, including the Liver, Heart, Bone, Kidneys (both), Spleen, 

Bladder, Lungs (both), and brain, were segmented manually on the test WBCT images. The organ doses were 

estimated by calculating the mean voxel value on WBDM images inside the organ segmentations. The organ 

absorbed doses calculated on WBDM_DL and WBDM_MC were compared for each organ in terms of mean error 

(ME, mGy), mean absolute error (MAE, mGy), relative error (RE, %), and relative absolute error (RAE, %). These 

voxel-wise and organ-wised metrics were calculated for both 90 kVp and 120 kVp external datasets, considering 

both FTC and TCM scenarios. 
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3) Statistical analysis 

The Kolmogorov-Smirnov test was used to check the normality of distributions. The mentioned organ-wise 

evaluation metrics were compared between the two groups of 90 and 120 kVps using the Mann-Whitney test. P-

values less than 0.05 were considered statistically significant. 

III. Results 

The age of included patients was 58.9 ± 17.2 years. The average patients' water equivalent diameter was 26.6±2.7 

(range 16.45 - 32.95) cm. The average tube current implemented by TCM was 140.7 ±48.71 (56 to 306) mA. Table 

1 summarizes the demographic information of patients. 

 

Table 1. Demographic description of the test and train & validation groups 

metric Train & Validation Test 

sex 29 male, 23 female 6 male, 5 female 

age 60.1 ± 16.9 53.2 ± 17.9 

kVp 120 120 

Pitch 0.8 0.8 

CTDIvol 5.74±2.70 8.33 ± 4.00 

Patient Height 169 ± 12 167 ± 12 

Patient Weight 75.1 ± 15.8 76.4 ± 17.4 

Tube Current 135.5 ± 45.4 167.6 ± 67.8 

 

Voxel-wise error metrics 

Table 2 summarizes the results of voxel-wise metrics for two external validation groups acquired at 90 and 120 

kVp. The model performance for the 120 kVp and TCM test set in terms of voxel-wise parameters, including 

SSIM, PSNR, Gamma, ME, MAE, RE, and RAE, was 0.997 ± 0.002, 46.69 ± 1.98, 98.47 ± 0.81, -0.0359 ± 0.0244 

mGy, 0.1091 ± 0.0279 mGy, -1.16 ± 1.41 %, and 7.13 ± 0.44 %, respectively. All voxel-wise parameters were in 

the same range for 120 kVp, TCM and FTC test sets. The voxel-wise evaluation results after performing transfer 

learning and fine-tuning on 90 kVp data were also comparable to 120 kVp, except RAE, which was almost 1.5% 

higher in the 90 kVp test group compared with 120 kVp results (8.63 vs. 7.17). Considering the FTC and TCM 

scenarios, the performance of our model was almost similar in the 90 kVp test set. 

 

Table 2. Voxel-wise metrics for two external validation groups acquired at 90 and 120 kVp. 

  
120 kVp 90 kVp 

Metrics FTC TCM FTC TCM 

SSIM 
0.997 ± 0.002 

(0.993 to 0.998) 

0.997 ± 0.002 

(0.993 to 0.998) 

0.994 ± 0.005 

(0.981 to 0.998) 

0.994 ± 0.005 

(0.981 to 0.998) 

PSNR 
46.69 ± 1.98 

(44.95 to 50.17) 

47.68 ± 1.98 

(44.95 to 50.17) 

45.11 ± 3.85 

(37.51 to 48.77) 

46.18 ±5.08 

(37.48 to 51.66) 

Gamma Value 
98.47 ± 0.81 

(96.73 to 99.72) 

98.91 ±0.81 

(96.73 to 99.72) 

98.26 ± 1.29 

(95.28 to 99.08) 

98.64 ± 1.41 

(95.28 to 99.68) 

ME (mGy) 
-0.0359 ± 0.0244 

(-0.0826 to 0.0025) 

-0.0302 ± 0.0244 

(-0.0826 to 0.0025) 

-0.0167 ± 0.0149 

(-0.0372 to 0.0161) 

-0.0126 ± 0.0124 

(0.0326 to 0.0133) 

MAE (mGy) 
0.1091 ± 0.0279 

(0.0513 to 0.1401) 

0.0854 ± 0.0279 

(0.0513 to 0.1401) 

0.1088 ± 0.0308 

(0.0776 to 0.1626) 

0.0892 ± 0.0462 

(0.0471 to 0.1713) 

RE (%) 
-1.16 ± 1.41 

(-3.72 to 1.39) 

-1.13 ± 1.41 

(-3.72 to 1.39) 

0.27 ± 1.33 

(-1.99 to 2.00) 

0.28 ± 1.33 

(-2.00 to 1.98) 

RAE (%) 
7.13 ± 0.44 

(6.57 to 7.89) 

7.17 ± 0.44 

(6.57 to 7.89) 

8.58 ± 1.83 

(6.15 to 10.80) 

8.63 ± 1.82 

(6.19 to 10.82) 
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Figure 3 shows the joint histogram comparing WBDM_DL and WBDM_MC doses at the voxel level. The 

high correlation depicted in figure 3 (R2>0.999) indicates the excellent agreement between MC and DL results. 

Figure 4 shows two examples of WBDM_DL and WBDM_MC and their corresponding bias maps displayed 

in a coronal view for a combination of two kVps (90 and 120) and two TCM and FTC scenarios. The bias map 

shows excellent agreement between MC and DL results. The highest differences in terms of RAE (%) are depicted 

in the lung/chest wall interval and soft tissue/skull (bony tissue), where there is a gradient in density and chemical 

composition characteristics of biological tissues and, consequently, radiation interaction properties with tissues. 

The average RAE for all organs was always less than 4.5 % for both kVps and TCM and FTC scenarios. 

 
Figure 3. Joint-histograms comparing the voxel-wise doses of WBDM_DL and WBDM_MC at 90 kVp, FTC (top left), 120 

kVp, FTC (top right), 90 kVp, TCM (bottom left), and 120 kVp, TCM (bottom right). The white dashed line shows the fitted 

line and the regression line equation. The correlation coefficient (R2) is also shown for each histogram. 
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Figure 4. Coronal slices of WBDM_DL, WBDM_MC and the corresponding bias maps for two cases from the external test 

sets. The caption for each study displays the kVp and tube current scenario (TCM or FTC). Case #1: 74 y/o male, patient height 

= 172 cm, patient weight = 85 kg, average water equivalent diameter [1] = 28.4 cm, the effective diameter at the largest slice 

= 32.9 cm. case #2: 65 y/o female, patient height = 158 cm, patient weight = 87 kg, water equivalent diameter = 29.5 cm, the 

effective diameter at the largest slice = 35.6 cm. The voxel value here is mGy, and the color bar is shown beside each image. 

Organ-wise error metrics 

The organ-wise error for 120 kVp and TCM scenario averaged over all segmented organs in terms of RE (%), 

RAE (%), ME (mGy), and MAE (mGy) was -1.11 ± 2.90, 2.34 ± 2.03, -0.144 ± 0.342, and 0.23 ± 0.28 respectively. 

Supplemental-Table 3 and 4 summarize organ-wise metrics calculated on 120 kVp and 90 kVp test sets, 

respectively. There was no statistically significant difference between the metrics calculated in organ-wise 

evaluations between the FTC and TCM performance in either the 90 and 120 kVp test sets (Mann-Whitney, 

p>>0.05). The highest average errors were observed in the heart, bone, and brain regions, where there is a higher 

gradient in density and surrounding tissues. Figure 5 compares organ doses measured on DL and MC reconstructed 

dose maps. The violin plots show overall good agreement between the distributions of DL and MC organ doses. 

Figure 6 shows the boxplot of RE and RAE (%) between the calculated organ doses. 
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Figure 5. Violin plots of organ dose distributions calculated by MC (orange) and DL (blue) at 90 and 120 kVp for both FTC 

and TCM scenarios. 

IV. Discussion  

In this work, we proposed a novel method for dose map calculation using deep neural networks through two input 

channels. The model estimates the radiation voxel dose map by combining the attenuation and source 

angle/position information from the SP_uniform image with the attenuation characteristics from the density map 

image (Figure 2). This model predicts the dose distribution corresponding to a single source position/angle around 

the patient's body, which can be an excellent option to calculate the absorbed doses with a lower interval in the 

source position movements, which proved to be more realistic [30]. Other acquisition parameters, such as pitch, 

scan mode (spiral, sequential), rotation time, and other parameters, such as tube current, could be modeled by 

providing single-source position dose maps. This capability of calculating single source position and angle enables 

the calculation of whole-body dose maps in more complicated acquisition settings, such as organ-based TCM 

algorithms where the tube current is reduced in anterior arcs. The model's generalizability was examined through 

transfer learning to a different kVp dataset and fine-tuning the model. The results in terms of organ-wise dose 

metrics demonstrated the robustness of the developed model. Our model’s performance was similar when 

considering FTC and TCM techniques in both voxel-wise and organ-wise metrics. Besides, the dose map 

calculation is feasible for an acquisition performed using dual-source CT scanners or single source dual-energy 

mode by considering the source from each kVp (x-ray tube) as a single source position/angle. 

The patients included in the training and test datasets covered a wide range of body shapes and BMIs. As 

shown in figure 4, the model is robust against patient size and composition changes. Wang et al. [33] proposed 

analytic linear Boltzmann modeling of the radiation dose in an anthropometric phantom. They reported errors of 

less than 3 %, but their model was specific for a single phantom and didn't consider variability in the human body. 

Although performed independently, our study bears some similarities with the study published by Maier et al. [25] 

in the sense that we used two channel inputs to our model to predict the voxel dose maps. We used whole-body 

CT images covering a larger axial field-of-view range from the skull to mid-thigh and trained a single general 

model for the full coverage. The single general model applicable to all scan protocols is easier to implement. They 

introduced multiple models by changing the parameters, while the generalizability is more practical in daily 

clinical routine by accessing single source dose maps. Besides, our proposed methodology is capable of 

reconstructing the dose maps directly from CT images without additional time-consuming deterministic methods 

for solving the Boltzmann transport equation. 
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Figure 6. Boxplots of the RE and RAE (%) comparing organ doses calculated by DL and MC methods for eight segmented 

organs and a combination of 90 and 120 kVps and TCM/FTC scenarios. 

Tzanis et al. [26] used DL to generate voxel dose maps calculated by Monte Carlo simulations by converting 

the image into a long vector and introducing scan parameters, such as tube current and scan mode, as additional 

columns. They included 343 head & neck scans and reported organ doses delivered to three tissues/organs, 

including the brain, cranial bones, and eye lens, with average errors less than 6% (range 0 -19%) in terms of organ 

RAE. Our proposed model provides more accurate results in terms of organ-wise RAE (average 2.74). Besides, 

they only used 120 kVp acquisitions and a scan range limited to the head & neck region. 

Organ masks is a critical requirement for calculating organ doses. We segmented multiple organs to evaluate 

the performance of our model in organ-level dose calculation. The labor-intensive and time-consuming 

segmentations are important limitations of using dose maps in radiation risk estimation. Despite the presence of 

voxels with a higher error than the average in terms of voxel-wise RAE (%), the organ dose errors were negligible, 

especially for large organs, such as the liver. The slightly higher error in some organ doses and voxels could be 

attributed to methodological limitations, such as coarse image matrix size (voxel size of 5 mm), that we adopted 

to reduce the computational time. The large voxel size can also cause higher errors in voxel-wise metrics. The 

excellent performance achieved by our model in organ-level doses is much better than pre-tabulated software 



126 

outputs. Moreover, we used only a single scanner to train our DL network using a limited number of patients. Still, 

the main bottleneck was the high computational time required to generate the Monte Carlo dose maps as ground 

truth. In addition, in our method, the radiation dose delivered to organs out of the scan reconstruction axial range 

is missing. 

V. Conclusion 

Our proposed deep learning model can generate whole-body dose maps from a CT scan acquisition with reasonable 

accuracy at the voxel level and excellent performance at organ-level dose estimation. The whole process, including 

pre-processing and model inference on a new dataset, can be performed within seconds, which makes personalized 

dosimetry with an acceptable accuracy a possible option in clinical routine. Conversely, by generating a dose 

distribution from a single source position, our model can generate accurate and personalized dose maps for a wide 

range of acquisition parameters. 
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Supplemental material 

 
 
 

Supplemental-Table 3. the results of the organ-wised evaluation of the results for the 120 kVp dataset. 

 

Supplemental-Table 4. the results of the organ-wised evaluation of the results for the 90 kVp dataset after fine-tuning. 

 

 FTC TCM 

Organ RE % RAE % ME (mGy) MAE (mGy) RE % RAE % ME (mGy) MAE (mGy) 

Liver 
-0.41 ± 1.83 

(-3.3 to 3.76) 

1.37 ± 1.22 

(0.14 to 3.76) 

-0.04 ± 0.155 

(-0.305 to 0.299) 

0.112 ± 0.109 

(0.009 to 0.305) 

-0.5 ± 1.81 

(-3.15 to 3.78) 

1.37 ± 1.22 

(0.07 to 3.78) 

-0.036 ± 0.114 

(-0.262 to 0.211) 

0.08 ± 0.085 

(0.001 to 0.262) 

Heart 
-3.81 ± 2.3 

(-6.29 to 1.03) 

4.01 ± 1.9 

(0.04 to 6.29) 

-0.325 ± 0.207 

(-0.557 to 0.095) 

0.343 ± 0.173 

(0.002 to 0.557) 

-3.85 ± 2.32 

(-6.27 to 1.03) 

4.04 ± 1.92 

(0.04 to 6.27) 

-0.24 ± 0.177 

(-0.455 to 0.078) 

0.255 ± 0.153 

(0.002 to 0.455) 

Bone 
-3.16 ± 2.72 

(-5.72 to 4.15) 
3.92 ± 1.22 

(1.56 to 5.72) 
-0.282 ± 0.255 

(-0.463 to 0.433) 
0.361 ± 0.097 

(0.167 to 0.463) 
-3.06 ± 2.75 
(-5.72 to 4.2) 

3.82 ± 1.34 
(0.8 to 5.72) 

-0.212 ± 0.223 
(-0.491 to 0.353) 

0.276 ± 0.124 
(0.101 to 0.491) 

Kidneys 
-1.81 ± 2.12 

(-6.42 to 0.27) 

1.86 ± 2.07 

(0.2 to 6.42) 

-0.101 ± 0.11 

(-0.33 to 0.014) 

0.104 ± 0.107 

(0.01 to 0.33) 

-2.03 ± 2.08  

(-6.42 to 0) 

2.03 ± 2.08  

(0 to 6.42) 

-0.078 ± 0.08 

(-0.223 to 0) 

0.078 ± 0.08 

(0 to 0.223) 

Spleen 
-1.33 ± 2.08 

(-4.5 to 2.05) 

1.99 ± 1.39 

(0.16 to 4.5) 

-0.085 ± 0.134 

(-0.314 to 0.12) 

0.127 ± 0.091 

(0.007 to 0.314) 

-1.25 ± 2.22 

(-4.7 to 2.77) 

1.96 ± 1.56 

(0.05 to 4.7) 

-0.056 ± 0.079 

(-0.203 to 0.083) 

0.075 ± 0.059 

(0.001 to 0.203) 

Bladder 
1.59 ± 4.3 

(-3.6 to 11.86) 
3.1 ± 3.27 

(0.31 to 11.9) 
0.109 ± 0.285 

(-0.275 to 0.787) 
0.211 ± 0.213 

(0.013 to 0.787) 
1.61 ± 4.22 

(-3.57 to 11.7) 
3.05 ± 3.23 

(0.31 to 11.7) 
0.067 ± 0.133 

(-0.083 to 0.383) 
0.101 ± 0.106 

(0.013 to 0.383) 

Lungs 
1.42 ± 2.5 

(-2.35 to 6.59) 

2.12 ± 1.88 

(0.11 to 6.59) 

0.112 ± 0.211 

(-0.236 to 0.549) 

0.178 ± 0.154 

(0.008 to 0.549) 

1.46 ± 2.43 

(-2.25 to 6.4) 

2.09 ± 1.86 

(0.04 to 6.4) 

0.096 ± 0.165 

(-0.133 to 0.425) 

0.14 ± 0.125 

(0.002 to 0.425) 

Brain 
2.19 ± 4.88 

(-3.72 to 14.1) 

3.57 ± 3.88 

(0.06 to 14.1) 

0.239 ± 0.56 

(-0.522 to 1.528) 

0.426 ± 0.421 

(0.008 to 1.528) 

2.11 ± 4.74 

(-3.72 to 13.6) 

3.5 ± 3.73 

(0.15 to 13.6) 

0.37 ± 0.884 

(-0.522 to 2.702) 

0.572 ± 0.756 

(0.013 to 2.702) 

All Organs 
-0.67 ± 3.59 

(-6.42 to 14.1) 
2.74 ± 2.40 

(0.04 to 14.1) 
-0.047 ± 0.321 

(-0.557 to 1.528) 
0.233 ± 0.224 

(0.002 to 1.528) 
-0.69 ± 3.57 

(-6.42 to 13.6) 
2.73 ± 2.38 

(0.01 to 13.6) 
-0.011 ± 0.375 

(-0.522 to 2.702) 
0.197 ± 0.318 

(0.001 to 2.701) 

 
 

 

  

 FTC TCM 

Organ RE % RAE % ME (mGy) MAE (mGy) RE % RAE % ME (mGy) MAE (mGy) 

Liver 
-0.27 ± 1.54 (-2 

to 3.32) 

1.26 ± 0.84 

(0.42 to 3.32) 

-0.023 ± 0.158 

(-0.244 to 0.32) 

0.128 ± 0.086 

(0.055 to 0.32) 

-0.27 ± 1.54 

(-2 to 3.32) 

1.26 ± 0.84 

(0.42 to 3.32) 

-0.023 ± 0.16 

(-0.244 to 0.32) 

0.13 ± 0.09 

(0.05 to 0.32) 

Heart 
-3.09 ± 1.77 

(-6.02 to 0.36) 
3.16 ± 1.63 

(0.36 to 6.02) 
-0.331 ± 0.19 

(-0.658 to 0.041) 
0.338 ± 0.175 
(0.041 to 0.66) 

-3.09 ± 1.77 
(-6.02 to 0.36) 

3.16 ± 1.63 
(0.36 to 6.02) 

-0.33 ± 0.19 
(-0.66 to 0.04) 

0.34 ± 0.17 
(0.041 to 0.66) 

Bone 
-1.31 ± 1.98 

(-4.58 to 2.9) 

1.86 ± 1.41 

(0.12 to 4.58) 

-0.146 ± 0.24 

(-0.482 to 0.427) 

0.227 ± 0.156 

(0.017 to 0.48) 

-1.31 ± 1.98 

(-4.58 to 2.9) 

1.86 ± 1.41 

(0.12 to 4.58) 

-0.146 ± 0.24 

(-0.48 to 0.43) 

0.23 ± 0.16 

(0.02 to 0.48) 

Kidneys 
-0.56 ± 1.88 

(-5.31 to 1.37) 

1.2 ± 1.51 

(0.07 to 5.31) 

-0.037 ± 0.132 

(-0.284 to 0.109) 

0.097 ± 0.093 

(0.005 to 0.28) 

-0.56 ± 1.88 

(-5.31 to 1.37) 

1.2 ± 1.51 

(0.07 to 5.31) 

-0.037 ± 0.132 

(-0.284 to 0.11) 

0.1± 0.09 

(0.01 to 0.28) 

Spleen 
-0.05 ± 2.3 (-5.15 

to 3.85) 
1.6 ± 1.57 

(0.11 to 5.15) 
0.011 ± 0.188 

(-0.337 to 0.356) 
0.138 ± 0.12 

(0.009 to 0.36) 
-0.05 ± 2.3 

(-5.15 to 3.85) 
1.6 ± 1.57 

(0.11 to 5.15) 
0.011 ± 0.19 

(-0.34 to 0.36) 
0.138 ± 0.12 

(0.009 to 0.36) 

Bladder 
2.39 ± 3.73 

(-2.89 to 11.6) 

3.11 ± 3.1 

(0.48 to 11.6) 

0.229 ± 0.328 

(-0.221 to 1.05) 

0.282 ± 0.28 

(0.06 to 1.05) 

2.39 ± 3.73 

(-2.89 to 11.6) 

3.11 ± 3.1 

(0.48 to 11.6) 

0.229 ± 0.328 

(-0.221 to 1.05) 

0.282 ± 0.28 

(0.06 to 1.05) 

Lungs 
-2.42 ± 1.3 

(-4.34 to -0.45) 

2.42 ± 1.3 

(0.45 to 4.34) 

-0.275 ± 0.135 

(-0.47 to -0.046) 

0.275 ± 0.135 

(0.046 to 0.47) 

-2.42 ± 1.3 

(-4.34to-0.45) 

2.42 ± 1.3 

(0.45 to 4.34) 

-0.275 ± 0.135 

(-0.47 to -0.046) 

0.275 ± 0.135 

(0.046 to 0.47) 

Brain 
-3.52 ± 3.25 

(-7.87 to 3.05) 
4.15 ± 2.29 

(0.43 to 7.87) 
-0.587 ± 0.525 
(-1.198 to 0.45) 

0.681 ± 0.38 
(0.07 to 1.198) 

-3.52 ± 3.25 
(-7.87 to 3.05) 

4.15 ± 2.29 
(0.43 to 7.87) 

-0.587 ± 0.525 
(-1.198 to 0.45) 

0.681 ± 0.38 
(0.066 to 1.2) 

All Organs 
-1.10 ± 2.89 

(-7.87 to 11.63) 

2.34 ± 2.01 

(0.07 to 11.6) 

-0.144 ± 0.348 

(-1.198 to 1.049) 

0.270 ± 0.261 

(0.005 to 1.2) 

-1.11 ± 2.90 

(-7.84 to 11.8) 

2.34 ± 2.03 

(0.08 to 11.8) 

-0.144 ± 0.342 

(-1.497 to 0.765) 

0.23 ± 0.28 

(0.01to 1.49) 
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Abstract 

Purpose In the era of precision medicine, patient-specific dose calculations using Monte Carlo (MC) simulations 

is deemed the gold standard technique for risk-benefit analysis of radiation hazards and correlation with patient 

outcome. Hence, we propose a novel method to perform whole-body personalized organ-level dosimetry taking 

into account the heterogeneity of activity distribution, non-uniformity of surrounding medium and patient-specific 

anatomy using deep learning algorithms. 

Methods We extended the voxel-scale MIRD approach from single S-value kernel to specific S-value kernels 

corresponding to patient-specific anatomy to construct 3D dose maps using hybrid emission/transmission image 

sets. In this context, we employed a Deep Neural Network (DNN) to predict the distribution of deposited energy, 

representing specific S-values, from a single source in the center of a 3D kernel composed of human body 

geometry. The training dataset consists of density maps obtained from CT images and the reference voxelwise S-

values generated using Monte Carlo simulations. Accordingly, specific S-value kernels are inferred from the 

trained model and whole-body dose maps constructed in a manner analogous to the voxel-based MIRD formalism, 

i.e. convolving specific voxel S-values with the activity map. The dose map predicted using the DNN was 

compared to the reference generated using MC simulations and two MIRD-based methods, including single and 

multiple S-values and Olinda/EXM software package. 

Results The predicted specific voxel S-value kernels exhibited good agreement with the MC-based kernels serving 

as reference with a Mean Relative Absolute Error (MRAE) of 4.5±1.8 (%). Bland & Altman analysis showed the 

lowest dose bias (2.6%) and smallest variance (CI: -6.6, +1.3) for DNN. The MRAE of estimated absorbed dose 

between DNN, MSV, and SSV with respect to the MC simulation reference were 2.6%, 3%, and 49%, respectively. 

In organ-level dosimetry, the MRAE between the proposed method and MSV, SSV, and Olinda/EXM were 5.1%, 

21.8% and 23.5%, respectively 

Conclusion The proposed DNN-based WB internal dosimetry exhibited comparable performance to the direct 

Monte Carlo approach while overcoming the limitations of conventional dosimetry techniques in nuclear medicine. 
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I. Introduction 

Personalized medicine is a new paradigm aiming at improving healthcare while lowering the costs, thus offering 

great potential for patient-specific diagnosis and optimal treatment [1]. Precision medicine aims at shifting from 

the current one-size fits-all strategy to an individualized model. Dose calculation in nuclear medicine is tightly 

linked to this approach [2]. In this framework, personalized dose estimation is crucial for optimizing clinical 

procedures while minimizing the risk of radiation-induced toxicity [3]. 

In current clinical practice, patient dose monitoring is commonly based on simplified models, such as those 

derived by the Medical Internal Radiation Dose Committee (MIRD) formalism [4]. The traditional MIRD 

technique is based on organ-level dosimetry using time-integrated activity and radionuclide S-values, which 

represents the mean absorbed dose to a target organ per radioactive decay in a source organ. These quantitative 

parameters are modeled based on a reference computational model. This approach assumes a uniform activity 

distribution within each organ and ignores individual anatomical characteristics. To cope with inter-subject 

variability of anatomical features, the organ-level dosimetry approach was later extended by developing habitus-

specific and patient-specific computational models [5-9]. Furthermore, voxel-based dosimetry techniques have 

been developed, including dose point kernel [10] and voxel S-value (VSV) [4] approaches. Unlike probabilistic 

methods, dose point kernel is a deterministic approach that calculates the radial absorbed dose distribution around 

an isotropic point source in a homogeneous water medium [11, 12]. Voxel-level MIRD schema is defined as a 3D 

voxel matrix representing the mean absorbed dose to a target voxel per unit activity in a source voxel embedded 

in an infinite homogeneous medium using Monte Carlo (MC) simulations. However, voxel-based dose calculation 

should in principle take into account non-uniform activity distribution of the radiotracer, the heterogeneity of the 

medium consisting of different material compositions, e.g. lung, soft tissue, and bone is ignored. In this regard, 

direct MC simulations, deemed the gold standard for implementation of a reliable dose calculation framework in 

clinical setting, enables accurate estimation of whole-body dose map [13, 14]. Though MC simulation takes into 

account the non-uniform activity distribution and heterogeneity of patient-specific anatomical features, it suffers 

from expensive computational burden. A number of previous works reported on the use of MC simulations in the 

context of personalized dosimetry in nuclear medicine [15-17]. Hybrid PET/CT or SPECT/CT images are fed into 

the MC simulator to model energy deposition of radiation emitted from the injected radiotracer considering the 

patient-specific anatomy and voxelwise activity distribution obtained from CT and PET/SPECT images, 

respectively. Several works focused on reaching an optimal compromise between accurate voxel-scale dosimetry 

and the computational burden [18, 19]. Khazaee Moghadam et al. proposed a tissue-specific dose point kernel 

approach implemented on a stylized phantom [20]. Lee et al. extended further this idea by applying this 

methodology on real patient data [21]. They considered multiple material densities for internal dose calculation by 

providing multiple voxelwise S-value kernels for various media with different densities according to human body 

tissues. This enabled to provide multiple voxel-scale dose maps in an analogous manner to the MIRD calculations. 

Consequently, each density-specific dose map was multiplied by the corresponding binary mask of the given 

density regions obtained from CT-based segmentation, thus enabling the calculation of the final dose map by 

superposition of the multiple density-specific dose maps. This method improves the accuracy of dosimetry 

calculations compared to the single voxel S-value approach, but relies on a basic assumption that energy 

depositions in each voxel arise mainly from self-absorption. This simplification introduces an extra error on the 

estimated dose distribution, particularly in the boundary of tissues with different densities. 

Accurate patient-specific dosimetry is becoming a must taking advantage of advances in targeted radionuclide 

therapy and theranostic imaging [2]. In personalized dosimetry, MC simulation is still considered the most accurate 

technique and the de facto reference standard for research application. Yet, this approach is not employed in routine 

clinical procedures owing to the heavy computational burden. Deep learning emerged as a promising technique in 

the area of computer vision and image processing, exhibiting superior performance over conventional state-of-the-

art methods in medical images analysis in PET and SPECT imaging, including attenuation and scatter correction 

[22-24], low-count image reconstruction [25-27], as well as automated image segmentation [9, 28]. More recently, 

deep learning approaches were employed for radiation dose estimation. Mardani et al. introduced a dose 

distribution prediction method in external beam radiation therapy using a multi-layer convolutional auto‐encoder 

architecture [29]. Nguyen et al. used a U-Net architecture for clinical treatment plan optimization to improve the 

treatment plan quality and uniformity while reducing the computational time [30]. Ma et al. implemented a deep 
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learning method to provide isodose features for modulated arc therapy treatment plans [31]. Kearney et al. 

proposed a 3D fully-convolutional dose prediction algorithm for prostate stereotactic body radiotherapy patients 

[32]. 

For effective training of a deep learning algorithm, well-defined ground truth is an essential ingredient [33]. In 

the above-mentioned seminal works, the ground truth was obtained from a substitute of MC dosimetry for the 

training of the networks that may bear some inaccuracies owing to the simplifications in physical models [34]. To 

address this limitation, Lee et al. used a U-Net deep neural architecture for internal dosimetry where the training 

ground truths were obtained from direct MC simulation [35]. They fed CT images, representing patient structural 

features, and static PET images, representing the activity distribution, into the network as input to predict a 3D 

dose map rate. Gotz et al. set out to estimate dose maps of patients who received 177Lu-PSMA using a modified 

U-Net network [36]. In this work, the training datasets consisted of a two-channel input, including CT images (i.e. 

patient-specific density map), MIRD-based voxel-scale dose map obtained from SPECT images as well as the 

ground truth obtained from direct MC simulations. In these two works, the deep learning networks were trained 

using whole-body dose maps obtained from direct MC simulations. However, generation of a comprehensive 

training dataset in this manner would be challenging owing to the prohibitive computational burden of MC 

calculations. Hence, these works either relied on a limited number of training samples or made some 

approximations that could affect the accuracy of the proposed models. Lee et al. reported that the time required 

for a single full whole-body MC simulation exceeds 4704.03 hours using a CPU with four cores and 16 GB RAM 

[35]. However, GPU-based MC simulations have been recently proposed to overcome this challenge [37-39]. In 

this regard, we proposed a novel methodology to estimate whole-body dose distributions using a deep 

convolutional neural network, wherein unlike previous studies, generation of training datasets is no longer a 

bottleneck. The proposed dose map generation framework consists of two steps. In the first step, a deep neural 

network (DNN) is employed to predict dose distribution kernels, wherein the training dataset consists of only 

density maps obtained from CT images as input and the corresponding dose distribution kernel for a point source 

with unit activity obtained from MC simulations as output. In this approach, the simulation time for generating a 

ground truth (dose distribution map around the central voxel source) covering the annihilation photon mean free 

path is about 8000 times less than that required for whole-body MC simulations. This strategy makes it possible 

to provide a diverse and extensive training dataset. In addition, this approach would reduce the complexity of the 

training process as the DNN model should learn simpler features corresponding to a point source distribution 

compared to direct translation from hybrid density/activity maps to absorbed dose map. In the second step, specific 

dose distribution kernels predicted by the trained model are convolved with the activity map (here time-integrated 

activity from dynamic PET images) to generate the final whole-body dose map, in a manner analogous to the 

voxel-based MIRD formalism. 

II. Materials and Methods 

Method description 

Direct MC simulations, wherein the 3D hybrid PET/CT or SPECT/CT images are fed into a simulator to produce 

the whole-body dose distribution, are regarded as the gold standard approach. The computational burden of direct 

MC simulations for building a comprehensive and large training dataset is prohibitive. Hence, we split the direct 

process into two main parts as schematically illustrated in Figure 1. The idea is inspired from the MIRD-based 

voxel-scale dosimetry formalism [4] where a single voxel S-value kernel is convolved with the activity map (e.g 

PET images) to produce a whole-body dose map (Eq. 1). In the present study, we extended this idea through 

estimation of the specific kernels according to the density map obtained from patient’s CT images. Analogous to 

the MIRD-based voxel-scale dose kernel, we generate specific kernels, i.e. 𝑆(𝑣𝑜𝑥𝑒𝑙𝑘 ← 𝑣𝑜𝑥𝑒𝑙ℎ) in Eq. 1, in such 

a way that the central voxel contains the unit activity of given a radiotracer, where the surrounding medium is 

defined based on the patient density map. 

The principle of the reciprocity theorem states the reversibility or bilateralism of the interactions upon location 

interchange of the source and target in a uniform isotropic model. Loevinger introduced this theorem to dose 

calculation problems in a uniform homogenous medium [40]. Cristy reported that the reciprocity theory is 

warranted in heterogeneous computational phantoms for photons [41]. We extended this theory to heterogeneous 

media by applying a source to target correction factor of the energy-absorption coefficient ratio [42]. Since the 
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deposited energy in each voxel depends on the energy fluence multiplied by the mass energy-absorption coefficient 

of the medium [43], we modified the conditions of location interchange of source and target tacking into account 

the ratio of the energy-absorption coefficient of target voxel to the source voxel. The reciprocal energy fluence is 

assumed to be approximately equal for annihilation photons with dominant Compton scattering interaction. 

 
Figure 1. Schematic representation of the voxel-scale dosimetry procedure. The top and bottom panels show the deep learning-

based specific S-value kernel prediction and MIRD-based voxel dosimetry formalism. 

To generate the specific kernels, the distribution of deposited energy around the source voxel was calculated 

using MC simulations. The size of the kernel depends on the type of radiotracer, i.e. decay mode and energy 

spectrum. In this work, we defined the size of kernels as 19.2×19.2×19.2 cm3 where the mean free path of 

annihilation photons in human tissue has been reported to be about 7 cm [44]. 

 

�̅�(𝑣𝑜𝑥𝑒𝑙𝑘) = ∑ �̃�𝑣𝑜𝑥𝑒𝑙ℎ
𝑁
ℎ=0 . 𝑆(𝑣𝑜𝑥𝑒𝑙𝑘 ← 𝑣𝑜𝑥𝑒𝑙ℎ)                                  (1) 

 

In the first step, we employed a DNN to predict the specific energy deposition kernel when the source voxel is 

located in the center of the kernel (Figure 1). The input data for the training is 3D volume density maps while the 

corresponding output is 3D volume dose map obtained from MC simulations. To prepare the input dataset for 

training, single voxels were randomly sampled from whole-body CT images and the surrounding volumes 

(19.2×19.2×19.2 cm3) were extracted into 64×64×64 matrices to generate the input samples. Given the input 

matrices, the MC simulator was employed to produce the dose distribution kernel considering a unit activity at the 

center of each matrix. In other words, the training of the model was performed for single-point sources located in 
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various positions within the density volume map, i.e. whole-body CT images. Hence, to produce a comprehensive 

training dataset covering different anatomical sites, we randomly sampled voxels from different whole-body CT 

images and the surrounding volumes were extracted to generate the input samples. In the second step, the whole-

body dose map was calculated by voxelwise convolution of the specific kernels with the activity map (Eq. 1). 

Hence, we inferred the specific dose distribution kernel for each source voxel, i.e. S(voxelk ← voxelh), using our 

trained neural network model. We estimated the whole-body dose map in an analogous way to the MIRD voxel 

formalism, which convolves a single S-value kernel with each voxel in the activity map, yet using specific S-

values kernel for each voxel. 

Deep Neural Network architecture 

In this work, the ResNET [45] architecture implemented on TensorFlow platform, composed of 20 convolutional 

layers with dilation convolution operations within different levels of feature extraction, was utilized. The dilation 

factor supports the expansion of the receptive field-of-view without resolution loss by increasing the space between 

original kernel elements. For low-level feature extraction, a dilation factor of zero was used within the first seven 

layers, a dilation factor of two within the second seven layers for medium-level feature extraction, and a dilation 

factor of four within the last six layers for high-level feature extraction. Leaky rectified linear unit (LReLU) was 

used as activation function. The ResNET architecture benefits from 9 residual blocks, which results in a large 

number of receptive fields and improves the process of feature extraction and network convergence (Figure 2). 

For the training of the model, pairs of CT density images and deposited energy kernels were considered as 

input/target, respectively. The ResNET model with a 3D spatial window equal to 3×3×3 voxels were used. The 

following setting was used for the training of the network: learning rate = 0.001, sample per volume = 1, optimizer 

= Adam, and decay = 0.0001. The optimization of the network was carried out based on the L2 loss function. 

 

Figure 2. Schematic diagram of the ResNET architecture. 

Data preparation 

To prepare the training data set, density maps were extracted from CT images. CT Hounsfield Units (HUs) have 

a strong correlation with electron density, and consequently with the mass density of the medium. We converted 

HU values to mass density using the methodology proposed by Schneider et al. which established linear multi-

regression models for the segmentation of CT images into different tissue densities [46]. We extracted density 

maps consisting of 13 tissue densities, including air, lung, fat, soft tissue, and bone where values higher than 100 

HUs were divided into eight discrete density values. Afterward, the whole-body density maps were resampled to 

3 mm voxel size in three-dimensions. To build the ground truth data, MC simulations served as standard of 

reference. The MCNP transport code [47] was employed for the generation of energy deposition kernels, i.e. 

specific voxel S-values. To this end, one voxel was randomly sampled from the whole-body density maps and a 

3D matrix of 64×64×64 voxels around the central voxel was extracted. This matrix, representing a heterogeneous 

medium of patients’ anatomical structures, was directly imported to the MCNP code. The material compositions 

of 13 segmented tissues were defined based on Schneider et al. [46]. The central voxels of the extracted 3D matrix 

were defined as source location with uniform distribution of Fluorodeoxyglucose (18F-FDG). Since the resolution 

of the activity distribution (here PET images with an average resolution of 3 mm) determines the spatial accuracy 

of dosimetry estimations, we adopted the same resolution for the calculation of dose maps. The energy spectrum 

of emitted positrons was taken from [48], where the positron energy spectrum follows a Fermi distribution with 

an average of 242.8 KeV and maximum energy of 633.5 KeV. The output of MC simulations consist of 3D kernels 
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(64×64×64) with 3 mm resolution using energy deposition mesh tally in unit of MeV/cm3 per particle. Three 

million particles were tracked to reach a statistical uncertainty less than 4% in the border voxels at about 10 cm 

away from the central voxel. 

Clinical studies 

To provide whole-body dose maps from an activity map based on Eq. 1, a specific S-value kernel is required for 

each single voxel of the activity map. Whole-body unenhanced CT images of 24 patients acquired on Siemens 

Definition Edge system were used for the training of the model (generation of the training dataset). The study 

protocol was approved by Geneva Ethics committee and all patients provided written informed consent. For 

evaluation of the model, hybrid PET/CT image sets consisting of a low-dose CT scan and dynamic whole-body 

PET scans were employed. The hybrid PET/CT image sets were acquired on a Siemens Biograph mCT scanner 

using a dynamic scanning protocol at 13-time points after intravenous injection of 18F-FDG [49, 50]. PET 

scanning was conducted using continuous bed motion scan at ever increasing time intervals. PET image 

reconstruction was performed using 3D iterative ordinary Poisson OSEM (3D-OP-OSEM) algorithm with a voxel 

size of 4.07 × 4.07 × 3 mm. 

Dose map calculation 

To estimate whole-body voxelwise absorbed dose, the trained model was fed with patient-specific density maps 

to generate the specific dose distribution kernels, 𝑆(𝑣𝑜𝑥𝑒𝑙𝑘 ← 𝑣𝑜𝑥𝑒𝑙ℎ), for each single voxel (i.e. 𝑣𝑜𝑥𝑒𝑙𝑘) in the 

PET image, wherein the corresponding voxel in CT images and its surrounding 64×64×64 voxels were considered 

as the input density map. The predicted specific S-values were corrected by element-wise multiplication of the 

ratio of the energy-absorption coefficient of the target voxel to the source voxel obtained from [51]. Lastly, specific 

S-values underwent voxelwise convolution with the cumulated activity map to create the whole-body dose map 

(Eq. 1). The cumulated activity map was calculated by analytical integration of voxelwise time activity curves 

over 13-time points dynamic PET frames (Eq. 2). 

�̃�𝑇𝑜𝑡𝑎𝑙 =
1

2
∑ (𝐴𝑖 + 𝐴𝑖+1)13

𝑖=0 . ∆𝑡𝑖 + ∫ 𝐴𝑓𝑒−𝜆𝑡𝑑𝑡
∞

𝑇
                                        (2) 

In Eq. 2, �̃�𝑇𝑜𝑡𝑎𝑙 is the total number of disintegrations, Ai is the activity concentration in the source organ 

obtained from static images at the ith time frame, Af is the activity concentration in the last time point of 

measurement, and λ is the decay factor of the radionuclide. Bladder voiding schedules were not taken into account. 

To conduct patient-specific whole-body voxelwise dose estimation, the results were converted in Gy after 

multiplication by a correction factor of 0.9673 corresponding to the fraction of positron emission for 18F. 

To evaluate the proposed method, the predicted absorbed dose from the current model was compared against 

direct MC dose estimation serving as standard of reference and different MIRD-based approaches, including the 

OLINDA/EXM software (organ-scale MIRD formalism) [52], single voxel S-value (SSV) and multiple voxel S-

value (MSV). For organ-level dosimetry, regions-of-interest were manually drawn on CT images to delineate eight 

organs, namely brain, heart, kidneys, liver, lungs, spleen, bone, and bladder. Lesions identified on PET images 

were segmented using a fixed threshold of 42% of SUVmax and manually edited to remove the background and 

include necrotic regions. The kinetic data required by Olinda/EXM software were calculated from the cumulated 

activity using Eq. 2 and the masses of organs were modified based on organ masks defined from the segmentation 

of CT images. SSV and MSV voxel-scale dosimetry was designed based on the MIRD formalism (Eq. 1) where 

the voxel S-value kernels were generated from MCNP code with the same kernel size used in the previous step, 

i.e. 19.2 cm in 3D with 3mm resolution. Ten million particles were simulated to build a 64×64×64 kernel in an 

infinite homogenous medium considering a unit activity in the central voxel. In the MSV method [21], the S-value 

kernels of four different media consisting of soft-tissue, lung, and two different densities of bone (with different 

Calcium content) were simulated. 

Quantitative analysis 

Voxelwise mean absolute error (MAE), mean relative absolute error (MRAE %), and root mean square error 

(RMSE) were calculated between reference and predicted dose maps. 
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𝑣
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𝑣
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𝑅𝑀𝑆𝐸 = √
1

𝑣𝑥𝑙
∑ (𝐼𝑚𝑎𝑔𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑖) − 𝐼𝑚𝑎𝑔𝑒𝑟𝑒𝑓(𝑖)𝑣𝑥𝑙

𝑣=1 )2                                          (5) 

where 𝐼𝑚𝑎𝑔𝑒predicted stands for dose map generated by the DNN and 𝐼𝑚𝑎𝑔𝑒ref stands for the reference dose 

map. vxl and v denote the total number of voxels and voxel index, respectively. 

III. Results 

Network validation 

The total number of training dataset consisted of 12’100 pairs of volumetric images of density maps and energy 

deposition kernels extracted from 24 different CT image sets. The specific voxelwise S-value kernels, obtained 

from the DNN, were in good agreement with the reference MC kernels. The axial profiles plotted over reference 

and predicted voxelwise S-value kernels in the lung region are shown in Figure 3. The mean relative voxel-wise 

difference between the two profiles is about 3.3%. Figure 4 illustrates the comparison of predicted voxel S-values 

(64×64×64) against MC simulations for the test case in the lung region with MRAE, RMSE and MAE of 4.5±1.8 

(%), (1.8 ± 0.53)×10-5 (MeV/cm3) and (1.8±0.71)×10-6 (MeV/cm3), respectively. Furthermore, the voxelwise joint 

histogram plot depicting the correlation between the predicted kernels and MC simulations is presented, where a 

coefficient of determination (R2) of 0.98 was achieved. 

 

 
Figure 3. (a) CT-based density map, (b) reference kernel obtained from MC simulations, (c) predicted kernel by the DNN 

model. Line profiles across the S-value kernels (right panel) comparing kernels obtained from MC simulations of DNN model 

predictions. 

 

 

Figure 4. Probability distribution of Relative Absolute Error (RAE) for predicted voxelwise S-value kernels (64×64×64) with 

respect to MC simulations (left). A.U.= arbitrary units. Voxelwise joint histogram plot depicting the correlation of predicted 

kernels with respect to MC simulations (right). 
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Analysis of dose distributions 

To assess the impact of medium heterogeneity on dosimetry results, a whole-body map of deposited energy was 

generated for a patient-specific computational phantom with unit activity distribution using three different 

methods, including DNN, MSV, and SSV. In this regard, calculation of patient-specific absorbed dose map (step 

2 in Figure 1) involves filling the patient’s body contour with a unit activity distribution instead of a time-integrated 

activity map obtained from a dynamic PET series. Dose profiles over axial and coronal slices are illustrated in 

Figure 5. It is expected that SSV in medium with densities lower than water overestimates the deposited energy 

while underestimating the deposited energy for higher density media. The deposited energies obtained from MSV 

confirms the limitation of this method in the heterogeneous boundaries in the spine area with an average density 

of about 1.12 g/cm3 (b-b' line profile). The voxelwise dose maps predicted by DNN and estimated using MIRD-

based methods, including SSV and MSV, were compared with the results obtained from MC simulations for a 

patient diagnosed with lung adenocarcinoma having a pulmonary tumor of about 120 g. Figure 6 displays a 

representative dose profile drawn on axial views comparing dose maps estimated from DNN, MSV, and SSV 

against MC simulations. 

 

Figure 5. Voxelwise deposited energy (MeV/cm3) in a patient-specific computational phantom with unit activity distribution 

estimated by DNN, MSV, and SSV. 

 

Figure 6. Dose distributions and profiles (right) drawn on axial views comparing dose maps estimated using DNN, MSV, and 

SSV methods against MC simulations. 
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To quantify the agreement between the different methods with respect to the standard of reference, Bland-

Altman plots compare absorbed doses calculated using DNN, MSV and SSV with MC-based calculations. Figure 

7 illustrates the bias and variance with 95% confidence interval (CI) of these methods against the standard of 

reference method, where the data points reflect the percent difference of voxelwise dose values. The results show 

that the lowest absorbed dose bias (2.6 %) and the smallest variance (CI: -6.6%, +1.3%) were achieved by the 

DNN approach. In addition, the results obtained using MSV demonstrated good agreement with the ground truth 

(absorbed dose bias of 2.9 % and variance of CI: -6.8%, +12.6%), except in some regions corresponding to 

heterogeneous boundaries. Conversely, SSV showed significant discrepancy compared to the reference in lung 

and bone regions. In the lung region illustrated in Figure 8 (top left), four VOIs over the heart, bone, lower lobes 

of the lungs, and pulmonary tumor were drawn on fused PET/CT images to perform quantitative analysis of 

absorbed doses within the VOIs. The mean absolute relative errors of estimated absorbed doses between DNN, 

MSV, and SSV against MC simulations were 2.6±0.94 %, 3±3.5 %, and 49±68 %, respectively. 

Whole-body voxelwise absorbed dose estimations based on time-integrated activity and patient-specific 

anatomy obtained from a dynamic PET/CT scan are presented in Figure 9 along with two profiles plotted over 

axial and coronal views. Organ-level dosimetry was extracted from the dose maps obtained from DNN, MSV and 

SSV methods and compared against a commercial organ-based MIRD dosimetry software, i.e. Olinda/EXM 

(Figure 10). In most organs, Olinda/EXM underestimates the absorbed dose compared to other voxel-based 

methods except for lung and pulmonary tumor. The MRAE between organ doses estimated by DNN method and 

MSV, SSV and Olinda/EXM were 5.1%, 21.8% and 23.5 %, respectively. 

 
Figure 7. Bland & Altman plots of voxelwise dose differences in the lung region calculated using DNN (left), MSV (middle) 

and SSV (right) with respect to MC-based calculations serving as standard of reference. The solid and dashed lines denote the 

mean and 95% CI of the dose value differences, respectively. 

 

 

Figure 8. Anatomical region for dose evaluation (top left), axial view of delineated VOIs (bottom left). Average absorbed 

doses in defined VOIs obtained using DNN, MSV and SSV compared to MC calculations (right). 
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Figure 9. Voxelwise dose maps estimated using DNN, MSV, and SSV along with horizontal and vertical profiles drawn on 

the coronal view. 

IV. Discussion 

Despite the paramount importance of personalization in routine clinical setting, this paradigm is still in its infancy, 

and in the literature, only a few studies have addressed this issue. In this work, we propose a novel methodology 

to perform personalized radiation dose quantification, which is applicable in various nuclear medicine procedures 

including diagnostic, therapeutic, and theranostics. The current methodology has been employed in PET imaging 

dosimetry using 18F-FDG radiopharmaceutical, as the proof of concept. We developed a MC-based whole-body 

voxel-level dosimetry approach to enable studies that might provide answers to controversies on whether voxel‐

based dosimetry is superior to the mean absorbed dose approach [53]. Deep learning algorithms have been 

deployed to solve complex real-life problems by translating the fundamental physics behind the problem into the 

computer vision domain. In this work, we extended the core idea of the voxel-level MIRD dosimetry formalism 

by using DNN algorithms to predict medium-specific S-value kernels instead of using a single kernel obtained 

from deposited energy in a homogenous soft-tissue medium. The size of the kernel was 19.2 cm where the distance 

from the central voxel to the border is more than the mean free path of annihilation photons (511 KeV). In a kernel 

of 19.2 cm in three-dimensions representing voxelwise deposited energy in an infinite soft-tissue medium obtained 

from MC simulations, the ratio of the deposited energy at the border of the kernel to the central source voxel is 

about 10-4 order of magnitude confirming adequate size of the kernel. Although, increasing the size of the kernel 

up to three mean free paths of annihilation photons from the center of the kernel can improve the accuracy of dose 

estimation, it would induce considerably longer simulation time. The resolution of the kernel was defined based 

on regular axial resolution of PET images. The statistical uncertainty of MC simulations was less than 4%. It is 

obvious from Figure 2 that even in the border of the S-value kernels, the noise level owing to statistical uncertainty 

is not significant. To benchmark our assumption for extending the reciprocal theory to heterogeneous medium, we 

simulated a simple geometry consisting of soft-tissue, bone, and lung materials and calculated the deposited energy 

when the source and target were locally interchanged. The deposited energies calculated using the reciprocal theory 

were within 5% of those calculated by simulations. 

The predicted 3D kernels exhibited good agreement with MC simulations with a MRAE of 4.5%. The DNN 

predicted S-value kernel underestimates the ground truth as illustrated in the joint histogram analysis. The 

comparison of the summation of the predicted 3D kernel against the summation of MC S-value kernel, as an index 

of total energy deposition in the medium, showed an overall 4% underestimation. Since the deposited energy 

follows an inverse square law with respect to the distance from the source, S-value kernels bear a very broad 

dynamic range of intensities. Hence, we implemented a nonlinear intensity normalization using a sigmoid function 

before feeding the kernels into the network. Owing to the non-linear behavior of the sigmoid function, increased 

prediction errors were observed for certain intensity values after applying inverse sigmoid function. However, the 

model performed overall much better using non-linear normalization. 
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Voxelwise dose comparison between the proposed approach and conventional techniques revealed the 

limitations of SSV and MSV for internal dosimetry calculations. Since media with higher densities inherently 

contain more photon interactions, this causes higher energy deposition in the voxels, the summation on S-value 

kernels of higher density media has higher values compared to those with lower densities. The profiles of absorbed 

dose showed that SSV overestimated the deposited energy within media with a density lower than soft-tissue (e.g. 

lung) (Figure 5). This concept applies to densities higher than soft-tissue, such as bone where SSV underestimated 

the deposited energy. None of the above-mentioned seminal works compared their results with the MSV approach 

which showed a good agreement with direct MC simulations. However, since this approach relies on the 

assumption that most absorbed doses are contributed by self-absorption, dose estimation errors are commonly 

observed at the boundaries of heterogeneous media (see Figure 7 where few data points significantly deviated from 

the reference), which is not clinically important. Furthermore, MSV underestimated or overestimated the absorbed 

dose in VOIs with small size depending on the medium density. Figures 5, 8 and 9 confirm that MSV overestimated 

the results with respect to the ground truth in bones. These errors were predictable since the total deposited energy 

in the soft-tissue kernel is 54% higher than that in lung kernel with the same size, while this difference is about -

34% between soft-tissue and cortical bone kernels. This limitation causes significant errors in absorbed dose 

estimation for small size lesions in media with different mass densities, e.g. pulmonary nodules, which is a critical 

issue in targeted radionuclide therapy. In addition, application of the MSV method is restricted to radiotracers with 

higher positron energy, since taking only self-absorption into account does not fulfill the requirements of accurate 

internal dosimetry. The Bland-Altman analysis demonstrated the lower bias and variance of DNN against MSV 

and SSV. The data points of the DNN method beyond the CI correspond to voxels at the boundary of body contour 

having no impact on dose calculation results. In addition, the data points of MSV method beyond the CI belong to 

voxels with heterogeneous boundaries, while for SSV three separate regions were formed corresponding to three 

different media. In nuclear medicine practice, knowledge of organ-scale absorbed dose according to the different 

radio-sensitivity of organs is required. Olinda/EXM is a commercial software package enabling estimation of 

organ-level absorbed doses according to the MIRD formalism. For the studied patient, it was observed that organ-

level dosimetry leads to underestimation of absorbed dose compared to voxel-level approaches, except the lungs, 

as a result of ignoring the non-uniformity of organ activity distribution and inter-subject variability of anatomical 

characteristics (Figure 10). Another limitation of this software is the use of isolated sphere model for tumor 

dosimetry. This latter assumes that tumors are spheres with unit density and uniform activity distribution and there 

is no information about the cross-dose from a tumor to other organs or from other organs to a tumor. Because of 

this limitation, in the case study with a pulmonary tumor, we determined the total number of disintegrations within 

the lung and tumor as input kinetic parameters of the lung in Olinda/EXM, which led to an overestimation of lung 

self-absorbed dose by Olinda/EXM. Conversely, the underestimation of tumor dose lies in the fact that only self-

absorbed dose is considered in Olinda whereas cross-irradiation is ignored [54, 55]. Absorbed doses in most organs 

 

 

Figure 10. Whole-body organ-level absorbed doses estimated using DNN, MSV, SSV and Olinda/EXM software. 
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considered as soft-tissue were almost similar when using MSV and SSV techniques. MSV was able to correct the 

SSV errors in regions with a density different from soft-tissue. 

The importance of accurate patient-specific voxel-scale internal dosimetry is rapidly growing thanks to recent 

advances in targeted radionuclide therapy and theranostics. Considering the advantages of voxel-level dosimetry 

in molecular radiotherapy in terms of providing dose indices, such as dose volume histograms, we developed a 

methodology for voxelwise dosimetry. The execution time for building a whole-body voxel dose map is less than 

0.1% of the time required for direct MC simulations. However, the computational time is longer than that of MSV 

because it has one additional component for inferring the specific S-value kernels. The total computation time for 

the first step is about 0.7 h using NVIDIA GEFORCE RTX 2080 Ti platform, whereas the required time for the 

convolution process is about 0.1 h on a 10-core CPU and 32 GB RAM. The results presented in this work 

demonstrated that MSV provides reasonable accuracy for dose estimation in diagnostic nuclear medicine 

procedures. However, due to its limitations, it introduces significant uncertainties which might limit its adoption 

in therapeutic applications. The proposed method is robust and accurate and suitable for direct transfer to other 

molecular imaging modalities. Its advantages compared to other deep learning-based dosimetry techniques 

reported in the literature [35, 36] is that it does not require whole-body dose maps for the training step. In addition, 

a single trained model for a given radionuclide could be employed for all compounds labelled with this 

radionuclide. Furthermore, the fundamental principles and/or underlying physics of energy deposition have been 

considered in our model. The latter depends directly on the energy absorption coefficient of the target voxel and 

the probability of Compton scattering, which depends on the density of the medium. Previous works did not 

explicitly incorporate in their model Compton scattering and its contribution to the overall absorbed dose. In this 

regard, deep learning algorithms were employed to predict the absorbed dose map from the density/activity maps 

using an end-to-end scheme without explicitly modelling the underlying physical principles (Compton scattering 

and cross-irradiation). More importantly, we developed a simple network with a single input/output channel 

featuring detailed modelling of the underlying physical interactions, which enables efficient and versatile training 

of the algorithm with minimal risk of overfitting. Owing to the simple but efficient deep learning-based core of 

the proposed framework (smaller number of trainable parameters compared to end-to-end image translation), the 

model provides an accurate and robust solution using a small training dataset. 

This work bears inherently some limitations that should be acknowledged, among them the long time required 

for simulation-based generation of ground truth dose maps. First, the size of S-value kernel is about one mean free 

path of annihilation photons. Second, extending the reciprocal theory to heterogeneous media is not 

straightforward. However, we proved the efficacy of the concept using a simple simulation study. Third, the effect 

of the limited size of the training and validation dataset warrants further investigation. However, a single patient 

study was presented as a proof of concept. Unlike organ-level dosimetry that is inherently subject-sensitive, 

estimation of voxel-wise dose distribution based on the voxel-based MIRD formalism is not subject-sensitive since 

it depends only on physical parameters (S-value kernel, density map and activity distribution). In this context, the 

accuracy of the results depends only on how the S-value kernels are determined. Let’s consider that SSV performs 

well in homogenous media, the accuracy of this method is not related to the type of medium or the activity 

distribution. The accuracy of this method directly depends on the S-value kernels applied for voxel-wise dosimetry. 

Likewise, the accuracy of the proposed methodology is linked to the accuracy of the specific S-value kernels while 

it is not dependent on patient-specific anatomy and activity distribution. Hence, in the first step, we evaluated our 

S-value prediction voxel-by-voxel to assess the accuracy of our approach (Figure 4). Lastly, we only provided a 

model for 18F, yet our method is extendable to all types of radionuclides/radiotracers where transfer learning can 

be exploited to obviate the need for regeneration of large ground truth dataset for training the network. In particular, 

for positron-emitting radiotracers with different positron energies, the generation of the ground truth should be 

repeated for a kernel size equal to the range of positrons. Since the deposited energy outside the positron range is 

contributed by the interactions of annihilation photons, for any pure positron-emitting radiotracer, the central part 

of S-value kernels should be replaced with the center of simulated S-value kernels for 18F generated in the current 

study.  
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V. Conclusion 

We proposed a unified methodology for patient-specific voxelwise whole-body internal dosimetry using deep 

learning algorithms. The comparison of the proposed approach with standard of reference MC simulations revealed 

very good accuracy with a MRAE of 2.6%. Our technique also outperformed conventional voxel-level and organ-

level MIRD-based formalisms. Future work will focus on exploiting the current methodology to generate whole-

body voxelwise dose maps in few minutes to serve as Monte Carlo-based ground truth datasets. A network with 

two-channel inputs consisting of density/activity map pairs and one output channel corresponding to voxelwise 

dose maps obtained from the previous step is then trained to develop a model for straightforward prediction of 

whole-body dose maps from hybrid images. 
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Abstract 

Background and purpose: Accurate calculation of the absorbed dose delivered to the tumor and normal tissues 

improves treatment gain factor, which is the major advantage of brachytherapy over external radiation therapy. To 

address the simplifications of TG-43 assumptions that ignore the dosimetric impact of medium heterogeneities, 

we proposed a deep learning (DL)-based approach, which improves the accuracy while requiring a reasonable 

computation time. 

Materials and methods: We developed a Monte Carlo (MC)-based personalized brachytherapy dosimetry 

simulator (PBrDoseSim), deployed to generate patient-specific dose distributions. A deep neural network (DNN) 

was trained to predict personalized dose distributions derived from MC simulations, serving as ground truth. The 

paired channel input used for the training is composed of dose distribution kernel in water medium along with the 

full-volumetric density maps obtained from CT images reflecting medium heterogeneity.  

Results: The predicted single-dwell dose kernels were in good agreement with MC-based kernels serving as 

reference, achieving a mean relative absolute error (MRAE) and mean absolute error (MAE) of 1.16±0.42% and 

4.2±2.7×10−4 (Gy.sec-1/voxel), respectively. The MRAE of the dose volume histograms (DVHs) between the DNN 

and MC calculations in the clinical target volume were 1.8±0.86 %, 0.56±0.56 %, and 1.48±0.72 % for D90, V150, 

and V100, respectively. For bladder, sigmoid, and rectum, the MRAE of D5cc between the DNN and MC 

calculations were 2.7±1.7 %, 1.9±1.3 %, and 2.1±1.7 %, respectively. 

Conclusion: The proposed DNN-based personalized brachytherapy dosimetry approach exhibited comparable 

performance to the MC method while overcoming the computational burden of MC calculations and 

oversimplifications of TG-43. 
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I. Introduction 

Brachytherapy is a radiation therapy technique where radiation sources are located at small distances from the 

tumors, temporarily as in high-dose rate brachytherapy (HDR-BT) or permanently as in low-dose rate 

brachytherapy. In routine clinical practice, the dose distributions are commonly calculated using a simplified 

formalism proposed by the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) 

[1] or its updated version (TG-43U1) [2]. In these formalisms, the patient’s anatomy is considered as a water-filled 

homogenous medium. A number of factors that influence the dose distributions, such as tissue and applicator 

heterogeneities, the finite geometry of the patient, the source-source and source-cable attenuation, and electron 

contributions to absorbed dose are ignored. Commercial treatment planning systems (TPSs), such as SagiPlan 

(Eckert & Ziegler BEBIG Co., Germany), attempted to address the limitations of TG-43 in attenuating media like 

a shield and metallic applicator through multiplication of the dose distribution obtained from the TG-43 model by 

an analytical attenuation factor. However, the effects of transmission angles and attenuation dependency on 

distance from the applicator in the region behind the shield (caused by multiple scattering) are ignored. A number 

of studies have addressed the limitations of TG-43 considered to cause an over/underestimation of the estimated 

planned dose and consequently treatment evaluation parameters for the clinical target volume (CTV) and organs 

at risk (OARs) in different disease sites [3-12]. The AAPM published the recommendations of Task Group 186 on 

model-based dose calculation algorithms (MBDCAs) in brachytherapy beyond the TG-43 formalism [13]. They 

recommended the collapsed-cone [14], superposition/convolution [15], deterministic solutions using the linear 

Boltzmann transport equation [16] and Monte Carlo (MC) methods to improve the accuracy of dosimetric 

calculations in TPS. In MBDCAs, the exact definition of source and applicator geometry inserted within the 

patient-specific computational model and heterogeneity corrections are implemented into the model [13]. For 

photon-emitting sources at energies lower than 150 KeV, the predominance of photoelectric interactions makes a 

large difference in energy absorption coefficients between different tissue types, which necessitates the 

introduction of heterogeneity corrections in dosimetry calculations. However, the dosimetric impact of tissue 

heterogeneities and finite patient dimensions for high-energy photon sources of Co-60 and Ir-192 in different 

treatment sites has been reported to be about 2% difference of dose-volume histogram (DVH) parameters between 

TG-43 against MC ground truth for the CTV, while these differences exceeded 5% for OARs [17]. Desbiens et al. 

[7] studied the dosimetric impact of medium heterogeneities for Ir-192 in gynecologic HDR-BT using MC 

simulations. They reported about 1% error on DVH-driven indices by taking into account tissue heterogeneities, 

whereas they reported that excluding the air pocket and applicator material from DVH calculation produces about 

8.7% difference in CTV D90 with respect to TG-43. 

Personalized dosimetry is required to improve clinical outcomes while lowering the risk of radiation-induced 

toxicity by growing recognition of precision medicine as a new paradigm aiming at increasing treatment efficacy. 

In this context, direct MC simulation is considered the gold standard for dosimetry calculations. However, its 

heavy computational burden and long execution time made it prohibitive for routine clinical application. More 

recently, the clinical adoption of deep learning (DL) has been extended into radiation oncology through treatment 

planning optimization [18-25]. A number of studies assessed knowledge-based automatic treatment planning using 

deep learning algorithms for external beam radiation therapy to overcome the computational burden of MC-based 

dose distribution [26-29] for head and neck cancer patients. In our previous work, we developed a framework for 

patient-specific internal dosimetry, where the core idea of the Medical Internal Radiation Dose Committee (MIRD) 

formalism was employed by training a physics-informed neural network to predict specific deposited energy 

kernels in a heterogeneous medium [30]. It was shown that the deep learning-based model outperformed 

conventional MIRD approaches compared to reference MC simulation. We further extended our work to patient-

specific dose distributionning in brachytherapy. An independent work was simultaneously carried out by Mao et 

al. [31] on Ir-192-based HDR-BT dose prediction using deep learning. They designed a modified U-Net to predict 

the dose distribution considering contoured structures of patients, where 3D dose map obtained from MC 

simulations serving as ground truth. Considering the current literature, the main contribution of this work is (i) 

developing a physics-informed DL-based framework through feeding full voxel density map into the network 

(considering the presence of dense objects, such as metallic applicators, ovoid caps and air pockets); (ii) 

introducing the volumetric dose map as a whole (taking into account attenuation/ Compton scattering and their 

contribution to the overall absorbed dose). 
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In this work, we investigated the potential of predicting brachytherapy dose distributions using a 3D Deep 

Neural Network (DNN), wherein a two-channel input consists of a density map obtained from CT images along 

with the deposited energy kernel in water was fed into the network to predict patient-specific planned dose 

distributions. 

II. Materials and methods 

Method description 

In the first step, we developed a MC-based Personalized Brachytherapy Dosimetry Simulator (PBrDoseSim) 

wherein CT and DICOM-RT plan dataset are imported into the system to estimate patient-specific dose 

distribution. In the second step, we employed a DL model to generate personalized dose distributions from patient's 

CT images and treatment plans (Figure 1). The DL network was designed as an image-to-image regression model 

to predict the specific energy deposition kernel when the radioactive source is located in the dwell position obtained 

from the treatment plan. The input data for the training is a two-paired channel composed of dose distribution 

kernel in water medium along with volumetric density maps. The corresponding output is a 3D dose distribution 

inspired from MC simulations. Given the input matrices, PBrDoseSim was employed to produce the dose 

distribution kernel for single-dwell sources considering the radioactive seed with unit activity located in the dwell 

position. The final dose distribution was reconstructed by superposition of single-dwell-position dose maps 

through dwell-time-weighted linear combination. 

 
Figure 1. graphical abstract of the dose reconstruction procedure. The green panel shows the MC simulator structure, the red 

panel represents deep learning-based single-dwell dose kernel prediction, and the blue panel represents post-processing and 

analysis steps. Dw: single-dwell dose distribution in water, DPS: single-dwell dose distribution in patient-specific geometry. 

geo: geometry, Src: source, pos: position, ori: orientation. 
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Data preparation 

Data from 78 patients with locally-advanced cervical cancer treated with 3D conformal radiotherapy (45 Gy in 25 

fractions) and HDR-BT (Co-60 source, 3/4 fractions and 8.6/7 Gy per fraction) as boost using a fletcher applicator 

were collected. A total of 2355 single-dwell positions (on average 30 dwell positions per patient) were obtained. 

Detailed patient demographics are given in Table 1. We randomly divided our patient data into training (70) and 

external validation (8) datasets. Division by patient class was adopted to avoid sharing the patient geometry 

information between the training dataset and unseen external validation set. 

 

Table 1. Patients’ demographic information. 

Patients split CTV_volume 

(cm3) 

Pescribed 

dose-D90 (Gy) Dwell positions (#) 
Dwell-pos 

Sparsity 

Ch. 1 Ch. 2 Ch. 3 

Training 

(No. 70) 

21.94±16.11 8.45±0.85 7.4±3.0 15.7±5.0 6.95±2.0 20.73±3.84 

Validation 

(No. 8) 

20.22±8.83 8.62±0.86 7.3±1.1 16.8±3.6 7.7±1.0 20.16±3.32 

Ch: applicator channel (Ch. 1: left oviod, Ch. 2: tandem and Ch. 3 right ovoid) 

Dwell-pos Sparsity: 
1

𝑁
∑ 𝑟𝑑𝑤𝑒𝑙𝑙−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − �̅�𝑁 , N: total number of dwell positions 

 

Monte Carlo simulation  

An in-house developed software for brachytherapy dose planning based on MCNP transport code was developed 

[32]. This program was implemented in Matlab and comprises four modules: i) geometry, ii) source definition, iii) 

simulation parameters, iv) output definition. The geometry module is fed by CT images. This module reads 

patient's CT images to provide a density map through the conversion of CT Hounsfield units (HUs) into different 

density classes [33]. In this module, the resolution size is a variable that can be modified by the user. Besides, the 

densities and corresponding material compositions assigned to each voxel are available to users for modification 

as an external library. The source module provides the definition of the source in MCNP code consisting of the 

seed model, particles and energy definition, as well as position and orientation of the source. The source geometry 

is defined using MCNP microbodies according to the source design. The mode and source energy spectrum are 

defined based on the radioactive source material. The position and orientation of the seed is extracted from 

DICOM-RT data (seed orientation is defined based on the two end-to-end dwell positions). The simulation 

parameters include the number of histories tracked in the model and variance reduction techniques. The output 

module defines the parameters of the scored MCNP tally and the geometry of the output that can be fine-tuned by 

the user (Supplemental Table 1). 

Dw representing the dose distribution in water was generated through the simulation of specified source seed 

in an infinite homogenous water medium. Accodrding to TG-43 formalism, heterogeneity correction of metallic 

applicator was applied on the planned dose by multiplication of an attenuation factor depending on the applicator 

material and wall thickness. 

In this work, density maps consisting of 13 density classes (air, lung, fat, soft tissue, and bone) where values 

above 100 HU were divided into eight discrete density groups. Afterward, the generated density maps were 

resampled to 3 mm3 voxel size and were directly imported to the MCNP code, representing a heterogeneous 

medium of patient’s anatomical structures. The material compositions were defined based on Schneider et al. [33]. 

BEBIG Co-60 HDR source (Model Co60.A86) used in this study was designed according to the company model 

(Supplemental Figure 1). The mode and energy spectrum of the emitted source particles was defined based on Co-

60 (photons with two equal emission probability energy bins of 1.33 MeV and 1.17 MeV). The position and the 

source orientation were extracted from the DICOM-RT file and used as input to MCNP code considering the 

original coordinate in the TPS. Metal applicator (Fletcher tandem and oviods, Eckert & Ziegler BEBIG Co., 

Germany) segmented on CT images was modelled as foreign objects (density of 4.51 gr/cm3) within the patients. 

5 million (5×106) particles were tracked in these simulation sets and truncation methods, i.e., energy cut, were 

used as MCNP variance reduction techniques. Energy deposition mesh tally (type 3) was used in this simulation. 

3D dose grids with a size of 34×34×34 voxels and a resolution of 3mm3 were designed to score voxelwise energy 

deposition. To benchmark our simulator, we designed a single dwell position treatment plan in a water sphere of 
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5 cm radius (Supplemental Table 2) and quantitatively analyzed the planned dose obtained from the TPS against 

our simulation. 

Deep neural network architecture 

In this work, a modified ResNet [45] architecture implemented on the TensorFlow platform was employed. The 

ResNet architecture consists of 20 cascaded convolutional layers with three levels of dilated residual blocks 

(Supplemental Figure 2). The first convolution layer is cascaded by three residual blocks with a 3×3×3 voxel 

convolution used to extract low-level features from the data. The next three residual blocks were designed to 

extract medium-level features using a dilation convolution operation by a factor of 2, whereas the last three residual 

blocks capture high-level features by a dilation factor of 4. The network was trained to learn heterogeneity 

correction on Dw according to the information derived from density maps. The optimization of the network was 

defined based on L2 norm as objective function (OF) in addition to a regularization term of L1 in the following 

form: 

𝑂𝐹 (𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑) =  
1

2
∑(�̂� − 𝑦)2 +

𝜆

2
∑ 𝑤          (1) 

 

where 𝑦,  �̂� and λ are ground truth, prediction, and decay factor, respectively. w represents trainable parameters. 

The following setting was used for the training: optimizer = Adam, learning rate = 0.0001, batch size = 20, decay 

= 0.00001. Pairs of volumetric density maps representing medium heterogeneity and Dw reflecting the dose 

distribution around dwell position in homogenous medium as input, and corresponding patient-specific dose map 

(Dps) as output were fed into the DNN. Dps obtained from PBrDoseSim has a large dynamic range owing to the 

steep dose gradients with the distance to the source. Hence, it was non-linearly normalized for the sake of effective 

training of the network. 5% of the training dataset was isolated for validation within the training of the model.  

Evaluation strategy 

Quantitative analysis of model performance was conducted by evaluating the mean relative absolute error 

(MRAE), voxelwise mean absolute error (MAE), and kernelwise absolute mean error (AME) between DNN and 

MC-based single-dwell dose maps. Furthermore, dose distribution quality metrics, i.e. 3D Gamma analysis for 

multiple criteria (1%/ 3% dose deviation (DD), 3 mm distance‐to‐agreement (DTA), total plan volume/ 100% 

isodose volumes), conformity index (COIN), dose homogeneity index (DHI), dose non-uniformity ratio (DNR), 

and dose-volume histogram (DVH) parameters were investigated as clinically relevant indices. Two groups of 

indicators consisting of CTV-based indices and OAR-based indices were defined. Dxx is the absorbed dose received 

by xx % of the target volume, whereas Vxx is the percentage of the target volume receiving at least xx % of the 

prescribed dose. Dxcc represents the minimum dose received by x cm³ of an OAR. The distribution of the results 

was analyzed using Kolmogorov–Smirnov test and pairwise comparison between different methods against 

reference was analysed using post-hoc-test (p < 0.05).  

III. Results 

The details of PBrDoseSim evaluation in water phantom are summarized in Supplemental C. A single-dwell dose 

kernel and combined dose distribution along with axial dose profiles are illustrated in Figure 2, where the relative 

difference between the two profiles are about 0.8% and 1.59%, respectively. The MRAE in a 10×10×10 window 

around the dwell position (MRAEc) was calculated owing to the large contribution of absorbed doses in proximity 

to the source position, yielding 1.16±0.42 % difference between DNN and MC results. 
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Figure 2. Single-dwell dose kernel (axial view, top panel) and combined dose map (pear-shaped dose distribution, coronal 

view, pear shape, middle panel) obtained from MC simulations and DNN model along with bias map in absolute unit of Gy 

and line profiles across the kernels. Comparison of MAE and AME (bottom left), MRAE (%) and MRAEC (%) (bottom middle) 

obtained within planned dose when using DNN against MC-based approaches. Joint histogram analysis displaying the 

correlation between the local voxels between predicted dose maps against their corresponding MC-based ground truth (bottom 

right). 

Clinical studies 

Dose quality indices obtained from MC simulation through the whole dataset are illustrated in Figure 3. The 

average value (95% Confidence Interval (CI95%)) of COIN, DNR and DHI indices were calculated as 0.24 (0.15), 

0.65 (0.15), and 0.34 (0.15), respectively. The DNN outperformed other approaches by achieving the lowest bias 

(0.05%) and the smallest variance (0.48%) against MC calculations. Voxelwise gamma analysis in the form of 

cumulated volume histogram of predicted DNN-based dose distribution compared to MC-based dose map for 

multiple criteria of all studied cases are presented in Figure 3-bottom. This graph confirms the gamma passing rate 

(Gamma-value<1) of about 99.9% for all analyzed criteria.  

The predicted DNN-based DVH shows a consistent shape with those obtained from the MC method serving as 

reference (Figure 4). The mean relative absolute error of DVH-driven dose metrics between DNN and Dw approach 

with respect to MC-based results were 1.4±0.9 % and 2.4±2.1, respectively. While for volumetric metrics, these 

were 1.05±1.18 % and 2.1±3.2 %, respectively. In the current cervical patient dataset, three organs were delineated 

as OARs (sigmoid, bladder, and rectum) where D5cc and D2cc metrics are shown in Figure 5. The mean relative 

absolute error of DVH parameters in OAR regions between DNN and Dw compared to MC simulations resulted in 

1.6±1.6 % and 8.7±14.94 %, respectively. According to Kolmogorov–Smirnov test on the current dataset, non-

parametric statistical analysis was utilized. The post-hoc comparison confirms that the differences between DVH-

driven metrics obtained from DNN (p-value= 0.99) and Dw (p-value= 0.68) with respect to those from MC-based 

approach are not statistically significant.  
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3D gamma analysis for the unseen external validation set is illustrated in Figure 6, which compares the 

predicted DNN-based dose distribution against MC-based dose map for multiple criteria, namely 1% / 3% DD in 

3mm DTA and local normalization, for both total dose distribution volume and 100% isodose volume. The 

cumulated volume histogram depicts the gamma passing rate (Gamma-value<1) of 99.9% for all analyzing criteria. 

Furthermore, the maximum intensity projection of 3D gamma maps of validation dataset is shown in Supplemental 

Figure 5. Quality indices obtained from DNN and Dw dose distributions are depicted along with MC-based as 

ground truth (Figure 6). The MRAE of COIN and DNR indices between DNN models compared to MC approach 

were 0.8±0.5 % and 1.8±2.3 % while these differences exceeded 0.8±0.4 % 3.4±4.6 % for Dw model compared to 

the reference. 

 

Figure 3. Dose quality metrics of the whole dataset according to the dose distribution obtained from MC-based calculations 

(top left) along with the differences between quality indices calculated by DNN and Dw models against MC ground truth (top 

right). Cumulated volume histogram of gamma analysis between dose maps obtained from DNN with respect to MC-based 

dose distributions for 100%isodose volumes, (1% and 3%) DD, 3mm DTA, [coded as 100%isodose, (1% and 3%), 3mm] and 

total dose volumes, (1% and 3%) DD, 3mm DTA, [coded as total, (1% and 3%), 3mm] (bottom).  

 

The performance of the proposed DNN model on the external validation in terms of DVH-driven parameters 

are summarized in Tables 2-3. The MRAE of DVH metrics between DNN and MC was 1.5±0.88 %, 1.8±0.86 %, 

1.3±1 %, 0.85±0.43 %, 0.56±0.56 %, 1.48±0.72 %, 0.26±0.38 % for D95, D90, D50, V200, V150, V100 and V50 

in the CTV region, respectively. Conversely, the Dw approach compared to MC yielded 2.45±2 %, 2.56 ±1.4 %, 

3.9±2.1 %, 2.6±2.5 %, 2.9±1.9 %, 2.5±1.6 %, 0.37±0.55 % for the same metrics, respectively. For D2cc of the 

bladder, sigmoid, and rectum, the MRAE between DNN and MC method was 3.2±1.9 %, 2.4±1.6 %, 2.5±2 %, 

respectively. The post-hoc-test revealed no statistically significant differences between the metrics obtained from 

DNN with respect to the MC-based approach (p-value = 0.82). An intraclass correlation coefficient of 99.8% 

confirms that the results obtained from the proposed DNN method are in excellent agreement with MC serving as 

reference. 
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Figure 4. Mean DVH plots along with CI95% (light shaded area) for the study population comparing the proposed DNN (left, 

dashed line), and Dw (middle, dotted line) plans against MC results (continuous line) are given for CTV (pink), rectum (blue), 

sigmoid (green) and bladder (red). DVH comparisons between DNN (dashed line), Dw (dotted line) approach with respect to 

MC-based DVH (continuous line) are plotted for a randomly selected case study (right). 

 

 



156 

 
Figure 5. Relative difference of DVH driven dose-volume indices between DNN and Dw method against MC-based approach 

for CTV (top) and OAR (bottom) for the studied population. 

 

 

 
Figure 6. Left panel: Mean gamma volume histogram (dashed) plots along with CI95% (light shade) for the external validation 

set comparing the proposed DNN model against MC-based dose distribution are given for 100% isodose volumes, (1% and 

3%) DD, 3mm DTA [coded as 100% isodose, (1% and 3%), 3mm] and total dose volumes, (1% and 3%) DD, 3mm DTA 

[coded as total, (1% and 3%), 3mm]. Right panel: Quality indices calculated by MC, DNN and Dw models. 

 



157 

Table 2. Comparison between the proposed DNN and Dw models with respect to MC. The mean value of the DVH-driven 

dose metrics obtained from MC calculations are provided in absolute unit of Gy. The interquartile difference of dose indices 

in absolute unit of Gy and mean relative error in percent difference between DNN and Dw model against MC are presented for 

CTV and OARs. 

ROI 

  

DVH 

metrics 

MC 

(Gy) 

DNN vs. MC 

Diff (Gy) 

Dw vs. MC 

Diff (Gy) 
DNN_MC 

Diff±std 

(%) 

Dw_MC 

Diff±std 

(%) 
 

(mean±CI) 25% 50% 75% 25% 50% 75% 

CTV D95 5.90± 1.6 -0.08 -0.04 0.07 -0.15 -0.06 0.02 -0.05±1.86 -0.7± 3.3 

D90 6.69± 1.7 -0.14 -0.11 0.10 -0.19 -0.10 -0.06 -0.53± 2.11 -1.7±2.5 

D50 12.12± 2.8 -0.20 -0.10 -0.02 -0.61 -0.46 -0.31 -0.90± 1.45 -3.9±2.1 

Bladder D5cc 5.9±1.4 -0.08 0.05 0.25 -0.63 -0.37 -0.12 1.61±3 -5.93±3.5 

D2cc 7.56±1.66 -0.11 0.20 0.37 -0.54 -0.44 -0.20 1.92±3.46 -5.91±4.3 

Sigmoid D5cc 2.34±1.36 -0.11 -0.04 0.01 -0.01 0.06 0.15 -1.43±2 3.29±6.5 

D2cc 2.94±1.67 -0.11 -0.04 0.01 -0.01 0.14 0.21 -0.80±3 4.23±6 

Rectum D5cc 3.21±0.53 -0.09 -0.04 0.00 0.04 0.09 0.15 -0.65±2.87 2.87±3.9 

D2cc 3.91±0.61 -0.14 -0.03 0.03 -0.04 0.02 0.11 -1.32±3.1 0.84±3.3 

 

Table 3. Mean value of the DVH-driven volume metrics obtained from MC calculations provided in absolute unit of cm3 and 

relative percent of CTV volume. The interquartile difference of volume indices in (%) between the DNN and Dw models against 

MC is presented for the CTV. 

ROI 

DVH 

volume 

metrics 

MC 

Reference 

(cm3) 

MC 

Reference 

(%) 

DNN vs. MC 

(%) 

Dw vs. MC 

(%) 

(mean±CI) (mean±CI) 25% 50% 75% 25% 50% 75% 

CTV 

V200 6.36± 3 30.8± 10.8 -0.83 -0.65 0.35 -3.71 -2.04 -0.81 

V150 9.73± 4.7 46.7±16.3 -0.83 -0.27 0.00 -4.55 -2.78 -1.11 

V100 15.29±7.5 72.7±22.8 -1.63 -1.02 0.40 -3.72 -2.44 -0.77 

V50 19.81±9.2 96.3±8.5 -0.10 0.00 0.09 -0.24 0.00 0.19 

 

IV. Discussion 

Accurate calculation of the absorbed dose delivered to the tumor and specific surrounding OARs enables to 

maximize the treatment gain factor, which is the main advantage of brachytherapy over external beam 

radiotherapy. In this study, we developed a unified MC-based dosimetry platform enabling the transition from TG-

43 to MBDCAs approach while covering the limitations of analytical models in MBDCA [34, 35]. We designed a 

novel DNN architecture to solve a complex problem, i.e. Boltzmann transport equation, by translating the 

underlying fundamental physics of particle interactions into the computer vision domain.  

We prepared a dataset of 78 cervical cancer patients from which only one treatment session was chosen to 

increase anatomical variabilities. The simulator was fed by with patient CT images and treatment plans providing 

patient-specific geometry and radioactive source position and orientation within the patient. 10 cm dose grid’s size 

was selected based on the steep dose gradient with radial distance (inverse square law) [36] that covers the desired 

volume of interest for clinical dose evaluation. To confirm this assumption, isodose contours were calculated at 

the boundaries of selected dose grids for the whole dataset corresponding to 15 % (±4%) of the prescribed dose. 

In addition, none of the evaluated metrics, i.e. DVH-driven indices were affected by this kernel size.  

The predicted 3D dose kernels from DNN exhibited good agreement with MC serving as reference confirmed 

by joint histogram analysis (Figure 2). However, MRAE of 6.3% in the full planning volume can be attributed to 

the larger statistical uncertainty associated with MC simulations in far distances from the source. Voxel dose 

difference obtained from Dw model compared to MC was calculated with MRAE of about 13±3 % while MRAEc 

exceeds 31±6 % in the vicinity of dwell position (Supplemental Figure 4). Gamma analysis shows that at least 

99.99% of points passed all criteria through the whole dataset (3 mm DTA was restricted by voxel size of the dose 

grids). In terms of DVH indices, DNN shows a comparable performance against MC calculations with an average 
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relative bias of 0.7 (±1.4) % in the CTV volume. While, Dw showed an overall negative bias (-2.2 %) and higher 

variance (3.34 %) against MC results (Figure 5). For OARs, the inserted balloon within the bladder caused a 

considerable underestimation of absorbed dose obtained from Dw, while DNN was trained to correct for its effect. 

For the sigmoid and bladder, there is low bias since OARs are almost composed of soft tissues and not located in 

the high dose regions, while the high variance is mainly caused by the presence of air pockets ignored in Dw 

models (low dose area in Figure 4). External validation revealed good generalizability of the model with an average 

bias of 0.49 (±1.8)% in CTV dose indices with respect to the MC ground truth (details on case study interpretations 

are presented in Supplemental F). Mao et al. [31] reported the same magnitude of relative error (prostate: CTV 

D90=0.73%, OAR D2cc~1.1%; cervix: CTV D90=1.7%, OAR D2cc~ 2%) between their DL model against MC 

as ground truth using Ir-192. Although, they reported slightely less error for quantitative indices in their original 

model evaluation (prostate), they did not provide any evaluation on their full dose distribution compared to ground 

truth. Furthermore, they did not provide any baseline comparison, i.e. against Dw, thus, direct comparison of 

different models is not fair/insightful (owing to different dataset). One of the major limitation of their model is that 

it relies on contoured structures rather than original density map obtained from CT images. Therefore, it is unable 

to account for dense materials such as metallic applicator, ovoid caps, CT contrast agents, air pockets, etc, while 

our framework was based on a realistic physical model considering original voxel density maps as input. 

Furthermore, they used modified U-Net architecture composed of encoder-decoder (down and up sampling/polling 

layers) that converts original images to feature space by losing image resolution that would be issue in the presence 

of small heterogenieties. while in our proposed modified ResNet algorithm, image size is steady through all layers 

without losing image resolution. We modeled the fundamental principles of energy deposition [37] through fully 

volumetric dose map rather than patchwise learning. However, previous studies on Dl-based dose prediction did 

not explicitly incorporate compton scattering in their network and ignored its contribution to the overall dose 

distribution [31, 38, 39]. 

Overall, the DNN model outperformed TG-43-based approach in terms of heterogeneity correction in clinically 

relevant parameters of the HDR-BT planned dose. The required time for prediction of a combined dose (~30 dwell 

positions) was about 0.6 sec (2080TI GPU, Xeon 2.30) compared to 540 min (10 core CPU, 64-GB RAM ). This 

work bears some limitations that should be acknowledged. First, the choice of dose grid size/ resolution and particle 

histories were restricted by the long simulation time and limited GPU memory for DL training process. Source 

position/ orientation within the voxel is affected by course grid resolution, however, it has a local effect (first 

vicinity voxel) on deposited energy distribution and do not impact DVH-derived parameters. Second, the effect of 

the limited size of the training and validation dataset warrants further investigation. Third, we only provided a 

model for cervical HDR-BT using Co-60. Yet, this methodology is extendable to all types of brachytherapy 

treatments and different disease sites, where transfer learning can be exploited to obviate the need for a large 

ground truth dataset for model training. 

It is worth highlighting the potential opportunities and challenges in the utilization of deep learning into 

brachytherapy personalized dose distributionning. In this context, DL algorithms can provide a solution for fast 

personalized dosimetry without compromising the accuracy. One of the challenges that DL can address is the 

construction of patient-specific computational models using structural images. It highly impacts the accuracy of 

MC-based dose calculation. Furthermore, it can be directly deployed for construction of planned dose for 

verification of clinical TG-43 dose distributions, inverse planning and treatment outcome prediction. 

 

V. Conclusion 

We developed a unified pipeline for MC-based dosimetry in HDR-BT that has been used to provide an accurate 

set of MC simulations on a large retrospective cohort. We further developed a DNN model to provide an alternative 

solution for accurate personalized dose distributionning in brachytherapy to overcome the computational burden 

of MC simulations. The proposed algorithm achieved good agreement with MC calculations while outperforming 

the conventional TG-43-based formalism. Future work will focus on extending the core idea to different 

radioactive seeds for various disease sites. 
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Supplemental material 

Monte Carlo-based dose simulation 

A unified MC-based dose calculation engine, PBrDoseSim, was developed for personalized brachytherapy based 

on MCNP radiation transport code. The simulator has the capability of modifying all modules, e.g. source model, 

applicator model, tally score definition, and simulation setting depending on the application, supporting different 

types of input images, e.g. DICOM, NIFTY, NRRD, etc, and modifying material composition and density of the 

patient-specific computational model.  

 

Supplemental Table 4. Monte Carlo simulations description as recommended by TG-268 task group. 

 

Item name Description 

Code, version MCNPX (version 2.6) 

Validation Validated against phantom study 

Timing 18 mins on a 10 Intel core node from 3.7 GHz processor. 

Geometry Patient-specific voxelwise computational model obtained from CT images 

segmented by multi-level thresholding (Voxel resolution: (3mm)3). 

Phantom material: mass density obtained from HU values (CT images) and 

assigning material composition from [40] 

Source 

description 

BEBIG 60Co HDR source (model Co60.A86). Energy spectrum of 60Co was 

defined as photon-emitting source with two equal emission probability energy bines of 

1.33 MeV and 1.17 MeV. Source positions was extracted from RTplan and source 

orientation was derived from the direction of two consecutive dwell positions 

(Supplemental Figure 1). 

Cross sections ENDF/B-VI Release 8 Photoatomic Data. 

Transport 

parameters 

Energy Deposition Mesh Tally (type 3), Tally scores energy deposition data in 

which the energy deposited per unit volume from all particles is included (Electron/ 

photon transport). 

Variance 

reduction  

Energy cut-off in 10 KeV electron and photon particles 

Histories 

(statistical 

uncertainty) 

5×10
6

 photon histories.  

Statistical uncertainty per particle history (type A): <0.05 for single-dwell 

simulation in 1 Gy isodoses (10% of maximum prescribed isodose). 

Postprocessing Convert to voxel dose in absolute unit of Gy by multiplication in a constant factor 

(UC×Dwell_time×gamma yield×ReferenceAirKermaRate/306). UC: unit conversion 

in Gy. 

 

 

 

Supplemental Figure 7. BEBIG Co-60 HDR source (model Co60.A86) collision score simulation within a homogeneous 

water medium.  
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Network architecture 

 

 
Supplemental Figure 8. Schematic diagram of the ResNET architecture. 

 

Monte Carlo simulator evaluation using water phantom 

The details of the developed MC simulator are summarized in Supplemental Table 1 according to the 

recommendations of TG-268 [41]. The benchmark study performed on a 5 cm radius water sphere with a single 

central source yielded a gamma index (3%/3 mm) of 0.9999 between the simulated dose map and TG-43-based 

planned dose. DVH comparison between the two methods is shown in Supplemental Figure 3. The absolute percent 

difference between DVH parameters, i.e., D95, D90, V200, V150, V100, V50, was zero except for D90 where it 

was about 3% (likely caused by the statistical uncertainty of MC results, < 5%). 

RTplan parameters for irradiation of a spherical water phantom while the source was located in the center of 

the phantom with a single dwell position is illustrated in Supplemental Table 2. The DVH plots are shown in 

Supplemental Figure 3. 
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Supplemental Table 5. RTPlan parameters of water phantom dose planning. 

 

 
Supplemental Figure 9. DVH plot for dose plan estimated by MC versus dose plan provided by Sagiplan software based on 

TG43 formalism. 

 

Dw model performance 

The analysis revealed that Dw resulted in higher bias but lower variance in dose calculation as a result of ignoring 

tissue heterogeneity. Unlike the DNN model, Dw underestimated the deposited energy in the vicinity of the dwell 

position owing to ignoring the applicator’s material. We further analyzed tissue-specific voxel dose differences. 

According to the dosimetric principles, the deposited energy in a voxel depends on the energy fluence multiplied 

by the mass energy-absorption coefficient of the medium [37], wherein both factors are affected by medium 

density. Overall, it was observed that Dw overestimated the deposited energy in fat and soft-tissue whereas it 

underestimated the deposited energy in tissues with density higher than soft-tissue. The DNN model was trained 

to learn heterogeneity corrections to the medium density. 

 
Supplemental Figure 10. Comparison of (left) MAE and AME, (middle) MRAE (%) and MRAEC (%) obtained in dose plan 

regions and a window surrounding dwell source position when using Dw against MC-based dosimetry approaches. (right) 

Voxelwise joint histogram plot depicting the correlation of predicted single-dwell dose maps with respect to their corresponding 

MC-based ground truth dose kernels. 
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Maximum Intensity Projection (MIP) of 3D gamma analysis for validation set 

Gamma indices were analyzed for multiple volume of interests (total dose volume and 100% isodose volume) and 

DD factors (3% and 1%) while the setting of local normalization and 3mm DTA was constant. As expected, gamma 

passing rate in 3% DD is higher than 1% DD because of a larger dose gradient criterion. 

 

 
Supplemental Figure 11. MIP of 3d gamma analysis of dose grids comparing DNN against MC ground truth on the validation 

set for (a) 1% DD and (b) 3% DD. 

 

Case study interpretation 

We compared the performance of our method against TG-43. However, in the case of high-energy photon emitting 

brachytherapy sources, such as Co-60, improving water-based dose kernels is challenging since the dosimetric 

impact of MBDCAs in this energy range is small (on average less than 5%) mainly owing to the predominance of 

Compton scatter conditions, which is less influenced by the heterogeneity of media. Furthermore, in this work, we 

focused on cervix site assumed to consist of soft-tissue media where no substantial density differences are expected 

for normal patients (without metallic implants). Therefore, the trained model mostly corrects the effect of metallic 

applicator, presence of fat, inserted balloon within bladder and air packets. Our dataset was composed of 78 

patients, where in about 12 cases, at least one of the DVH-driven parameters obtained from Dw yielded a relative 

error higher than 5% against MC-based metrics. We performed a meta-analysis of these patients’ information to 

address the limitations of Dw. It was concluded that when the size of CTV is small and the applicator is not 

excluded from the CTV volume, the effect of applicator heterogeneity distorts the DVH plot and underestimates 

the absorbed dose. The D50, V200 and V150 metrics are mostly affected since these parameters represent the 

DVH behavior in high dose areas. In a few cases where the CTV was large and partially located in the vicinity of 

ovoids, a distortion of V200 and V150 was observed owing to the ovoid heterogeneity effects. TG-43-based 

planned dose for a patient with a large metal implant in the femur underestimated all DVH parameters by a factor 

of 7% on average. Air packets around the applicator that were not excluded from the CTV contour also affected 

the DVH plot. In the external validation set, DNN outperform TG-43 based algorithm in almost all quantitative 

metrics.  
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A transition phase from TG-43 to MBDCA using radiological images seems feasible in clinical setting using 

some simplified corrections, such as heterogeneity correction according to the voxelwise energy absorption 

coefficients and excluding air pockets and applicator from DHV plots [7]. Although, accurate patient-specific dose 

planning requires detailed knowledge of material composition of the irradiated tissues, applicator characteristics, 

shield heterogeneity, etc. MC methods are deemed the gold standard. In addition, the accuracy of MC-based dose 

planning is highly dependent on the accuracy of patient-specific computational model obtained from radiological 

images that is fed into the MC simulator. In clinical radiation oncology, personalized computational phantoms are 

mostly constructed through conversion of HUs to density maps and assigning an elemental tissue according to the 

density [33]. This process is prone to error owing to photon starvation and the impact of reconstruction algorithms. 

In this work, we observed metallic artifacts in tissues around the applicator, which led to a higher density in the 

area surrounding the applicator and consequently to a higher deposited energy. We compared the mean absorbed 

doses in the CTV which showed a considerable underestimation of Dw against MC-based mean absorbed dose (on 

average 7%) mainly caused by the effect of the applicator and the metal artifact in the applicator surrounding area. 

This underestimation was more likely observed in cases with small size of CTV where the applicator was not 

excluded.  
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Abstract 

Purpose: Metastatic neuroendocrine tumors (NETs) overexpressing type 2 somatostatin receptors are the target 

for peptide receptor radionuclide therapy (PRRT) through the theragnostic pair of 68Ga/177Lu-DOTATATE. The 

main purpose of this study was to develop machine learning models to predict therapeutic tumor dose using pre 

therapy 68Ga-PET and clinicopathological biomarkers. 

Methods: We retrospectively analyzed 90 segmented metastatic NETs from 25 patients (M14/F11, age 63.7±9.5, 

range 38-76) treated by 177Lu-DOTATATE at our institute. Patients underwent both pretherapy 68Ga-

DOTATATE PET/CT and four timepoint SPECT/CT at ~4, 24, 96 and 168 hours post-177Lu-DOTATATE 

infusion. Tumors were segmented by a radiologist on baseline CT or MRI and transferred to co-registered PET/CT 

and SPECT/CT and normal organs were segmented by deep learning-based method on CT of the PET and SPECT. 

The SUV metrics and tumor-to-normal tissue SUV ratios (SUV_TNRs) were calculated from 68Ga-PET at the 

contour-level. Posttherapy dosimetry was performed based on the co-registration of SPECT/CTs to generate time-

integrated-activity, followed by an in-house Monte Carlo-based absorbed dose estimation. The correlation 

between delivered 177Lu Tumor absorbed dose and PET-derived metrics along with baseline clinicopathological 

biomarkers (such as Creatinine, Chromogranin A and prior therapies) were evaluated. Multiple interpretable 

machine-learning algorithms were developed to predict tumor dose using these pretherapy information. Model 

performance on a nested 10-fold cross-validation was evaluated in terms of coefficient of determination (R2), 

mean-absolute-error (MAE) and mean-relative-absolute-error (MRAE).  

Results: SUVmean showed a significant correlation (q-value <0.05) with absorbed dose (Spearman ρ=0.64), 

followed by TLSUVmean (SUVmean of total-lesion-burden) and SUVpeak (ρ=0.45 and 0.41, respectively). The 

predictive value of PET-SUVmean in estimation of posttherapy absorbed dose was stronger compared to PET-

SUVpeak, and SUV_TNRs in terms of univariate analysis (R2 = 0.28 vs. R2 ≤ 0.12). An optimal trivariate random 

forest model composed of SUVmean, TLSUVmean and total liver SUVmean (normal and tumoral liver) provided the 

best performance in tumor dose prediction with R2=0.64, MAE=0.73 Gy/GBq and MRAE=0.2.  

Conclusion: Our preliminary results demonstrate the feasibility of using baseline PET images for prediction of 

absorbed dose prior to 177Lu-PRRT. Machine learning models combining multiple PET-based metrics performed 

better than using a single SUV value and using other investigated clinicopathological biomarkers. Developing 

such quantitative models forms the groundwork for the role of 68Ga-PET not only for the implementation of 

personalized treatment planning but also for patient stratification in the era of precision medicine.  
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I. Introduction 

The theragnostic principle has been summed up as: “We treat what we see, and We see what we treat”1 [1]. This 

concept of “see and treat” in nuclear medicine therapy has led to the development of theragnostic pairs, consisting 

of an imaging radiotracer for staging and molecular targeting and its therapeutic counterpart, usually a beta- or 

alpha-emitter for tumor ablation. Neuroendocrine tumors (NET) commonly express somatostatin receptors 

(SSTR), predominantly subtype 2, which is the basis for the use of SSTR PET imaging and peptide receptor 

radionuclide therapy (PRRT). For the management of NET, the theragnostic pair of 68Ga/177Lu-DOTATATE 

has been widely used since 2018 when 177Lu-DOTATATE (Lutathera) was approved by the U.S. Food and Drug 

Administration (FDA) on the basis of NETTER-1 trial results [2, 3].  

In current 177Lu-PRRT clinical practice, pretherapy 68Ga-DOTATATE (68Ga-PET) is required for candidate 

eligibility to confirm sufficient tumor SSTR expression (peformed via qualitative assessment with Krenning 

score). The approved empiric protocol for 177Lu-PRRT is 4 cycles of 7.4 GBq infusions (~ 2 months intervals). 

Although 177Lu-PRRT has been showed to improve progression-free survival (65% at 20 months, compared to 

long-acting octreotide 11%), objective responses are uncommon (20%) and complete responses are rare (1-2%). 

Therefore, to optimize 177Lu-PRRT outcomes, either patient selection criteria must be improved, or a 

personalized treatment approach must be developed. Precision nuclear medicine for PRRT has been proposed, 

with pretreatment 68Ga-PET used for patient selection and additional posttherapy imaging valuable to provide 

individualized measurements relevant to treatment safety and efficacy [4].  

Dosimetry-guided personalized radiopharmaceutical therapy (RPT) involves modulation of the number of 

treatment cycles or the administered dose per cycle based on posttherapy dosimetry, which has been shown 

positive impact on treatment response [5-8]. Predictions of therapeutic absorbed doses from 177Lu-PRRT have 

also been performed using pretherapy 68Ga-PET, which is particularly desirable for planned alterations in the 

first dose of 177Lu-PRRT, which has the potential to maximize tumor dose while limiting potential toxicity [9, 

10]. Two previous studies [9, 11] reported on the ability to predict renal dose using pretherapy imaging, as the 

kidney toxicity is a limiting factor for 177Lu-labeled RPTs [11]. Knowledge of expected renal dose exposure per 

cycle is especially important if escalation of administered activity is considered in the first RPT cycle; while not 

currently performed routinely in clinical practice, prioritizing higher doses early on may be preferable, since there 

is an observed decrease in absorbed tumor dose per administered activity (Gy/GBq) in subsequent cycles [12]. 

According to the principles of RPT and cellular irradiation, the likelihood of tumor response is expected to be 

correlated with the tumor absorbed dose. Various studies have shown dose-response correlations in 177Lu-PRRT 

[3, 5, 7, 13]. Furthermore, some authors have reported on the correlation of 68Ga-PET uptake with treatment 

outcome [14, 15]. In this context, tumor absorbed dose estimation prior to the therapy could provide a quantitative 

metric for response with potential to improve patient-selection criteria. We therefore sought to develop models 

that predict the mean tumor absorbed doses delivered by 177Lu-DOTATATE using pretherapy 68Ga-

DOTATATE PET plus a comprehensive set of clinicopathological biomarkers. The contribution of this work to 

the field of RPT is threefold: 1) using a previously validated Monte Carlo-based dosimetry workflow with a patient 

cohort that includes four-posttherapy SPECT/CT scans [16]; 2) including a complete set of clinical biomarkers in 

addition to 68Ga-PET in the dosimetry prediction models; and 3) implementation of interpretable machine 

learning algorithms for dose prediction. 

II. Materials and methods 

Patient population 

This study comprised of 25 patients with histologically proven metastatic NETs, progressive on prior therapy, 

who received at least the first cycle of standard 177Lu-DOTATATE PRRT and underwent four time-point 

SPECT/CT dosimetry at the University of Michigan Hospital. As part of an ongoing research study approved by 

the Institutional Review Board, all patients provided written informed consent to participate in the study, which 

included serial SPECT/CT imaging following standard treatment. Patients’ demographic information is presented 

in supplemental-Table. 1. 

 
1 Prof. Richard Baum  
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Tumor and organ delineation 

Up to five index lesions larger than 2 mL were manually segmented by a radiologist (MER) on diagnostic-quality 

baseline CT or MRI and then transferred to the subsequent PET/CT and SPECT/CT scans using co-registration. 

The spleen was manually segmented by a technologist while kidneys and liver were segmented using a deep 

learning algorithm on the CT of the PET/CT and SPECT/CT [16]. The normal liver was sampled from uniform 

uptake regions using three sphere volumes-of-interest (8 cm3 diameter). The organ segmentations were verified 

and adjusted by the radiologist as needed. 

68Ga PET/CT imaging and PET-derived metrics 

Patient preparation required PET scans to be acquired 4 weeks after any long-acting somatostatin analogue 

treatment. PET/CTs were acquired at ~60 min (range: 54-77 min) post-intravenous injection of ~160 MBq of 

68Ga-DOTATATE (range: 144-196 MBq). Data were reconstructed using vendor-specific recommended 

parameters. Partial volume correction was performed using volume dependent recovery coefficients from a 

sphere-phantom measurement [2]. 

Image-derived features, both activity and SUV (standardized uptake value) metrics, were calculated for the 

transferred contours. Tumor SUV metrics including mean, peak, coefficient of variation (CoV: standard deviation 

divided by SUVmean), skewness and kurtosis, and mean activity (Bq/mL) corrected to the injection time and 

normalized by injected activity were extracted. In addition, SUVmean of the spleen, healthy liver, and kidneys along 

with blood pool (SUVmean in aortic arch) were quantified. The relative tumor uptake was calculated as tumor-to-

normal tissue ratios (TNR) using tumor SUVmean relative to the SUVmean of normal spleen (SUV_TNRspleen), 

normal liver (SUV_TNRliver) and blood pool (SUV_TNRblood). In addition, SUVmean of the total liver volume 

encompassing both healthy tissue and lesions is quantified as TotLiverSUVmean. 

To quantify total lesion burden-related metrics, whole-body PET-SUV images were segmented using an 

empiric SUV threshold (whole-body SUV-cutoff=5, liver SUV-cutoff=10). The generated mask from 

thresholding was adjusted to add lesions not included in initial segmentation and remove physiological uptake in 

organs and then verified by the nuclear medicine clinician (KW). Therefore, three independent metrics based on 

the segmented mask encompassing total 68Ga-DOTATATE-avid lesion volume were defined: Total Lesion 

Volume (TLV) in mL, average SUV of the Total Lesion Volume (TLSUVmean), and Total Lesion Somatostatin 

Expression (TL-SSE) defined as TLV×TLSUVmean. 

Clinicopathological biomarkers 

A total of 25 clinical, pathologic, and laboratory variables were included in our study, all of which we believed 

had theoretical potential to influence patient overall health, tumor behavior, and treatment response. Clinical 

patient data and lab values were obtained through review of the electronic medical record.  

The total variable set, including 16 quantitative and 3 qualitative 68Ga-PET features, 8 treatment history, and 

11 blood-test biomarkers, is detailed in Table 1. 

177Lu SPECT/CT imaging and dosimetry workflow  

Our patient data regarding dosimetry in patients undergoing 177Lu-DOTATATE comes from an ongoing 

research study that includes serial post-therapy SPECT/CT imaging at ~ 4, 24, 96, and 168 hours after the first 

cycle. A 25 min single-bed SPECT/CT acquisition is performed on a Siemens Intevo using manufacturer-

recommended protocol and reconstructed with Siemens xSPECT Quant using 48 iterations and 1 subset and no 

post filtering [17].  
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Table 1. Complete variable set, including PET and clinicopathological features, used in the development of a predictive model 

for tumor delivered dose from 177Lu-PRRT. 

features Name of feature Description 

Shape  Volume Volume of index tumors (segmented by radiologist) 

PET Uptake/  SUVmean Mean SUV value 

SUV SUVpeak Average SUV within a 1 mL sphere centered on the site of highest uptake in a tumor 

 SUVkurt Measure of the shape of the peak of the SUV distribution (kurtosis) 

 SUVskew Measure of the asymmetry of the SUV distribution (skewness) 

 SUVBloodPool SUVmean in the aortic arch 

 SUVSpleen SUVmean of the Spleen contour 

 SUVLiver Average SUVmean of three spheres (8 mL) sampled from the normal liver tissue 

 SUVKidneys Average of SUVmean from right and left kidney contours 

 SUV_TNRblood Ratio of Tumor SUVmean to blood pool SUVmean 

 SUV_TNRspleen Ratio of Tumor SUVmean to SUVmean of the spleen 

 SUV_TNRliver Ratio of Tumor SUVmean to SUVmean of the liver 

 TotLiverSUVmean SUVmean of the whole liver including both normal and tumoral tissues 

 TLV Total lesion volume 

 TL-SUVmean Average SUV of the entire total lesion volume 

 TL-SSE Total lesion somatostatin expression (TLV× TL-SUVmean) 

Diagnostic Liver metastasis Disease present in liver (Based on Dotatate PET) 

 Bone metastasis Disease present in bone (Based on Dotatate PET) 

 Node metastasis Disease present in lymph nodes (Based on Dotatate PET) 

 Tumor location Anatomical location of the index tumor 

Histological Grade Histologic grade (using Ki67 index) of primary tumor from biopsy/surgery 

 Primary tumor site Primary Tumor Site 

Treatments  #Systemic therapy Number of prior systemic treatments (Chemotherapy or other) 

 #Directed therapy Number of prior liver directed treatments (TACE, Y90, cryotherapy) 

 Y90-SIRT Prior treatment liver with Y90-SIRT 

 Everolimus Prior treatment with everolimus (Systemic MTOR inhibitor) 

 Capecitabine/ 

temozolomide 

Prior treatment with capecitabine and temozolomide (Chemo, systemic) 

 Sunitinib Prior treatment with Sunitinib (Multi-Kinase Inhibitor, systemic) 

Blood tests White Blood Cells White Blood Cells (K/cmm) 

 Lymphocytes Lymphocytes 

 Absolute Neutrophil Absolute Neutrophil Counts (K/cmm) 

 Hemoglobin Hemoglobin (g/dL) 

 Platelet Platelet Count (K/cmm) 

 eGFR Estimated Glomerular Filtration Rate (Calculated) 

 Creatinine Creatinine (mg/dL) 

 Bilirubin Bilirubin (mg/dL) 

 Albumin Albumin (mg/dL) 

 Alkaline Phosphatase Alkaline Phosphatase (ALK, ALP, ALKP, or ALK PHOS) (IU/L) 

 CgA Chromogranin A (Tumor Marker) (ng/mL) 

 

For dosimetry, we employed an integrated workflow implemented within MIM software that has been 

elaborated in a recent article by Dewaraja et al [16]. The workflow is composed of the following steps: 

1. A contour-guided intensity-based registration was used to align four posttherapy SPECT images.  

2. Time Integrated Activity (TIA) was calculated by integration of the time-activity curve, a mono/ bi-

exponential function (𝑇𝐼𝐴 = ∫ C (𝑒−𝜆1𝑡 − 𝑒−𝜆2𝑡)
∞

𝑡0
). Here, C scales the curve up or down, 𝜆1is the 

clearance/elimination rate, and 𝜆2 is the uptake/absorption rate. The term effective half-life (Teff) refers 

to the slower exponential component (𝑖. 𝑒. 𝑇eff =
ln (2)

𝜆1
 | 𝜆1 ≪ 𝜆2). 

3. TIA along with the corresponding density map (obtained from CT) were coupled with a fast Monte Carlo 

(MC) simulator, developed at the University of Michigan [18], to generate the voxel-level absorbed dose 

map. 
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Statistical analysis and predictive modeling 

For the statistical analysis, the Spearman rank correlation between predictive features and tumor dose were 

analyzed, followed by Benjamini and Hochberg p-value correction, where q-value <0.05 considered significant.  

To predict tumor absorbed dose using PET-derived features and biomarkers, a cross-combination of different 

regression models were analyzed. We compared linear and supervised random forest regression algorithms 

through univariate, bivariate, and multivariate analysis implemented in MATLAB 2022 (MathWorks Inc., Natick, 

MA, USA). We adopted nested cross-validation (CV), whereby the outer-loop CV was repeated 10 times to 

consolidate the results of 10-fold inner-loop CV [19]. During inner-loop CVs, 10% (8/80) of the whole dataset 

was considered as unseen validation-set and 90% used as training-set. Due to the intrinsic heterogeneity and 

limited size of our data, bootstrap aggregation strategy (500 bootstrap samples with replacement) was 

implemented to improve model stability and avoid overfitting (algorithm flowchart in supplemental-Figure 1).  

We designed a hierarchical interpretable feature selection strategy using main-effect analysis to select the most 

important predictors. First, using a univariate linear regression model, the best variable with the highest coefficient 

of determination (R2) was determined. In the second step, a set of bivariate regression models was generated using 

two independent variables, i.e. the selected variable from the univariate analysis followed by a second variable 

from the predictor-set. In the third step, the five best bivariate models that most increased predictive likelihood 

(with the highest R2) were selected, forming the basis for a set of trivariate models. We extended the process up 

to four-variable models, but because we saw no further significant improvement in predictive likelihood, this 

process was stopped. In addition, we employed ElasticNet and Permutation-based Random Forest variable-

Importance (PRFvI) feature selection algorithms. The feature-selection algorithms were implemented in a 

bootstrap ensemble framework as elaborated in supplemental-Figure 2. A maximum of 8 features were selected 

based on the recommended number of at least ten observations per predictor [20]. 

We employed the proposed hierarchical feature selection algorithm in both linear and random forest 

algorithms. In the linear model, we used a generalized linear regression model based on the least square loss 

function. In the case of random forest algorithms, we used a bootstrap aggregation between two models including 

random forest (ensemble tree) [21] and generalized additive model [22] (supplemental-Figure 2). To reduce 

overfitting and improve generalizability, we grew a shallow tree by forcing the number of observations per leaf 

to be at least 10 or the number of splits per predictor to be at most 5. The number of ensembled trees (=200) was 

obtained from hyperparameter optimization. We implemented the proposed hierarchical feature selection 

algorithms on both linear and decision tree regression models. Additionally, the selected features from ElasticNet 

were fed to a multivariate generalized linear model and those selected based on PRFvI algorithm were tested in 

the decision-tree model. The model performance was evaluated based on nested CV 10-fold R2, mean-absolute-

error (MAE) and mean-relative-absolute-error (MRAE) compared to ground truth. 

We further tested sensitivity and specificity of the best model for predicting tumor absorbed dose >25 Gy/cycle 

for response. This threshold dose was chosen as it is a previously reported potential cutoff for tumor response 

following 177Lu-PRRT [5, 6]. 

III. Results 

A total of 25 patients (M14: F11, age 63.7±9.5, range 38-76) with 90 neuroendocrine tumors larger than 2 mL 

(mean= 65.6±139.9 mL, range: 2.1-1039 mL) met the study criteria. An example of corresponding 68Ga-PET, 

post-treatment 177Lu SPECT/CT, and resulting time-activity curves of target lesions are given in Figure 1. PET-

SUVmean and SUVpeak measured from the 90 studied tumors were 16±6.4 (5.6-34.2) and 26.4±15.5 (6.1-104), 

respectively, while SUVmean for normal liver, spleen and kidneys were 6.9±2.4 (2.2-11.4), 13.1±3.5 (7-19.2) and 

5.4±2.7 (5.4-19.2), respectively. The mean tumor absorbed dose averaged 2.68±1.89 Gy/GBq (0.23-10.26 

Gy/GBq), while the average value of Teff was 91.6±26.6 h (27.9-159.5 h).  

The statistical variability of the investigated predictors dichotomized based on ANOVA-test of the absorbed 

dose are illustrated in Table 2. The dichotomization cut-offs of the continuous predictors were calculated from an 

iterative process (1000 iterations), in which a random number within the range of predictor’s quantiles (0.05-0.95) 

were generated to binarize the predictor values. Then, one-way ANOVA test was applied on dose vector according 

to the binarized predictor; thus, the cut-off was selected based on the minimum p-value obtained from ANOVA-

test.  

javascript:void(0)
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Figure 1. (Top panel) baseline diagnostic images (contrast-enhanced CT/MRI) were used to define target lesions, which were 

then co-registered to pre-therapy 68Ga-DOTATATE PET/CT and post-therapy 177Lu-DOTATATE SPECT/CT images. 

(bottom panel) dosimetry pipeline included four timepoints registration of SPECT images to generate TIA that is fed into MC-

based dose engine. 

Self and cross-correlation of all baseline features compared to tumor absorbed dose and 4 other dose-related 

parameters (parameters that directly contribute to absorbed dose) is presented in Figure 2 (Spearman-correlation 

(ρ), q-value<0.05). The dose-related parameters are the scale factor C of the time-activity curve normalized by 

tumor volume (𝐶𝑣𝑜𝑙), TIA normalized by tumor volume (TIAvol) and Teff. We expect a physics-informed 

correlation between dose and TIAvol, according to the assumption of local-energy-deposition for 177Lu-labeled 

agents [23], and hence a correlation with TIAvol components (𝐶𝑣𝑜𝑙 and 𝑇𝑒𝑓𝑓). SUVmean shows a strong correlation 

with dose parameters (dose: ρ=0.64, TIA: ρ =0.39, 𝐶𝑣𝑜𝑙: ρ =0.56), followed by TLSUVmean (dose: ρ =0.45, TIAvol: 

ρ =0.51, 𝐶𝑣𝑜𝑙: ρ =0.63) and SUVpeak (dose: ρ =0.41, TIAvol: ρ =0.54, 𝐶𝑣𝑜𝑙: ρ =0.56). TotLiverSUVmean shows a 

correlation only with Cvol (ρ =0.44). A significant but moderate correlation between Teff and the pre-PRRT number 

of systemic treatments (#Systemic therapy) (ρ =-0.31), Capecitabine/ temozolomide (ρ =-0.35) and bilirubin (ρ 

=0.33) is observed.  

Figure 3 illustrates the intra-patient variability of the index tumor absorbed doses among the study population. 

The intra-patient tumor dose variability in terms of coefficient of variation (CoV) was within the range of 0.04-

0.78 (Median=0.38); this is comparable to the variation within the whole tumor-set, which had a CoV of 0.69.  

For our predictive models, we excluded lesions smaller than 4 mL in order to reduce the dose calculation 

uncertainties owing to mis-registrations and partial volume effects (>4mL, N=80). Also, two lesions with highest 

doses (P_22, P_25 in Figure 3) were considered outliers and excluded from model building because of their 

exceptionally high uptake in 177Lu-SPECT, despite 68Ga-PET uptake in a similar range compared to the other 

analyzed lesions (both in the same patient and other patients).  

The association of dose and different SUV parameters were evaluated using univariate analysis (linear least-

square regression). SUVmean (coefficient-of-determination: R2=0.28), compared to SUVpeak (R2=0.07), and 

SUV_TNRs (R2≤0.12) showed a better performance in prediction of therapeutic dose (Figure 4). The majority of 

studied tumors were found in the liver (75/90), while 11 lesions were lymph node metastases. Three primary 

pancreas tumors and one chest tumor were also included. No significant differences of absorbed doses or SUV-

parameters were observed based on tumor volume or localization. 

 



174 

 

Table 2. Patient population clinicopathological biomarkers. The variability of the tumor dose and SUVmean with respect to 

the dichotomized predictors is illustrated. The forest-plot represents the range of dose values in the selected predictor’s group 

while dots represent mean dose values. P-value was obtained from ANOVA test. 

Parameters N (%) Mean ± std SUVmean Dose (Gy/GBq) p-val 

Volume    

 

 
≤52 mL 70 15.07 ± 10.6 20.74 ± 8.6 0.13 

>52 mL 30 177.07 ± 217.5 17.93 ± 6.7  

SUV_CoV     
≤ 45 % 68 0.30 ± 0.1 19.51 ± 7.9 0.02 

> 45 % 32 0.55 ± 0.1 20.70 ± 8.7  

TLV (mL)     
≤ 150 10 60.87 ± 42.6 23.30 ± 8.6 <0.001 

> 150 90 624.30 ± 664.4 19.52 ± 8.0  

TL-SSE (SUV.mL)        
≤ 2864 30 1683 ± 763 16.30 ± 7.5 0.001 

> 2864 70 12005 ± 9895 21.44 ± 7.9  

White blood cells     
≤ 5.4 35 3.57 ± 0.8 21.26 ± 10.1 0.08 

> 5.4 65 8.16 ± 2.1 19.16 ± 6.8  

Lymphocytes     
≤ 1.6 64 0.91 ± 0.4 19.73 ± 8.5 0.04 

> 1.6 36 1.95 ± 0.3 20.19 ± 7.5  

Absolute neutrophil     
≤ 2 18 1.62 ± 0.2 21.91 ± 9.8 0.03 

> 2 82 4.54 ± 1.5 19.47 ± 7.7  

Hemoglobin     
≤ 12 20 11.24 ± 0.9 18.71 ± 10.1 0.01 

> 12 80 13.70 ± 1.0 20.20 ± 7.6  

Platelet     
≤ 190 29 167.81 ± 19.3 19.40 ± 9.4 0.008 

> 190 71 255.90 ± 59.4 20.10 ± 7.6  

eGFR     
≤ 52 12 40.26 ± 10.6 16.47 ± 7.3 0.04 

> 52 88 82.46 ± 14.0 20.39 ± 8.2  

Creatinine     
≤ 1.2 81 0.89 ± 0.2 20.67 ± 8.1 0.03 

> 1.2 19 1.39 ± 0.3 16.56 ± 7.5  

Bilirubin     
≤ 0.9 81 0.49 ± 0.2 20.18 ± 8.0 0.08 

> 0.9 19 1.13 ± 0.1 18.67 ± 8.9  

Albumin     
≤ 4.5 68 4.04 ± 0.3 20.86 ± 7.8 <0.001 

> 4.5 32 4.88 ± 0.3 17.91 ± 8.5  

Alkaline phosphatase     
≤ 88 20 74.57 ± 13.7 23.21 ± 8.2  

> 88 80 149.91 ± 40.3 19.07 ± 7.9 <0.001 

CgA     
≤ 500 28 146.60 ± 140.6 25.91 ± 8.1 0.001 

> 500 72 3434.12 ± 7070.4 17.62 ± 6.9  

Grade     
G=1 33  22.16 ± 9.8 0.3 

G ≥ 2 67  18.69 ± 7.0  
Bone Met     

No 51  20.85 ± 7.5 0.12 

Yes 49  18.90 ± 8.7  
Nodal Met     

No 29  23.22 ± 8.5 0.14 

Yes 71  18.56 ± 7.6  
# Systemic therapy     

0 52  17.90 ± 5.5 0.54 

1 or 2 42  20.99 ± 9.2  
≥ 2 5  31.56 ± 11.3  

Primary tumor site     

Midgut 61  19.40 ± 7.8 0.79 
Pancreas 28  22.84 ± 9.2  

Other  11  15.43 ± 4.0 
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Figure 2. Spearman rank self and cross correlation between absorbed dose-related parameters (Dose, TIAvol, Cvol and Teff) and 

PET-SUV parameters along with biomarkers. The color-code and size of spheres show the correlation magnitude. The 

insignificant correlations (q-value>0.05) are plotted as faded spheres.  

 

According to the proposed hierarchical feature-selection strategies (supplemental-figure 5), linear univariate 

regression model picked SUVmean as the anchor predictor with R2=0.28 and MAE=1.08 Gy/GBq. We compared a 

cross-combination of all features with SUVmean to evaluate the second and third important features in dose 

prediction (supplemental-Figure 5 and 6). In bivariate model, TotLiverSUVmean and TLSUVmean were the most 

effective predictors in terms of R2 and MAE (R2=0.61 and 0.48, MAE=0.82 and 0.88 Gy/GBq, respectively) from 

Ensembled Tree (Ens-Tree) models. The best prediction performance was achieved from a trivariate Ens-Tree 

algorithm consisting of SUVmean, TotLiverSUVmean and TLSUVmean with R2=0.64 and MAE=0.73 Gy/GBq (Table 

3). The predicted dose compared with the measured absorbed dose from different algorithms is illustrated in 

Figure 5. 
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Figure 3. Intra-patient variability of tumor doses for all patients. The sphere color indicates SUVmean and background color 

shows the margins of standard deviation of tumor dose values. The size of spheres depicts the volume of tumors in logarithmic 

form (4-1039 mL). 

 

 

 

 
Figure 4. Tumor absorbed dose plotted vs. tumor PET-SUV quantities, where the color shows the tumor location. The size of 

spheres depicts the volume of tumors in logarithmic form (4-1039 mL). 
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Figure 5. Pre-therapy predicted dose using univariate linear model and random forest (RF) bi/tri-variate models of Table 2 vs. 

the delivered dose measured from Lu-177 SPECT/CT (the filled gray dots represent the 2 outliers). 

 

 

Table 3. Model performance of the selected prediction algorithms using 68Ga-PET SUV metrics. The quantitative metrics are 

reported as mean (95% CI) calculated from nested CV. The MAE quantile range is reported based on the averaging over 10-

outerloop CV point prediction. 

Model Features 
R2* 

10-fold 

Median 

MRAE 

MAE 

(Gy/GBq) 

MAE 

Quantile 

(0.05-0.95) 

Univariate Linear      

  SUVmean 0.28(0.00) 0.38(0.00) 1.08(0.00) 0.14-2.8 

Bivariate Tree_Ens      

  SUVmean, TotLiverSUVmean 0.61(0.01) 0.26(0.01) 0.82(0.01) 0.10-2.29 

  SUVmean,TLSUVmean 0.48(0.03) 0.26(0.01) 0.88(0.02) 0.05-2.66 

Trivariate Tree_Ens      

  SUVmean, TotLiverSUVmean, TLSUVmean 0.64(0.02) 0.20(0.01) 0.73(0.02) 0.02-2.46 

* Two outliers are excluded from R2      
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The sensitivity and specificity of the best-performing model (trivariate Ens-Tree from Table 3 and Figure 5), 

using a threshold of 25 Gy/cycle for response, was calculated as 0.76 and 0.94, respectively (Figure 6). Again, 

this threshold-level was chosen to mirror previously reported dose-cut-offs for response following 177Lu-PRRT 

[5, 6]. 

 

 

 

Figure 6. Considering the threshold dose for responders of 25 Gy/cycle, confusion matrix of predicted dose from trivariate 

Ens-Tree model compared to the measured absorbed dose (left). Sensitivity (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) and specificity (

𝑇𝑁

𝐹𝑃+𝑇𝑁
) visualization of 

the predcition model (right). TP: True-Positive, FP: False-Positive, TN: True-Negative, FN: False-Negative. 

IV. Discussion 

Accurate and early prediction of therapeutic absorbed dose in NETs is important information that can be used to 

guide appropriate patient selection and treatment alterations for PRRT, potentially helping to distinguish between 

patients likely to undergo effective versus futile treatments. To date, 68Ga-PET derived quantitative metrics have 

appeared promising as a measure of SSTR2 density in neuroendocrine tumors [24]; however, studies assessing 

correlation between SUV features and absorbed dose/treatment outcomes remain scarce, and further investigation 

is necessary to establish conclusive relationships.  

Prediction of tumor and organ-absorbed doses may help optimize treatment efficacy prior to therapy by 

enabling an individualized treatment plan, administering variable doses of PRRT that maximize tumor irradiation 

while minimizing organ exposure. According to a recent study indicating the decline of 177Lu-DOTATATE 

tumor uptake over therapy cycles, an individualized dose escalation strategy may be more effective in the first 

cycle [12]. A clinical trial reported on personalized 177Lu-DOTATATE PRRT guided by the prediction of renal 

toxicity based on eGFR and patient-surface-area prior to the therapy [5]. In our ongoing research with standard 

dose 177Lu-DOTATATE, we have already developed a predictive model for kidney absorbed dose based on 

pretherapy PET-SUV metrics and biomarkers (i.e. eGFR) estimating posttherapy renal dose within 18% accuracy 

[11]. In the current study, we further evaluated the predictive power of 68Ga-PET SUV metrics with readily 

available baseline biomarkers to develop machine learning models for tumor absorbed dose prediction.  

The relationship between baseline PET-derived features and delivered absorbed dose is not straightforward. 

First, there are notable differences in the pharmacokinetics and biodistribution of 68Ga/177Lu-DOTATATE 

theragnostic pairs [2], influenced by variable masses and chemical structures of administered 

radiopharmaceuticals, patient behavior [4], radioactive metabolites [25], medication effects, etc. Second, the static 

68Ga-PET acquisition (~60 min post-injection) potentially only depicts the SSTR2 density distribution, while the 

absorbed dose quantity is related to dynamic physiologic circulation and accumulation of the radiopharmaceutical. 

In the other word, dose quantity is proportional to the multiplication of Cvol (scale factor of the time-activity curve 

normalized by tumor volume) and Teff (retention half-life).  

In this context, we observed a significant correlation of PET-SUV metrics with Cvol (Figure 2-3, SUVmean: 

ρ=0.63), while no correlation with Teff (Supplemental-Figure 3-4). Therefore, it can be concluded that the observed 

correlation between PET-SUV parameters and the tumor absorbed dose quantity (SUVmean: ρ=0.62) stems from 
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the correlation between 68Ga-tumor-uptake and 177Lu-tumor-uptake. There is a body of literature that indicated 

a significant correlation between 68Ga-SUV and 177Lu-induced tumor dose [9, 26-28]. Ezziddin et al. reported 

a strong correlation between 68Ga-DOTATOC SUV-metrics with 177Lu-Octreotate absorbed dose 

(SUVmean: ρ=0.72; SUVmax: ρ=0.71) [26]. Hänscheid et al. showed that PET-based SUVmax significantly 

correlates (ρ=0.76) with the maximum dose delivered to tumor in meningioma patients [29]. However, one group, 

Singh et al, found no significant correlation between SUVs and the tumor dose from 177Lu-DOTATATE therapy 

in metastatic-NETs [24]. 

In previous studies, tumor-to-normal organ rations (SUV_TNRs) were suggested as potential factors that 

might reduce the inter-patient and inter-acquisition variability associated with tumor SUV by using physiological 

uptake in normal organs as an individualized reference [30-32]. We compared the correlation of tumor SUV, 

SUV_TNRs and activity concentration with respect to absorbed dose, but SUVmean outperformed other metrics in 

terms of strength of the correlation (Figure 4). We have previously noted discordance using TNR between the 

68Ga PET and the 177-Lu-PRRT dosimetry SPECT/CT, with significantly higher SUV TNR on 177Lu SPECT 

compared with 68Ga PET [2]. This phenomenon may be related to temporal differences in DOTATATE uptake 

and internalization in tumor as compared to normal organs, further accentuated by differences in image timing 

(60 minute PET vs. >4 hr SPECT/CT) [2].  

We evaluated the correlation of inter-patient PET-derived total lesion burden metrics, including total lesion 

volume (TLV), average SUV of the total lesion volume (TLSUVmean), and total lesion somatostatin expression 

(TL-SSE= TLV× TL-SUVmean), all compared to the index tumor absorbed dose (Figure 2). TLSUVmean showed a 

strong correlation with dose components (Cvol: ρ>0.63), while no significant correlation was observed regarding 

TLV and TL-SSE. This association is reasonable from a physiologic standpoint, given that greater overall PET 

tracer avidity may correlate to increased PRRT binding and dose deposition by a similar theragnostic pair. 

Accordingly, a recent paper notably found correlation of TLSUVmean with survival in NET patients treated by 

177Lu-DOTATATE, implicitly showing correlation of TLSUVmean with tumor absorbed dose and accordingly 

therapy-response [33]. Furthermore, we found a strong correlation between SUVmean of the total liver volume 

(TotLiverSUVmean) with dose components (Cvol: ρ=0.45). We used TotLiverSUVmean as a surrogate for extent of 

hepatic metastatic disease involvement: 

𝑇𝑜𝑡𝐿𝑖𝑣𝑒𝑟𝑆𝑈𝑉𝑚𝑒𝑎𝑛 =
(𝑇𝑢𝑚𝑜𝑟_𝑙𝑖𝑣𝑒𝑟_𝑆𝑈𝑉𝑚𝑒𝑎𝑛 × 𝑇𝑢𝑚𝑜𝑟_𝑣𝑜𝑙𝑢𝑚𝑒) + (ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑙𝑖𝑣𝑒𝑟_𝑆𝑈𝑉𝑚𝑒𝑎𝑛 × ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑙𝑖𝑣𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑒)

(ℎ𝑒𝑎𝑙𝑡ℎ𝑦 + 𝑡𝑢𝑚𝑜𝑟) 𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒
 

 

By expanding a univariate analysis showing the predictive value of SUVmean, we built bi/tri-variate models to 

enhance prediction accuracy. The best model performance achieved by a trivariate model composed of only PET-

SUV metrics: SUVmean, TotLiverSUVmean and TLSUVmean. All three metrics showed strong correlation with 

radiopharmaceutical-uptake-related dose component (Cvol), illustrated in supplemental-Figure 7. A bivariate 

model only using SUVmean and TotLiverSUVmean likewise showed a good predictive performance (R2=0.61, 

MAE=0.82 Gy/GBq). These results illustrate that the extent of liver tumor involvement, via TotLiverSUVmean, is 

predictive of dose. The main advantage of using this variable is that it is readily calculated from PET images 

without any complicated computation: it is merely the SUVmean of entire liver segmented volume, which can be 

simply performed through machine learning models from CT images. 

In addition to Ens_Tree models, we evaluated bi- and tri-variate linear models, where SUVmean combined with 

bilirubin and albumin improved the prediction performance (R2=0.47, MAE=0.87 Gy/GBq). Bilirubin and prior 

systemic treatment showed significant correlations with Teff (ρ=-0.33 and ρ=0.3, respectively) that can indirectly 

imply the impact of retention half-life on absorbed dose values. These findings may suggest that prior treatments 

or underlying hepatic dysfunction may alter tumor behavior and potentially the degree of PRRT tumor uptake and 

metabolism. Our linear model, built upon the features selected by ElasticNet (7 variables), also showed some 

improvement compared to trivariate models (R2=0.57, MAE=0.8 Gy/GBq), but due to a higher number of model-

variables, it is prone to spurious correlations in a small-size dataset. The features selected by PRFvI algorithm 

align with those from the hierarchical algorithm; however, compared to trivariate decision tree, the model 

performance did not show any improvement (supplemental-Figure 8).  

Tumor absorbed dose in PRRT is likely influenced by multiple biological factors, both individual patient 

characteristics and specific tumor features (i.e. proliferation rate, heterogeneity, intrinsic radio-sensitivity). The 

intra-patient tumor dose variability of our dataset is comparable with inter-patient variability of the whole set 

(0.38 vs. 0.69), therefore, we treated each individual tumor independently, while the biomarkers and some PET 
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features, such as TL-SSE and TLSUVmean were calculated in the patient-level, feeding inter-patient information 

to our models.  

The primary limitations of our study are its small sample size and lack of independent multi-center validation 

and back-testing of the models, relying instead on nested cross validation. Although we followed the 

recommended rules for generalizability and interpretability of the models [20], further investigation is warranted. 

An inherent limitation of tumor dosimetry studies relates to the uncertainties associated with quantitative imaging 

(i.e. scatter/attenuation correction, segmentation, and partial volume correction) and multi-timepoint serial 

imaging to determine kinetics (i.e. time-series registration) [16]. In addition, simplification in post-therapy 

imaging such as using SPECT-planar hybrid imaging or reduced time-points; or approximation in particle 

transport algorithms can introduce extra uncertainties into dosimetry process [34]. To the best of our knowledge, 

this is the first study of predictive dosimetry using complete four-timepoint posttherapy 3D SPECT/CT imaging, 

radiologist-defined lesion contours, and a validated Monte Carlo-based dosimetry workflow that reduces some of 

these uncertainties in the measured absorbed dose and hence help to build a more precise model. As post-PRRT 

imaging is increasingly used as part of routine clinical protocols at some centers, we expect more data to be 

available in the future to independently validate and improve the proposed model. 

V. Conclusion 

To explore dose-response relationships in PRRT, we investigated the predictive value of using 68Ga-PET-based 

SUV metrics along with biomarkers to estimate the tumor absorbed dose with 177Lu-DOTATATE therapy. We 

showed that tumor SUVmean, TotLiverSUVmean and average SUV of the total lesion volume (TLSUVmean) are 

capable of predicting the 177Lu-PRRT delivered tumor absorbed dose with an accuracy of MAE=0.71 Gy/GBq 

(R2=0.64) in nested cross validation. We hope to further test the proposed models on multi-center data, to 

eventually provide a validated decision-support tool for clinicians to improve patient-selection and thus optimize 

treatment outcomes. Developing such precise quantitative metrics establishes a greater role of 68Ga-PET for 

patient stratification, as well as prognostication and assessment of the therapeutic response modeling. 
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Supplemental material 

 

 

Supplemental-Figure 1. Nested CV in validation process for evaluating both linear and decision tree models in bootstrap 

aggregation strategy. 

 

 

Supplemental-Figure 2. Flowchart representing feature selection using two strategies: 1. ElasticNet and Permutation-based 

Random Forest variable-Importance (PRFvI). 
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Supplemental-Figure 3. Self-correlation between absorbed dose related parameters (Spearman, q-value <0.05). 
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Supplemental-Figure 4. Spearman rank correlation between dose parameters and SUV quantities along with biomarkers in 

different subsamples of tumor volume (q-value<0.05).  

We first examined the correlation between dose-related parameters, i.e. TIA and 𝐶 normalized by tumor volume (TIAvol, 𝐶𝑣𝑜𝑙), 

and 𝑇𝑒𝑓𝑓. Presuming that local energy deposition is a valid approximation for 177Lu-labeled radionuclides’ dosimetry [23], 

we expect a physics-informed correlation between dose and TIAvol and further with 𝐶𝑣𝑜𝑙 and 𝑇𝑒𝑓𝑓. Physically, the self-dose is 

composed of these parameters in addition to an independent noise level owing to the mathematical process. The term “noise” 

refers to the non-linear transformation applied on TIA during the MC-based dose calculation that degrades the linear 

correlation between TIA and dose. In this regard, we designed two strategies to test the strength of correlation between 

predictors and dose.  

1. Comparing the correlations between predictors and three dose-related parameters, i.e. dose, TIAvol and 𝐶1𝑣𝑜𝑙.  

2. Comparing the correlations between predictors and dose parameters in multiple subsamples of the data filtered by 

tumor volume. 
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Supplemental-Figure 5. Model performance in hierarchical feature selection approach: Linear Univariate, Bivariate and 

Trivariate analysis (10-fold, Bootstrap aggregation models). 
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Supplemental-Figure 6. Model performance in hierarchical feature selection approach: Ens-Trees, Bivariate and trivariatate 

analysis (10-fold, Bootstrap aggregation models).  
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Supplemental-Figure 7. Tumor absorbed dose and Cvol, plotted vs. tumor SUVmean, TotLiverSUVmean and TLSUVmean, where 

the color bar shows the tumor SUVmean; (bottom row) Tumor absorbed dose plotted vs. tumor SUVmean, TotLiverSUVmean and 

TLSUVmean, where the color bar shows the tumor location. The size of spheres depicts the volume of tumors in logarithmic 

form (4-1039 mL). 
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Supplemental-Figure 8. Pre-therapy predicted dose using different models of Table 2 vs. the delivered dose measured from 

Lu-177 SPECT/CT (the filled gray dots represent the 2 outliers). 

 

  



188 

 

 

Supplemental-Table 1. Patient demographic information  

Demographics Median Range 

Age (y) 63.7 (9.5) 38-76 

Weight (kg) 85.5 51-129 

Gender  N (%)  

Female  44  

Male  66  

Diabetes  20  

Hypertension  60  

ECOG (score: 0-5)   

S=0 44  

S=1 44  

S=2 12  

Krenning score   

S=3 12  

S=4 88  

Administered Lutathera    

~ 7.3 (GBq) 88 7.1-7.4 

~ 3.7 (GBq) 12 3.7-3.8 

68Ga PET/CT scanner  Reconstruction 

Biograph mCT  

(Siemens Healthineers) 
88 

3D-OSEM, TOF, 3 iteration 

(21subsets), 5-mm Gauss filter 

Biograph TruePoint (Siemens Healthineers) 4  

Discovery MI (GE Healthcare) 4  

and Discovery STE (GE Healthcare) 4  
ECOG: Eastern Cooperative Oncology Group   

 

 

Supplemental-Table 2. Model performance of different prediction algorithms using PET-SUVmean with/ without clinical 

factors. The quantitative metrics are reported as mean (95% CI) calculated from nested CV. The MAE range is reported 

based on the averaging over 10-outerloop CV point prediction. 

Model Features 
R2* 

10-fold 

Median 

MRAE 

MAE 

(Gy/GBq) 

MAE Quantile 

(0.05-0.95) 

Univariate Linear       

  SUVmean 0.28(0.00) 0.38(0.00) 1.08(0.00) 0.14-2.8 

Bivariate  Linear      

  SUVmean +bilirubin 0.37(0.01) 0.31(0.01) 0.95(0.01) 0.05-2.94 

  SUVmean + #Systemic therapy 0.34(0.02) 0.40(0.02) 1.06(0.01) 0.10-2.61 

Trivariate  Linear       

  SUVmean + bilirubin +albumin 0.47(0.00) 0.26(0.00) 0.87(0.00) 0.04-2.63 

  SUVmean + bilirubin +#Systemic therapy 0.42(0.02) 0.34(0.02) 0.94(0.01) 0.04-2.68 

Multi-variate Linear       

ElasticNet features  SUVmean+SUVLiver+SUVkidney+     

  
#Systemic therapy +#Directed therapy + 

bilirubin +albumin 0.57(0.02) 0.26(0.01) 0.80(0.02) 0.06-2.56 

Bivariate  Tree_Ens      

  SUVmean + TotLiverSUVmean 0.61(0.01) 0.26(0.01) 0.82(0.01) 0.10-2.29 

  SUVmean +TLSUVmean 0.48(0.03) 0.26(0.01) 0.88(0.02) 0.05-2.66 

Trivariate  Tree_Ens      

  SUVmean+ TotLiverSUVmean+ TLSUVmean 0.64(0.02) 0.20(0.01) 0.73(0.02) 0.02-2.46 

Multi-variate Tree-Ens      

PRFvI features 

 

SUVmean + TLSUVmean + SUVSpleen + 

SUVSkew + TotLiverSUVmean + SUVLiver + 

SUVpeak + ALP 0.46(0.02) 0.26(0.01) 0.90(0.02) 0.06-2.59 

* Two outliers are excluded from R2      
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I. Summary of the research and achievements 

The use of ionizing radiation in medical imaging and radiotherapy increased significantly over the past three 

decades globally. Medical imaging examinations, especially CT and molecular imaging, carry small risks of 

radiation hazards that should be justified and furthermore optimized by “keeping the exposure of patients to the 

minimum necessary to achieve the required diagnostic or interventional objective”1. Current radiopharmaceutical 

therapy regimens are in a transition phase from one-size-fits-all concept to a personalized approach by increasing 

the radiation dose to the target while minimizing the absorbed dose to healthy tissues. Therefore, establishing a 

practical framework for patient-specific dosimetric data estimation can be used in the optimization of radiation-

involved medical procedures to ensure the minimum radiation dose necessary, while improving the efficacy of the 

medical task at hand. 

This dissertation aimed at evaluating and developing unified frameworks that were developed to offer accurate 

and practical solutions for the key challenges and major limitations of personalized dosimetry in nuclear medicine 

procedures. In Part 1, we mainly focused on the two components of personalized dosimetry: computational 

phantoms and radiation transport algorithms. Toward patient-specific computational models, we started with the 

development of a library of habitus-dependent computational phantoms and extended our methodology to 

construct patient-specific phantoms through the registration of reference computational models on patient’s CT 

images. However, taking advantage of the emergence of deep learning algorithms in the domain of computer vision 

and image processing, nowadays, the construction of patient-specific computational models from CT images is a 

practical task in clinical setting. In addition, we have developed and validated different MC simulators for 

personalized dosimetry from various medical exposure scenarios and further addressed the limitation of MC-based 

dose engines in terms of computational cost by implementing deep learning in dose reconstruction. We developed 

a unified framework for the deployment of deep learning algorithms for fast dose calculation in nuclear medicine, 

brachytherapy and external CT exposure with a reasonable accuracy compared to MC-based dose maps serving as 

standard of reference (ground truth). In addition to our studies in dose monitoring, we conducted a study on 

radiation dose optimization of CT acquisition protocols by means of deep learning and demonstrated the feasibility 

of ultra-low dose imaging in chest CT examinations with acceptable clinical diagnosis accuracy. Following our 

research on dosimetry in medical imaging, we extended the concepts and tools that we previously developed to 

theragnostic dosimetry. In this context, we developed the theragnostic dosimetry workflow for both 90Y-SIRT and 
177Lu-DOTATATE therapy. As the result, a stusy was conducted on 177lu-DOTATATE radiopharmaceutical 

therapy that confirmed the predictive value of 68Ga- DOTATATE (theragnostic pair) for patient-stratification and 

personalized planning in RPT. 

The main contributions achieved during this dissertation are summarized in the following paragraphs: 

1. To cope with inter-subject variability of anatomical features, a habitus-dependent library of computational 

phantoms has been developed, covering the diversity of organ masses along with the morphometric 

parameters by adjusting voxel-based ICRP adult reference phantoms. The move toward patient-specific 

phantoms is a major improvement taking advantage of the availability of habitus-dependent phantoms 

associated with anthropomorphic and anatomical diversities and classified in different somatotypes. 

2. We quantified the dosimetric characteristics of patient-specific computational models in CT dose estimation. 

Although using habitus-specific phantom series is feasible for dosimetry in clinical setting, the estimated 

organ dose may considerably differ from the ground truth (up to 36%). If, however, patient CT images are 

available, a reference computational phantom can be matched to the patient data to construct a patient-

specific computational model through deformable registration, thus improving the accuracy of organ dose 

estimation. 

3. We further adapted and validated our Monte Carlo simulation tool developed for dose calculation associated 

with CT examinations on a Siemens scanner. An experimental setup using an anthropomorphic physical 

phantom and TLDs was designed to evaluate the accuracy of MC-based personalized organ-level dosimetry. 

Using the validated CT dosimetry simulator, patient-specifics dosimetry, and moreover, optimization of CT 

technologies and scanning protocols would be feasible. In our study, we also assessed the dosimetric impact 

of input parameters in organ-level dose simulation. It can be concluded that, when the information from the 

 
1 IAEA, Safety Standards Series No. SSG-46 
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CT raw projection data is not available, the simulation results could be acceptable if the longitudinal tube 

current modulation (with <6 mm interval in z direction), is implemented in the simulation. 

4. We proposed a unified methodology for patient-specific voxelwise whole-body internal dosimetry using deep 

learning algorithms. The comparison of the proposed approach with standard of reference MC simulations 

revealed very good accuracy with a mean relative absolute error of 2.6%. Our technique also outperformed 

conventional voxel-level and organ-level MIRD-based formalisms. Future work will focus on exploiting the 

current model to generate whole-body voxelwise dose maps for the purpose of using active learning to 

improve model performance and further extend this model to a faster pipeline through straightforward 

prediction of whole-body dose maps from hybrid PET/CT images. 

5. We developed and validated a unified pipeline for MC-based dosimetry in high-dose-rate brachytherapy that 

has been used to provide an accurate set of MC simulations on a large retrospective cohort. We further 

developed a deep learning model to provide an alternative solution for accurate personalized dose distribution 

estimation in brachytherapy to overcome the computational burden of MC simulations. The proposed 

algorithm achieved good agreement with MC calculations while outperforming the conventional TG-43-

based formalism. Future work will focus on extending the core idea to different radioactive seeds for various 

disease sites. 

6. We proposed a deep learning model for construction of whole-body dose maps from CT scans with 

reasonable accuracy at the voxel level with excellent performance achieved for organ-level dose estimation. 

The whole process, including pre-processing and model inference on a new dataset, can be performed within 

seconds, which makes personalized dosimetry with an acceptable accuracy a feasible option in clinical 

setting. The main advantage of our model is its ability to construct accurate and personalized dose maps for 

a wide range of acquisition parameters. 

7. Ultra-low-dose chest CT imaging of COVID-19 patients would result in the loss of critical information about 

lesion types. However, the results presented in this work indicated that ResNet is an optimal algorithm for 

denoising ultra-low-dose CT images for COVID-19 diagnosis. Future work will focus on a more accurate 

low-dose CT simulation algorithm along with the extension of the model to whole-body clinical CT studies 

to further validate our model. 

8. Keeping the dose-response relationship in mind, the current study investigated the predictive values of 68Ga-

based SUVs along with biomarkers to predict the therapeutic tumor dose. We showed that tumor SUVmean, 

SUVtotal-liver and SUVmean of MTV is capable of predicting the 177Lu-PRRT induced tumor dose with an 

accuracy in terms of MAE of 0.71 Gy/GBq (R2=0.63). We foresee to further benchmark the proposed models 

on a multi-center study to provide a validated decision-support tool for clinicians to improve patient-selection 

and thus optimize treatment outcome. Developing these quantitative metrics forms the ground for the role of 
68Ga-PET not only for patient stratification but also for prognostication and assessment of therapeutic 

response modeling. 

 

II. Future perspectives 

This dissertation focused mainly on personalized dosimetry in diagnostic and therapeutic nuclear medicine 

examinations. On the basis of advancements in quantitative molecular imaging technologies, computational 

modeling of the human body, and sophisticated radiation transport techniques, nowadays, patient-specific 

dosimetry is feasible in routine clinical setting. Through the advent of artificial intelligence and in particular deep 

learning, in the area of computer vision and image processing, the task of segmentation, one of the main challenges 

in personalized medicine, has been addressed. Currently, robust automatic segmentation is a hot topic in medical 

image analysis for organs segmentation from structural images (such as CT and MRI) and the detection and 

delineation of tumoral tissues from different medical images such as PET, contrast-enhanced CT, MRI, 

pathological slides, … etc. Logically, prospective research in this field would deal with further development, 

evaluation and commercialization of the proposed segmentation algorithms in real-world clinical setting. To be 

specific in the field of personalized dosimetry, real time organ dosimetry from external exposure is becoming 

feasible thanks to fast organ segmentation algorithms. 

In the case of CT dose optimization, deep learning-based low-dose CT image denoising is one of the promising 

approaches. While a novel technical approach could be real-time prediction of the 3D voxel density map of the 

https://www.sciencedirect.com/topics/computer-science/unified-pipeline
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patient from 2D CT localizer (scout image) and accordingly modulating the tube current based on the predicted 

density map.  

In radiopharmaceutical dosimetry, simplified radiation transport methods, like the MIRD formalism and local 

energy deposition provide clinically acceptable results for therapeutic radiotracers with short range particles (i.e 

beta and alpha) in soft-tissue regions, while in heterogenous medium, such as bone marrow dosimetry, the 

simplified approaches provide some uncertainties compared to MC simulations. In the case of imaging radiotracers 

labelled with longer travelling range radiation (i.e. photons) compared to therapeutic agents, simplified radiation 

transport approaches introduce considerable errors compared to patient-specific MC dosimetry. Therefore, 

according to the promising results achieved by AI-based internal dose construction, this could be a potential option 

for clinical dosimetry in a reasonable computational time. However, fast GPU-based Monte Carlo simulations 

using high performance computers and the next generation of quantum computers seems more reliable for use in 

clinical setting. In addition, patient-specific biokinetics of imaging radiotracers cannot be extracted from static 

image acquisitions. It would be interesting to build a simple data-driven model for the prediction of time-integrated 

activity from dynamic scans similar to studies in RPT dosimetry with single time points. 

In theragnostic dosimetry, there are some gaps in image quatification because of motion that has not been 

adequately addressed yet. Respiratory motion degrades image quality and impacts image quantification from 

attenuation correction step to the construction of density maps for radiation transport. One potential solution for 

attenuation correction is using deep learning-based attenuation correction algorithms, as these methods showed 

promising results to compensate the impact of mismatch between CT and 18F-FDG PET examinations resulting 

from respiration motion.  

In addition, a better understanding of radiobiology in molecular radionuclide therapy is needed. Radiobiology 

has been a key factor for establishing optimal treatment regimens for external beam radiotherapy. Nowadays, there 

is some evidence that the extrapolation of radiobiology of external beam radiotherapy to molecular radionuclide 

therapy is not straightforward, because of dose-rate effects and more importantly owing to the different molecular 

and cellular signalling pathways. Therefore, there is a need for restablishment of specific radiobiological models 

in RPT. 

In the current clinical scenario, there is minimal evidence on patient eligibility for RPT, in particular for 177Lu-

DOTATATE and PSMA, and no standardized criteria has been established yet. Thus, there is still room for 

outcome prediction of these type of treatments with encouraging responses and well tolerable side effects that can 

aid clinicians to further optimize clinical trial designs and individual patient management. Furthermore, potential 

prognostic models are useful tools in designing randomized clinical trials for patients’ selection and stratification 

of patients to responder and non-responder groups. Considering the fact that the developed predictive model should 

not bias well-informed clinical decisions, instead, it has to be employed as a complementary decision-support tool. 

In addition, using dual tracer (e.g. 68Ga-PSMA and 18F-FDG) in RPT prognostic modelling is a hot topic that needs 

more clinical trials and investigations to build a conclusive understanding of the predictive value of these models.   
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