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Abstract
Objectives This study aimed to improve patient positioning accuracy by relying on a CT localizer and a deep neural network 
to optimize image quality and radiation dose.
Methods We included 5754 chest CT axial and anterior–posterior (AP) images from two different centers, C1 and C2. After 
pre-processing, images were split into training (80%) and test (20%) datasets. A deep neural network was trained to generate 
3D axial images from the AP localizer. The geometric centerlines of patient bodies were indicated by creating a bounding box 
on the predicted images. The distance between the body centerline, estimated by the deep learning model and ground truth 
(BCAP), was compared with patient mis-centering during manual positioning (BCMP). We evaluated the performance of our 
model in terms of distance between the lung centerline estimated by the deep learning model and the ground truth (LCAP).
Results The error in terms of BCAP was − 0.75 ± 7.73 mm and 2.06 ± 10.61 mm for C1 and C2, respectively. This error was 
significantly lower than BCMP, which achieved an error of 9.35 ± 14.94 and 13.98 ± 14.5 mm for C1 and C2, respectively. 
The absolute BCAP was 5.7 ± 5.26 and 8.26 ± 6.96 mm for C1 and C2, respectively. The LCAP metric was 1.56 ± 10.8 
and −0.27 ± 16.29 mm for C1 and C2, respectively. The error in terms of BCAP and LCAP was higher for larger patients 
(p value < 0.01).
Conclusion The accuracy of the proposed method was comparable to available alternative methods, carrying the advantage 
of being free from errors related to objects blocking the camera visibility.
Key Points 
• Patient mis-centering in the anterior–posterior direction (AP) is a common problem in clinical practice which can degrade  
   image quality and increase patient radiation dose.
• We proposed a deep neural network for automatic patient positioning using only the CT image localizer, achieving a  
   performance comparable to alternative techniques, such as the external 3D visual camera.
• The advantage of the proposed method is that it is free from errors related to objects blocking the camera visibility and  
   that it could be implemented on imaging consoles as a patient positioning support tool.
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Abbreviations
AP  Anterior-posterior
BCAP  Body mis-centering during automatic 

positioning
BCGTH  Body centerline extracted from axial ground 

truth images
BCMP  Body mis-centering during manual positioning
CT  Computed tomography
CTDI  CT Dose Index
DL  Deep learning
LCAP  Lung mis-centering during automatic 

positioning
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LCGTH  Lung centerline extracted from axial ground 
truth images

LCMP  Lung mis-centering during manual positioning
SNR  Signal-to-noise ratio
TCM  Tube current modulation

Introduction

Computed tomography is a valuable imaging modality in 
the diagnosis of a wide variety of pathologies. Optimizing 
scanning parameters, patient positioning, and scan range 
are critical to maximize the diagnostic value and minimize 
the radiation risks to patients. A number of studies reported 
on debatable practices in clinical setting resulting from 
inadequate selection of scan-related factors, such as patient 
positioning, scan range selection, irradiation parameters, and 
reconstruction methods. It is manifest that these impreci-
sions in parameter selection can have more negative effects 
when automatic methods, such as tube current modulation 
(TCM) and automatic kVp selection, are implemented [1].

In a recent study, Akintayo et  al [2] reported a high 
prevalence (more than 80%) of patient mis-centering in the 
Y-axis (table height) after evaluating a large cohort consist-
ing of 57,621 CT scans. An average mis-centering error of 
14.7 ± 17 mm was reported in chest CT scanning. Sukupova 
et al [3] demonstrated the high prevalence (470 from 473 
cases) of mis-centering in clinical practice with an average 
mis-centering of  −43 mm. Differences between patients’ 
body centerline and the gantry isocenter would lead to 
additional doses and degraded image quality. Li et al [4] 
reported up to 30% surface dose increment due to 60 mm 
mis-centering in a cylindrical water phantom. Furukawa et al 
[5] evaluated the effect of table height on the behavior of the 
TCM system. They showed that a higher table height causes 
a magnification in the anterior–posterior (AP) localizer, con-
sequently overestimating the attenuation and increasing the 
radiation flux through tube current elevation.

Euler et al [6] evaluated the effect of table mis-centering 
from  −60 mm to  +60 mm on organ doses measured on a 5 
y/o anthropomorphic phantom using semiconductor dosim-
eters. They reported up to 28% change in organ doses in 
chest scanning range. In their first study, Kaasalainen et al 
[7] showed more than 100% change in organ doses (such 
as the thyroid and lungs) measured in an anthropomor-
phic phantom due to patient mis-centering. In their second 
study, Kaasalainen et al [8] reported up to 91% change in the 
 CTDIvol by changing the table height. A number of studies 
attempted to overcome the mis-centering issue through auto-
matic patient positioning, mainly employing an additional 
visual camera for 3D imaging. In serial studies, Booij et al 
[9, 10] calibrated a 3D camera fixed on the ceiling to posi-
tion the patient automatically and tested the performance of 

their technique on 254 adults and 191 pediatric patients. The 
median error of their method was 5.4 mm after excluding 
outliers in adult cases. Moreover, after excluding outliers, 
they obtained an error of 4.8 mm on 191 pediatric patients. 
Dane et al [11] reported an error of 6.8 ± 6.1 mm utilizing a 
3D camera, an AP localizer, and human intervention.

Gang et al [12] scanned 127 patients twice with man-
ual and automatic positioning. Their results showed a 
15.6 ± 8.3 mm error from the patients’ centerline, wherein 
mis-centering correction improved image quality in terms of 
noise and lesion signal-to-noise ratio (SNR) while decreas-
ing the radiation dose. Saltybaeva et al [13] reduced manual 
positioning errors for chest CT images from 19 to 7 mm 
using a 3D camera. A 3D camera installed in the scanning 
room is not always available and commonly requires sen-
sitive/precise calibration procedures. Moreover, a portable 
camera is also prone to numerous errors [14]. Besides, using 
a camera would lead to considerable mis-centering errors, 
much more than manual setups, in cases where additional/
extra objects are located on the patient’s body, such as a 
blanket or respiratory aiding or tracking device [15]. This 
would significantly limit the application of this method in 
routine clinical practice.

Deep learning (DL) has demonstrated excellent perfor-
mance in automating multiple medical image analysis tasks, 
including segmentation [16–20], computational modeling 
[21, 22], radiation dosimetry [23, 24], scan range selection 
[25], low-dose imaging [26–28], and protocol optimization 
[29]. The use of DL to automate patient positioning in CT 
scanning is very sparse, with only a few of studies so far 
[30]. In this context, we explored the possibility of automatic 
patient-specific positioning for CT examinations. The main 
purpose of the current study was to automate the detection 
of the patient’s body centerline distance from the gantry iso-
center with the aim to perform automatic patient positioning 
in chest CT scans by means of deep learning algorithms 
using only the AP localizer as input.

Material and methods

Study population

We collected 7295 chest CT images acquired from two 
imaging centers equipped with Siemens Somatom Duo (C1, 
3867 cases, 2066 male and 1801 female) and Phillips Bril-
liance 16 (C2, 3428 cases, 1728 male and 1700 female). 
The patients were referred for the assessment of different 
pathologies in the thorax region, where chest CT imaging 
was requested, excluding cardiac and spine indications. Our 
study was approved by the local ethics committees, and the 
written informed consent was waived owing to the retrospec-
tive nature of the study. The 2D AP localizer and 3D axial 
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images were collected in DICOM format. We excluded 624 
and 917 cases from C1 and C2 databases, respectively. The 
main criteria for exclusion were truncation artifacts because 
indicating the anterior, posterior, and consequently, the AP 
centerline borders is not possible from a truncated image. 
The remaining 5754 cases (3243 cases from C1 and 2511 
cases from C2 centers) were included in the study protocol 
(Fig. 1).

Single‑slice reconstruction

Image pre‑processing

The localizer and axial 3D images were cropped to the 
same dimension ratio using the location tag stored in the 
DICOM headers. The localizer images were normalized to 
[0–1] intensity range and resized to a matrix size of 144 (lat-
eral direction) by 64 (Z-direction) pixels. The axial images 
were reoriented to coronal orientation and then resized to a 
matrix of 184 (AP direction), 144 (lateral direction), and 64 

(Z-direction) voxels, followed by intensity normalization to 
the range [0–1].

Neural network architecture and training

The data were randomly split into training (80%) and test 
(20%) datasets for each center. It should be noted that, 
inspired by a previous study, which demonstrated that the 
localizer pixel values and geometrical characteristics of the 
scout view images are scanner-specific [25], we trained two 
separate models using data from each scanner. A modified 
U-NET deep neural network was used with five encoder and 
five decoder layers using Matlab-based deep learning mod-
ule (Fig. 1). Each encoder and decoder contained a batch 
normalization and ReLU with stride of 2 × 2. The input was 
the pre-processed AP 2D localizer images, whereas the out-
put was the pre-processed 3D coronal image. The training 
was performed on a PC equipped with an NVIDIA 2080 TI 
GPU with 11 GB of RAM. The training was continued for 
50 epochs with a batch size of 1 and Adam optimizer. We 
did not use any data augmentation strategy.

Fig. 1  Flowchart of the overall process implemented in this study protocol along with and the architecture of the employed U-NET deep neural 
network
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Centerline measurement

All ground truth and deep learning reconstructed images 
from the external group were reoriented in the axial ori-
entation. The body contour was automatically extracted 
by applying an intensity-based thresholding and region 
shape evaluation by removing the table and other objects 
in the field of view, such as respiratory aiding tools, patient 
clothes, and blankets. A bounding box (B.Box) was created 
around the body, wherein the anterior body limit, posterior 
body limit, and the AP centerline of the body were cal-
culated from the B.Box information. The body centerline 
extracted from deep learning reconstructed images (BCDL) 
was compared to the body centerline extracted from axial 
ground truth images (BCGTH). The deep learning–based 
automatic positioning error in the body center (BCAP) was 
defined as BCAP = BCDL − BCGTH (mm). The BCAP met-
ric was considered as the ability of our algorithm to identify 
the centerline of the body from AP localizers, consequently 
indicating the distance of the body centerline from the gan-
try isocenter, which is a fixed location for any CT scanner, 
and finally, the ability in the automatic setting of the desired 
table height and patient positioning.

Similarly, the distance between BCGTH and the gan-
try isocenter was considered as manual positioning error 
according to the body center (BCMP) formulated as 
BCMP = BCGTH − gantry isocenter. BCMP was considered 
as metric for evaluating technologists’ accuracy in patient 
positioning according to body centerline.

Besides, the lungs were segmented by applying intensity-
based thresholding on the axial ground truth images and the 
images generated by the deep learning model. Similar to the 
procedure followed for body contour delineation, the center-
line for both lungs (LC) was calculated by creating a B.Box 
on both lung segments covering the whole lung. The cen-
terline of the lung extracted from ground truth axial slices 
(LCGTH) and the centerline of the lung extracted from 
images generated by the deep learning model (LCDL) were 
separately measured. The error in deep learning automatic 
positioning according to the lung centerline was defined 
as LCAP = LCDL − LCGTH. The error of technologists in 
positioning the lung centerline in the isocenter was defined 
as LCMP = LCGTH − gantry isocenter.

The negative values for BCAP, LCAP, LCMP, and BCMP 
indicate patient positioning (centerline) under the gantry 

center (lower table height), whereas positive values indi-
cate patient positioning above the gantry center (higher table 
height). For all cases included in this study (3243 cases for 
C1 and 2511 for C2), the BCMP and LCMP were measured 
to evaluate technologists’ performance in positioning the 
patients in the AP direction. We compared the DL and tech-
nologists’ performance for the external test groups (C1: 648 
cases and C2: 502 cases).

Statistical analysis

The ability of our algorithm to detect body centerlines was 
compared with the ground truth data obtained from 3D axial 
images. The Kolmogorov–Smirnov test was used to test the 
normality of the distribution. The BCAP and LCAP were 
compared with BCMP and LCMP, respectively, through 
the Mann–Whitney test. Moreover, we repeated the Man-
Whitney test with the absolute values of BCAP, BCMP, 
LCAP, and LCMP as input to eliminate the counteracting 
effect of negative and positive errors. We used the Spearman 
test to find any potential correlation between body size and 
positioning errors. p values less than 0.05 were considered 
statistically significant.

Results

Population and scan parameter description

Table 1 summarizes the patients’ demographic informa-
tion included in this study. The patients’ body sizes for 
center #2 (C2) were slightly larger than those of center #1 
(C1), but this difference was not statistically significant (p 
value > 0.05).

The average errors, i.e., the absolute BCMP with respect 
to positioning for all 5754 cases included (C1: 3243 and 
C2: 2511 cases), were 14.50 ± 10.40 and 16.55 ± 9.72 mm, 
respectively. The absolute LCMP was 13.06 ± 14.4 and 
12.5 ± 9.81 for C1 and C2 datasets, respectively. Body mis-
centering of more than 10 mm occurred in 60% of the cases.

Body and lung centerline detection

Table 2 shows the performance of our proposed DL-based 
method vs. human performance in clinical scenario. The 

Table 1  Patient demographics and CT acquisition parameters for the two centers included in the study protocol. D_AP, AP diameter; D_Lat, 
lateral diameter

Database Male Female Age D_AP (cm) D_Lat (cm) Scanner kVp Tube current (mA) CTDIvol (mGy)

C1 1731 1512 53.8 ± 17.9 24.3 ± 3.6 30.1 ± 5.3 Siemens 110 170.0 ± 38.5 6.21 ± 1.48
C2 1339 1172 47.4 ± 18.4 24.4 ± 2.9 32.1 ± 4.7 Phillips 90 and 120 92.45 ± 47.92 5.07 ± 3.41
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error in automatic body centering in terms of BCAP was 
−0.75 ± 7.73 and 2.06 ± 10.61 mm for C1 and C2, respec-
tively, which is considerably better than the technologists’ 
performance in terms of BCMP for both centers of C1 and 
C2 (p value < 0.01). At the same time, the error in lung cen-
tering in terms of LCAP was 1.56 ± 10.8 and −0.27 ± 16.29 
mm for C1 and C2, respectively. The LCAP was significantly 
better than LCMP for the C1 dataset (p value  < 0.01), while 
no statistically significant difference was found between 
LCAP and LCMP for C2 test dataset (p value = 0.069). The 
total number (45 cases) had an absolute BCAP of more than 
20 mm.

Figure 2 depicts violin plots comparing the DL-based 
approach and human performance for both centers with 
respect to body centering. The DL-based method exhibited 
superior performance in body centerline detection com-
pared to lung centerline, with a lower bias and less variance 
(Table 2).

Figure 3 presents the distribution of errors from the gan-
try isocenter achieved by the automatic and manual position-
ing techniques. The DL-based method increased the accu-
racy of patient body centering, where the average absolute 
values of BCAP and BCMP were 5.7 vs. 14 mm and 8.26 
vs. 16.08 mm for C1 and C2, respectively. This plot shows 
the errors for all external test datasets from both centers 

Table 2  Comparison of automatic positioning errors between automatic and manual positioning for the two centers. The p value shows the 
results of the Mann–Whitney statistical test

Error (mm) Absolute error (mm)

Mean ± SD 95% CI p value Mean ± SD 95% CI p value

C1 Body Human (BCMP) 9.35 ± 14.94 8.16–10.54  < 0.01 14.03 ± 10.66 13.18–14.87  < 0.01
Deep (BCAP)  − 0.75 ± 7.73  − 1.22 to 0.14 5.7 ± 5.26 5.28–6.12

Lung Human (LCMP) 8.53 ± 17.47 7.15–9.92  < 0.01 13.06 ± 14.4 11.92–14.21  < 0.01
Deep (LCAP) 1.56 ± 10.8 0.7–2.42 7.49 ± 7.93 6.86–8.12

C2 Body Human (BCMP) 13.98 ± 14.5 12.7–15.25  < 0.01 16.08 ± 12.12 15.01–17.14  < 0.01
Deep (BCAP) 2.06 ± 10.61 1.13–3.00 8.26 ± 6.96 7.65–8.87

Lung Human (LCMP) 4.88 ± 15.13 3.54–6.21  < 0.01 12.5 ± 9.81 11.64–13.36 0.069
Deep (LCAP)  − 0.27 ± 16.29  − 2.86 12.25 ± 10.72 11.3–13.19

Fig. 2  Comparison between 
the centerline detection error 
through DL and human perfor-
mance
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(combining the two datasets), wherein a significant differ-
ence between LCAP and LCMP and their absolute values 
was observed (p value < 0.01).

The error in DL performance was significantly larger 
for patients with a larger body habitus (p value < 0.05). In 

addition, the error was more considerable in females than 
males, but this difference was not statistically significant (p 
value = 0.25).

Figure 4 shows representative examples of axial and coro-
nal slices of two patients. Figure 4(1) presents the total body 

Fig. 3  Histogram of errors in 
patient positioning achieved by 
manual and automatic position-
ing in terms of lung positioning 
errors of lung mis-centering 
during manual positioning 
(LCMP) and lung mis-centering 
during automatic positioning 
(LCAP) and body positioning 
errors of body mis-centering 
during automatic positioning 
(BCAP) and patient mis-center-
ing during manual positioning 
(BCMP)

Fig. 4  Effect of scan range on 
body centerline. (1) Lateral 
view of body contour (skin 
contour) from head to mid-
thigh. The yellow box and line 
show the bounding box and the 
centerline can be detected by a 
visual camera with a zero-error 
accuracy. The red dots present 
the body centerline at each axial 
position. (2) A male patient 
chest 3D rendered image body 
contour (cyan) and lung seg-
mentation (red). Three bound-
ing boxes and centerlines are 
visualized. The red one shows 
body B.Box and centerline for 
chest CT typical scan range. 
The yellow one shows the lung 
B.Box and centerline for chest 
scan range. The green one 
shows the B.Box and centerline 
for typical cardiac scan range. 
(3) A coronal slice of the same 
patient shown in (2)
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centerlines, where the B.Box is highlighted in yellow, and 
the yellow line depicts the ideal B.Box. The centerline can 
be detected by a visual camera, while the red dots show the 
regional centerlines reflecting the body’s centerline for a 
limited axial range. Figure 4(2) shows the different center-
lines for the body center and chest scan range (red), lung 
center and chest scan range (yellow), as well as the body 
center and cardiac scan range.

Discussion

Patient mis-centering is a common issue in CT imaging, 
which could influence both patient radiation dose and image 
quality [31]. Our observations indicated that patient mis-
centering is more than 10 mm in more than 60% of the cases 
in a clinical scenario. It should be mentioned that the table 
height was fixed in 78% of cases, demonstrating that the 
routine protocol was based on a fixed table height rather than 
a patient-specific table adjustment. In agreement with results 
reported in the literature, an average absolute BCMP (body 
centerline manual positioning) of 14.50 ± 10.40 mm and 
16.55 ± 9.72 mm was obtained for C1 and C2, respectively. 
Akintayo et al [2] reported an average error of 14.7 ± 17 
mm, whereas Dane et al [11] conveyed an average error of 
16 ± 14 mm. Moreover, Gang et al [12] recently reported 
a much higher mean error ( 40.5 ± 24 mm), which is com-
parable with the study of Sukupova et al [3], reporting 43 
mm average error. This observation could be related to the 
patient population, technologists’ skills/experience, and 
patient characteristics.

In this study, we developed a model to predict the 3D 
body contour from a single 2D localizer for chest CT scans. 
Consequently, we used these body contours to estimate the 
centerline of the body contour and its distance from the gan-
try isocenter, based on which automated table height adjust-
ment was proposed to perform automatic patient positioning. 
In terms of accuracy, our method was comparable with stud-
ies that attempted to overcome the problem of mis-centering 
through a 3D camera either fixed on the ceiling in a single 
room or using portable cameras. Our errors in terms of abso-
lute BCAP (C1∶ 5.7 ± 5.26 mm, and C2:8.26 ± 6.96 mm) are 
within the same range as reported in recent studies. Booij 
et al [9, 10] reported median and interquartile ranges of 5.4 
and 6.4 mm for adults and 4.8 and 6.7 mm for pediatric 
patients, respectively, in positioning patients’ bodies in 
the gantry isocenter. In comparison, our results in terms of 
absolute BCAP median and interquartile range, considering 
the data from both scanners, were 5.25 mm and 6.94 mm, 
respectively. It should be noted that they excluded cases with 
an additional object on the patient’s body, such as a blanket, 
warm cloth, or fixation aid equipment.

Saltybaeva et al [13] reported an error of 7.0 ± 4.0 mm 
in automatic body positioning on 68 chest CT cases using a 
visual camera, which is comparable with our results. How-
ever, they did not report cases with an absolute error of 
more than 20 mm, while we observed 45 cases with BCAP 
of more than 20 mm. Dane et al [11] developed a method 
that achieved an error of 6.8 ± 6.1 mm, which is compara-
ble with our results in terms of BCAP. It should be noted 
that they relied on a 3D camera and AP localizer and asked 
the technologists to confirm/verify the setup adjusted by the 
automatic model. Gang et al [12] scanned 127 COVID-19 
patients twice with automatic and manual positioning and 
reported a 15.6 ± 8.3 mm error in BCAP, which is noticeably 
higher than our results.

The significant merit of our proposed algorithm is that it 
does not require any additional device or time-consuming 
calibrations; besides, it is robust against the presence of 
additional objects, clothes, blankets, or tape fixators without 
any adverse effect on the positioning. It has been reported 
that the additional blanket on the patient’s body, blocking the 
vision of the 3D camera, is a common situation, especially 
in emergency and pediatric imaging. These external objects 
might lead to considerable errors in patient positioning, up 
to 70 mm [15].

Dane et al [11] emphasized the importance of the axial 
scan range in identifying the body centerline. Using a 3D 
camera and extracting body contour from the images, the 
whole body visible in the camera field of view is considered 
for distance and centerline detection. However, during spiral 
CT scanning, only a limited part of the body is scanned, e.g., 
the chest, abdomen, or brain. As shown in Fig. 4, the body 
centerline can vary significantly by changing the axial scan 
range, which limits the performance of cameras, even when 
the effect of clothes or blankets is ignored. The body center-
line for chest imaging differs from the centerline for abdomi-
nal imaging; by the delimitation of the desired scan range 
on the localizer image, the centerline may change depending 
on the technologist’s decision, even in a typical chest scan 
[25, 32]. This fact can lead to mis-centering in the axial scan 
even with a complete and perfect performance of a 3D cam-
era. Conversely, in our method, when the technologist selects 
the scan range on the localizer as routinely performed, the 
localizer is cropped, and the centerline fits exactly the spiral 
scan range indicated on the localizer image.

There is an intrinsic tradeoff in diagnostic radiology 
between image quality and radiation dose in terms of effec-
tive dose and organ-absorbed doses, such as the lens, breast, 
or gonads. Although simultaneous improvement in image 
quality and dose reduction can be achieved via positioning 
the patient at the isocenter, the image quality and radiation 
dose in specific organs can be affected in more complicated 
ways. Greffier et al reported that mis-centering affects the 
noise in the lung more than in soft tissue [6, 15]. The TCM 
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system over/underestimates attenuation by changing the 
table height since higher table heights cause magnification 
in the AP localizer and increase tube current or tube poten-
tial (if the auto kVp option is available) and vice versa [7]. 
Besides, the shape of the bowtie filter increases the radiation 
flux in the gantry isocenter. It can be concluded that image 
quality and organ doses are affected by a combination of 
bowtie filter, TCM system estimation of attenuation, patient 
mis-centering, and organ position.

It should be noted that the BCAP was larger in female 
patients, though this was not statistically significant. 
The breast shape and position can significantly affect 
the body bounding box and centerline and might also 
adversely affect the performance of new dose reduction 
techniques that rely on tube current modulation [33]. 
Another critical point in identifying the body centerline 
could be considering or neglecting the breasts in center-
line detection, which can change the calculated center-
line. For patient positioning, the tradeoff between breast 
dose, internal organ doses, TCM performance, and image 
quality must be considered. Our results demonstrated a 
significant positive correlation between patient size and 
BCMP and BCAP, which is consistent the findings of 
Sukupova et al [3].

For specific indications, e.g., lumbar spine, cardiac or 
lung CT during the COVID-19 pandemic, image quality 
in a specific organ of interest is more important, whereas 
the target organ is suggested/preferred to be in the gantry 
isocenter [9]. We tested our method to distinguish the lung 
centerline from a localizer and its organ-based patient cen-
tering capability. The error in terms of LCAP was compa-
rable with BCAP only for C1, which proves the capability 
of our method to perform organ-wise patient positioning. 
When comparing automatic and manual lung positioning 
(LCAP and LCMP), it should be noted that the technologists 
were not supposed to position the lung in the center of the 
gantry. In fact, lung positioning from the surficial anatomi-
cal marker is feasible neither by the technologist nor by the 
visual 3D camera.

With respiration, the body contour in the chest region 
changes. As such, positioning in a tidal breathing situa-
tion before starting the scan can cause some mismatches 
in body centerline detection [34], while the typical 
spiral chest CT breathing phase is end-inspiration. 
The localizer and the spiral acquisition can be in the 
same breathing phase through our proposed method to 
overcome this problem. This respiratory phase match-
ing between the localizer and the spiral scan was one 
of the reasons for the good agreement reported in our 
results. One of our algorithm’s limitations is that it is 
scanner-specific; i.e., the trained network can only be 
implemented on the same vendor. This limitation is due 
to disparate pixel value definitions and pre-processing 

procedures adopted by the different vendors. We evalu-
ated our method on two different CT scanners from two 
vendors and demonstrated that it outperforms humans 
and is comparable to alternative techniques using visual 
cameras. Transfer learning could be applied to address 
this issue in real clinical scenario by using a limited 
training dataset to implement the model in each center. 
However, alternative techniques relying on the use of a 
3D camera are applicable only to a single room. Com-
bining multiple methods of manual positioning and 
automated positioning using a 3D visual camera and 
our DL-based positioning might improve the accuracy, 
likely leading to eliminating the outlier cases. Each 
method has its limitations, and it would be interesting 
to check if combining the three models could circum-
vent the weaknesses of each one and improve the overall 
performance.

Conclusion

We set out to overcome the problem of patient mis-centering 
by employing a deep neural network via generating a 3D 
composition of patients’ bodies from a single AP local-
izer image. The performance of the proposed network was 
comparable to other alternative techniques relying on 3D 
cameras. The advantage of the proposed approach is that it 
does not require any additional device; besides, it enables 
organ-based patient centering. This method could be imple-
mented in clinical setting to aid technologists in diminishing 
the adverse effects of mis-centering on image quality and 
patient radiation dose.
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