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Abstract
Background: Patient-specific organ-dose estimation in diagnostic CT exami-
nations can provide useful insights on individualized secondary cancer risks,
protocol optimization, and patient management. Current dose estimation tech-
niques mainly rely on time-consuming Monte Carlo methods or/and generalized
anthropomorphic phantoms.
Purpose: We proposed a proof-of -concept rapid workflow based on deep learn-
ing networks to estimate organ doses for individuals following thorax Computed
Tomography (CT) examinations.
Methods: CT scan data from 95 individuals undergoing thorax CT examinations
were used. Monte Carlo simulations were performed and three-dimensional
(3D) dose distributions for each patient were obtained. A fully connected
sequential deep learning network model was constructed and trained for each
organ considered in this study. Water-equivalent diameter (WED), scan length,
and tube current were the independent variables. Organ doses for heart, lungs,
esophagus, and bones were calculated from the Monte Carlo 3D distribution
and used to train the deep learning networks.Organ dose predictions from each
network were evaluated using an independent data set of 19 patients.
Results: The trained networks provided organ dose predictions within a second.
There was very good agreement between the deep learning network predictions
and reference organ dose values calculated from Monte Carlo simulations. The
average difference was−1.5% for heart,−1.6% for esophagus,−1.0% for lungs,
and −0.4% for bones in the 95 patients dataset, and −5.1%, 4.3%, 0.9%, and
1.4% respectively in the 19 patients test dataset.
Conclusions: The proposed workflow demonstrated that patient-specific
organ-doses can be estimated in nearly real-time using deep learning net-
works. The workflow can be readily implemented and requires a small set of
representative data for training.

KEYWORDS
CT, deep learning, dosimetry

1 INTRODUCTION

Patient dose estimation during diagnostic CT exami-
nations has been a matter of research, scrutiny, and
legislation since the adoption of CT as the workhorse
of radiological departments.1–3 Traditional methods to
estimate patient dose, rely on standardized phantom-
based measurements using TLDs or other detectors

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.

to provide either point estimates or 2D distributions
of dose. Although these methods clearly depict dose
distributions from actual measurements, they fall short
on doing so on real patients rather than phantoms.
In the past decade, Monte Carlo based dose estima-
tion techniques have increasingly been applied as more
computing power became available.4–7 However, Monte
Carlo computations are often time-consuming, laborious
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2 ORGAN DOSES WITH DEEP-LEARNING NETWORK

F IGURE 1 Manually delineated organs, (a) heart, (b) esophagus, and automatically delineated organs using thresholding techniques, (c)
body, (d) lungs, (d) bone structure. (W: 1550, L:−250).

to properly setup, and often need specific knowledge
of the Monte Carlo software at hand. This can be
challenging to clinics, especially to those with high
patient throughput, where a rapid workflow is required.
In addition, Monte Carlo based computations rely
solely on a computerized representation of the scanner
characteristics and the patient, usually through a set of
CT images,which increases the potential uncertainty on
the final dosimetric outcome.

With the advent of artificial intelligence in med-
ical applications, solutions that provided accurate
dose estimations based on deep learning algorithms
emerged8–10 mainly at the radiotherapy field. These
solutions rely on image generation using generalized
adversarial networks (GAN) or other types of convo-
lutional neural networks. The training difficulty and the
need for successive deep learning algorithms for vari-
ous steps of the dose estimation procedure (e.g., image
generation, segmentation, final estimation of absolute
dose) may provide additional challenges in implementa-
tion and daily use within the workflow of a clinic. These
methods employ deep learning network training based
on a predetermined set of dose distributions, estimated
through Monte Carlo or analytical approximations of
dose deposition.The deep learning network is trained to
generate dose images within the range of the predeter-
mined dose distributions. In a subsequent step, another
deep learning model can be implemented and trained to
automate organ segmentation.

There is a potential exploitation of the initial dose
distribution obtained through Monte Carlo, to create

a shortcut to the organ dose estimation procedure.
Instead of using the 3D dose distributions as train-
ing material for the deep learning networks, one can
first calculate organ doses and then train a network to
directly provide organ dose values rather than images.
Furthermore, instead of using a CT image as input,
specific parameters included in or derived from the CT
images can be associated with patient-specific organ
doses and used as independent variables. This modi-
fication can bypass the difficulties and steps required
with image generation through image-generating deep
learning networks. The aim of the current work was
to propose a proof-of -concept for a rapid workflow
based on a deep learning neural network to estimate
patient-specific organ doses from thorax CT examina-
tions without the need for dose image generation or/and
segmentation.

2 METHODS

2.1 Patient CT data collection

Volumetric image data from 95 adult individuals under-
going thorax CT examinations with GE Revolution GSI
64 were collected. The average age was 64.3 years
(SD: ±16 years) and the median age was 67 years.
Truncated volumes or studies acquired using contrast-
enhancement were not considered to avoid biasing the
dosimetric estimation due to missing tissue data and
increased x-ray transmission/absorption respectively.
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ORGAN DOSES WITH DEEP-LEARNING NETWORK 3

F IGURE 2 (a) Age distribution among the patients selected in this work. (b) Distribution of WEDavg in the thoracic region. (c) 2D histogram
of WEDavg versus patient age.

Another dataset of 19 patients with similar characteris-
tics and exclusion criteria were collected for algorithm
testing. This dataset was not used during training and
validation. The study was retrospective and patient
consent was not required. An Institutional Review Board
approval to process anonymized images was granted.

Patient CT scans were performed with predefined pro-
tocols suitable for thoracic imaging in all scanners. In
a standard thoracic protocol, the scanned anatomy is
defined as just before the apices to just above adrenals.
These protocols have specific settings that were trans-
lated to corresponding parameter values in ImpactMC
Monte Carlo software. The number of rotations per
simulation was calculated based on the length of the
imaged volume, beam collimation, and pitch.

2.2 Body and organ delineation

The Fiji image processing package11 was utilized
to delineate radiosensitive organs within the primary
exposed volume. Esophagus, and heart were manually
delineated by an experienced operator. Bone structure
and lungs were automatically delineated using the iso-
data clustering algorithm of Ridler & Calvard.12 The
algorithm segments the image into object and back-
ground using an initial threshold, and then iteratively
updates the segmentation threshold based on border
pixel averaging. Automatically delineated organs were
reviewed by the same radiologist for adjustments and
modifications.

2.3 Wed calculation

Water equivalent diameter (WED) is a patient size metric
that accounts for patient attenuation characteristics and
can be derived from CT images. The WED calculation
method is thoroughly described in AAPM Report 220.13

The following equation was applied at each CT slice in

every patient CT scan included in this study:

WED = 2 ×

√[
1

1000
HUbody + 1

]
×

Abody

𝜋
(1)

where HUbody is the average CT-value along the outline
of the patient at a specific CT slice and Abody is the area
of the body outline.

2.4 Monte Carlo software for dose
estimation

The Monte Carlo software selected for dosimetric com-
putations was ImpactMC (version 1.6, CT Imaging
GMBH, Erlangen, Germany).5 ImpactMC is a well-
validated Monte Carlo software,specifically designed for
3D dosimetric evaluation on CT-acquired images.5,14,15

Dose is calculated on a per image voxel basis, consid-
ering all available physical interactions for photons up
to 200 keV and local deposition for electrons. ImpactMC
utilizes any available graphics processing unit (GPU) to
accelerate computations.

Dose estimation through ImpactMC requires an input
volume, that is, a set of CT reconstructed images from
one examination in DICOM format. In the current work
the input volume is individual thoracic CT from scans
collected as described in II.A. In addition, the software
requires scanner parameters, that is, the beam spec-
trum,filtration,and geometrical specifications (described
in subsequent paragraphs). Finally, simulation parame-
ters, for example, the number of simulated x-rays and
sampling angles per rotation need to be defined. Good
statistical performance (<1% uncertainty) was obtained
using a value in the order of 109 interacting x-rays. The
time required to perform a helical CT simulation with
pitch equal to one and rotation time equal to 1 s using an
input CT image set with 150 slices and 109 x-rays was
approximately 180 s in a GTX 1660 GPU.
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4 ORGAN DOSES WITH DEEP-LEARNING NETWORK

F IGURE 3 Right lung contours overlaid on corresponding dose
slices for organ-dose calculation.

2.5 Scanner parameters

Scanner-specific dose estimation required the param-
eterization of the Monte Carlo software according to
operating and physical characteristics of each scanner
considered. The CT scanner model were based on data
for x-ray beam spectra, beam shaping devices (bow-
tie filters), and geometrical specifications. The required
data were provided by the manufacturer and later com-
piled and converted to input parameters suitable for the
Monte Carlo software. The CT scanner modeled was
the GE Revolution GSI 64. The focus to isocenter dis-
tance was 539 mm with a fan angle of 56 degrees. The
beam can be collimated up to 40 mm and there are three
beam-shaping devices (small, medium, large) that can
be used based on the field-of -view.

The scanner modeled in the current work was capable
for fixed and modulated current acquisitions. Simulation
of transient current modulation (TCM) was based on
mA values stored in the ‘x-ray Tube Current’ DICOM tag
(0018,1151).These mA values represent the average of
angularly and longitudinally modulated current applied
along gantry rotation during image acquisition.TCM was
obtained from DICOM header information within each
image. The TCM value from each image was extracted
and imported in the Monte Carlo software. Dose distri-
butions for every patient in this study were generated
using individual TCM.

The CT scan of each patient was used as input
volume to perform dosimetric computations at 120 kV.
Separate computations were performed for modulated
and fixed current. The average tube current value was
set equal to 100 mA over 1 s gantry rotation. Tube cur-
rent normalization to 100 mA simplifies dose output
processing without loss of accuracy. The shape of the
current modulation is preserved, the 100 mA is just scal-
ing that does not affect in any way the modulation. For

organ dose calculations, the current is scaled back to
the original values.

The Monte Carlo software output after each compu-
tation was in the form of three-dimensional (3D) dose
distribution. Each slice of the distribution corresponds
to the same slice in the CT scan. Each pixel in a spe-
cific slice of the CT volume has a corresponding dose
value in the 3D dose distribution output. The dose distri-
bution was exported in binary format with 32-bit floating
point precision. To facilitate dose data processing, the
output dose was normalized to CT dose index in free
air (CTDIair). CTDIair normalized to 100 mAs depends
on beam energy and collimation hence the operation
is easily reversable to retrieve the absolute dose. The
unit of dose values in the 3D volume was mGy/mGy per
100 mAs.

Organ-dose information was extracted from 3D dose
distributions through appropriate delineation described
in §II.B. The organs of interest in this work were bones,
lungs, esophagus, and heart. The contours of each
organ were overlaid on the corresponding slices of the
dose distribution and the respective dose was extracted.
The dose over the whole organ was computed as:

D =

N∑
i

Di (2)

where, Di is the dose within the contour at slice i, and
N the total number of slices that contain contours of
a specific organ. The calculated organ-dose (D) was
normalized to 100 mA, pitch factor (p) equal to one,
and rotation time (trot) equal to 1 s using the following
formula:

Dn = D ×
p × 100
trot × mA

(3)

where Dn is the normalized organ-dose in mGy/mGy per
100 mAs.

2.6 Deep learning network architecture
and training

The deep learning network architecture was imple-
mented in MATLAB using the Deep Learning Toolbox.16

The network was composed of three fully connected
hidden layers with rectified linear activation functions
(ReLU). The number of nodes in each hidden layer was
200, 100, and 50 respectively. The final layer was a
regression layer.

The independent variables were the scan length, the
average current value (mAavg), and the average WED
value for each patient. Scan length and mAavg can be
readily calculated from the DICOM header of the CT
images. WEDavg was calculated as the average of all
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ORGAN DOSES WITH DEEP-LEARNING NETWORK 5

WED values along one patient, for each patient in the
dataset. The dependent variable was total dose per
organ, estimated through Monte Carlo simulations for
each patient. A network was trained separately for each
organ included in this work, namely, lungs, bone, heart,
and esophagus. The networks with best performance
were selected after applying 10-fold cross-validation to
the dataset.The metrics used to determine training con-
vergence and performance was accuracy (defined as
1-validation loss). The networks were trained for 500
epochs. Training and validation datasets were drawn
from the 95 patients dataset. During the 10-fold cross-
validation, the dataset was split to 90% and 10% training
and validation respectively. Independent testing of the
algorithm was performed on the 19 patients dataset that
was not used for training nor validation.

The estimated organ dose produced using the deep
learning network (DDL

organ) was compared to the organ
dose obtained using Monte Carlo estimation (DMC

organ)
using the percent relative difference (Rorgan%) as:

Rorgan% =

(
DDL

organ − DMC
organ

)
DMC

organ

× 100 (4)

3 RESULTS

Manual delineation of various organs and tissues for
a female patient is demonstrated in Figure 1a,b. Auto-
matic delineation of body, lungs,and bones for the same
patient is depicted in Figure 1c-e.

Average WED values were calculated along the
scanned thorax region for each patient. The maxi-
mum WEDavg was equal to 351 mm and the minimum
was 201 mm. The mean WEDavg value was 267 mm
(SD:±31 mm) and the median was 271 mm.WEDavg dis-
tributions and corresponding patient age are depicted
in Figure 2b,a respectively. The selected patient popu-
lation has a wide range of WEDavg values despite the
slightly skewed distribution of patient age toward elderly
patients.Figure 2c depicts a two-dimensional correlation
between WEDavg versus patient age.

Monte Carlo based dose distributions corresponding
to CT images of all patients in this study were gen-
erated and organ-doses were estimated as described
in §II.F (Figure 3). The validation accuracy of the
trained networks for each organ was 1 (down to the 3rd
decimal).

In Table 1, the average relative difference between
Monte Carlo estimated and deep learning network gen-
erated organ dose values is demonstrated along with
the associated error range for the 95 patients training
dataset. In Figures 4–7, organ dose estimated values
generated using the deep learning algorithm for the
respective dataset were compared with Monte Carlo

TABLE 1 Average error and standard deviation between deep
learning network and Monte Carlo estimated organ-dose values in
the training dataset

Organ Average relative error Standard deviation

Bones −0.4% 8.0%

Esophagus −1.6% 6.9%

Heart −1.5% 7.6%

Lungs −1.0% 10.5%

F IGURE 4 Plot of deep learning predicted dose against Monte
Carlo estimated dose for bone tissue (training dataset). Linear
regression is shown with red line (R2 = 0.826). Perfect agreement is
depicted with dashed line.

F IGURE 5 Plot of deep learning predicted dose against Monte
Carlo estimated dose for esophagus tissue (training dataset). Linear
regression is shown with red line (R2 = 0.877). Perfect agreement is
depicted with dashed line.
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6 ORGAN DOSES WITH DEEP-LEARNING NETWORK

F IGURE 6 Plot of deep learning predicted dose against Monte
Carlo estimated dose for heart tissue (training dataset). Linear
regression is shown with red line (R2 = 0.877). Perfect agreement is
depicted with dashed line.

F IGURE 7 Plot of deep learning predicted dose against Monte
Carlo estimated dose for lung tissue (training dataset). Linear
regression is shown with red line (R2 = 0.755). Perfect agreement is
depicted with dashed line.

based organ dose values for each organ considered in
this work, namely bones, esophagus, lung, and heart.
The time required to generate predictions with the deep
learning network was less than a second.

The relative prediction error between deep learning
predicted and Monte Carlo estimated organ-dose values
in the independent test dataset of 19 patients is demon-

strated in Figures 8–11. In all test cases the largest error
was below 25%.

4 DISCUSSION

In this work we demonstrated a proof-of -concept
methodology for rapid prediction of patient-specific
organ doses from thoracic CT examinations using
deep learning algorithms and a limited set of training
data. The method relied on precalculated organ doses
using Monte Carlo generated dose distributions of over
95 patients to establish the training and validation
sets. A deep learning network was trained to produce
patient-specific organ dose estimates using WED, scan
length, and average mAs of each patient as the
independent variables.

The purpose of this study was to suggest a deep-
learning network model that generates organ-dose
images without the need for large training datasets and
dose distribution image generation.The method demon-
strated a particular example for a thoracic protocol for
specific vendor. Since the doses are normalized the
training model can be easily applied to the same CT
model at different clinics. We have not tested the appli-
cation of the model for scanner from different vendors
and other protocols. It is likely that in those cases, a new
training set will be needed to train the model. A potential
challenge is the need for vendor-specific data to model
the CT scanner for the Monte Carlo dose estimation step
required for training the deep learning algorithm. It is
unlikely that characteristics such as x-ray spectra, and
bow-tie filter shape and materials are publicly available
for every possible scanner. However, this is a challenge
for any other deep learning algorithm (or Monte Carlo
software) that aims to estimate patient-specific dose.
On-site determination of CT scanner characteristics
using appropriate measurement techniques may pro-
vide a good alternative, when vendor-specific data are
not readily available.

There was good agreement between the deep learn-
ing algorithm and Monte Carlo organ dose estimates in
the training and the test dataset. The relative difference
in any organ was on average within 2% in the training
dataset and 5% in the test dataset; in two cases only, this
difference reached 24.7%.The observed differences are
considered acceptable for dosimetry in diagnostic CT. It
is not uncommon to observe uncertainties up to 20% in
CT figures of merit such as CTDI; manufacturers cite
uncertainties up to 30% over several measurements
with the same CT model as a result of variations in
tube output.* Although there were only three indepen-
dent variables used to train the network, there is not a
clear multivariate function that could have been used for

* GE Revolution GSI 64 Technical Manual 5507106-1EN Rev 1, Ch. 16, pp. 17
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ORGAN DOSES WITH DEEP-LEARNING NETWORK 7

F IGURE 8 Relative prediction error between deep learning predicted and Monte Carlo estimated bone dose values in the test dataset. The
magenta lines indicate the 25% relative error limit. The red dashed line is the average error (Ravg = 1.4%).

F IGURE 9 Relative prediction error between deep learning predicted and Monte Carlo estimated esophagus dose values in the test
dataset. The magenta lines indicate the 25% relative error limit. The red dashed line is the average error (Ravg = 4.3%).

multivariate regression rather than a deep learning net-
work model. In fact, it may be impossible to find a globally
optimal function to fit every dose point of the data space.

The potential advantage of the direct organ-dose esti-
mation method is that the training of the deep learning
algorithm is considerably simplified and the required
data set to achieve reasonable results can be con-
structed by a limited number of patients compared to
methods that generate and segment images. More-
over, artificially generated dose images can be prone
to artifacts that would not always be accounted for or
corrected when the organ-dose calculation step is per-
formed. Such artifacts are completely avoided with the
method presented here. In addition, the deep learn-

ing algorithm itself is simple and easy to implement
with any programming language and is not limited to
MATLAB.

A further advantage of the method is the direct esti-
mation of organ dose values for a specific patient based
on input data that are readily available on the DICOM
header of the CT images and can be applied during or
immediately after patient imaging. The direct estimation
of organ dose implies that the deep learning algorithm
does not generate two- or three- dimensional dose
images that would have required the application of a
segmentation method to delineate the organ in question
and then extract the relevant dose. Skipping the gen-
eration and segmentation of images, two computation
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8 ORGAN DOSES WITH DEEP-LEARNING NETWORK

F IGURE 10 Relative prediction error between deep learning predicted and Monte Carlo estimated heart dose values in the test dataset.
The magenta lines indicate the 25% relative error limit. The red dashed line is the average error (Ravg = −5.1%).

F IGURE 11 Relative prediction error between deep learning predicted and Monte Carlo estimated lung dose values in the test dataset. The
magenta lines indicate the 25% relative error limit. The red dashed line is the average error (Ravg = 0.9%).

steps are avoided that would have increased the final
uncertainty in the calculated dose and the complexity
of the deep learning algorithm. A potential workflow in a
clinical setting would include the following steps without
user interaction: a) the patient CT scan is acquired;
b) the WED values are automatically calculated from
patient images; c) scan length and tube-current are
extracted from DICOM header; d) WED, scan length
and tube current values inserted in the deep learning
network and organ dose values predicted.

The proposed method is heavily influenced by the
quality of the Monte Carlo dose values used for training.
The uncertainty in the Monte Carlo estimated dose, for
example,due to statistical limitations on x-ray photons or

HU conversion, will be propagated in the deep learning
algorithm. However, by using dose over the contoured
organ rather than pixel values of images as our training
output, we avoid local uncertainties and extreme values,
hence suppressing uncertainties on the final organ dose
value.

Patients with contrast were excluded from this study.
A different approach is required to generate Monte
Carlo dose distributions for contrast-enhanced scans.
This was deemed not necessary at this point since
the current work was a proof-of -concept study for CT
scans without contrast enhancement. Iodine uptake will
change the local CT number, and this will be reflected
on WED and mA. However, it is the CT number from
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ORGAN DOSES WITH DEEP-LEARNING NETWORK 9

iodine particles concentration that changes rather than
the local tissue. Before performing deep learning train-
ing, the Monte Carlo tool needs to properly consider
contrast media particle distributions within tissues and
associated differences in pharmacokinetics within differ-
ent patients.17 This is a non-trivial and computationally
intensive simulation to perform and does not guarantee
generality.

Future plans regarding the demonstrated methodol-
ogy include the deployment in our clinic for a retrospec-
tive estimation of patient organ dose from thorax CT
examinations and further validation of the deep learn-
ing model. Potential challenges regarding different CT
scanners and iodine concertation have already been
discussed in previous paragraphs.As in any deep learn-
ing algorithm,the training dataset essentially determines
the quality of the predictions. Patients with underly-
ing diseases that may have non-trivial effects on x-ray
attenuation within tissues, and subsequently WED and
mA modulation, may need to be separately treated
if there are many such cases. In this work the data
sample is representative of the patient population under-
going thorax CT examinations in our clinic. This is
not applied to any clinic and may not even apply to
a different CT scanner in the same clinic (e.g., ded-
icated to a specific group of patients), hence a new
dataset for training may be required. Moreover, data
for underrepresented population, such as obese and/or
younger patients (Figure 2) may need to be added
to the training set to improve prediction outcomes for
those cases.

5 CONCLUSION

Deep learning networks can be applied to obtain patient
organ dose estimation for diagnostic CT imaging proce-
dures nearly real-time.We proposed a method to rapidly
estimate organ-dose for patients undergoing thoracic
CT examinations that relies on a deep learning network
with simple implementation and training.
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