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A B S T R A C T   

Purpose: Extracting water equivalent diameter (DW), as a good descriptor of patient size, from the CT localizer 
before the spiral scan not only minimizes truncation errors due to the limited scan field-of-view but also enables 
prior size-specific dose estimation as well as scan protocol optimization. This study proposed a unified meth-
odology to measure patient size, shape, and attenuation parameters from a 2D anterior-posterior localizer image 
using deep learning algorithms without the need for labor-intensive vendor-specific calibration procedures. 
Methods: 3D CT chest images and 2D localizers were collected for 4005 patients. A modified U-NET architecture 
was trained to predict the 3D CT images from their corresponding localizer scans. The algorithm was tested on 
648 and 138 external cases with fixed and variable table height positions. To evaluate the performance of the 
prediction model, structural similarity index measure (SSIM), body area, body contour, Dice index, and water 
equivalent diameter (DW) were calculated and compared between the predicted 3D CT images and the ground 
truth (GT) images in a slicewise manner. 
Results: The average age of the patients included in this study (1827 male and 1554 female) was 53.8 ± 17.9 
(18–120) years. The DW, tube current ,and CTDIvol measured on original axial images in the external 138 cases 
group were significantly larger than those of the external 648 cases (P < 0.05). The SSIM and Dice index 
calculated between the prediction and GT for body contour were 0.998 ± 0.001 and 0.950 ± 0.016, respectively. 
The average percentage error in the calculation of DW was 2.7 ± 3.5 %. The error in the DW calculation was 
more considerable in larger patients (p-value < 0.05). 
Conclusions: We developed a model to predict the patient size, shape, and attenuation factors slice-by-slice prior 
to spiral scanning. The model exhibited remarkable robustness to table height variations. The estimated pa-
rameters are helpful for patient dose reduction and protocol optimization.   

Abbreviations: CT, Computed tomography; CF, Conversion Factor; AP, Anterior-Posterior; PA, Posterior-Anterior; DW, water equivalent diameter; ED, Effective 
Dose; TCM, Tube Current Modulation; DL, Deep Learning; CTDIvol, Volumetric CT Dose Index; Deff, Effective Diameter; SSDE, Size-Specific Dose Estimate; DLP, Dose 
Length Product; FOV, Field-of-View; TH, Table Height; GT, Ground truth; RL, Right to Left; CC, Cranio-caudal; SSIM, Structural Similarity Index measure; RAE, 
Relative Absolute Error; MAE, Mean Absolute Error; BMI, Body Mass Index. 
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1. Introduction 

X-ray computed tomography (CT) imaging is a powerful tool in the 
diagnosis and follow-up of various clinical indications in radiology and 
nuclear medicine departments [1–4]. At the same time, concerns about 
radiation risks and the hazardous effects of exposure to ionizing radia-
tion are rising[5]. As such, accurate estimation of the radiation dose 
delivered to patients became an essential component of CT examination 
procedures toward imaging protocol optimization. In the clinical 
setting, computed tomography dose index (CTDI) and dose length 
product (DLP) are the main dose metrics reported on acquisition con-
soles and patients’ radiation dose reports. However, they only describe 
the CT tube’s radiation output regardless of the scanned object [6]. The 
AAPM report 220 developed the concept of size-specific dose estimate 
(SSDE) to take into account patient size through considering some 
conversion factors (CFs) for CTDI to have a more realistic dose estima-
tion in CT [7]. In this regard, the ICRP report 135 [8] confirmed the 
usefulness of SSDE in the dose optimization process. The CF can be 
selected based on patient size surrogates, such as effective diameter 
(Deff) and water equivalent diameter (DW). Using DW has been recom-
mended as the preferred criterion in the definition of CFs, since it takes 
into account not only patient size but also the tissue composition of the 
patient’s body, especially in body regions with higher tissue in-
homogeneities, such as the thorax [9]. The primary barrier on the way of 
automated implementation of this process is the lack of quantitative CT 
localizers. The localizer pixel intensities are vendor-specific, and as 
such, the quantification process requires a stabilized calibration strategy 
across various vendors. 

DW can be calculated using both 3D axial and 2D localizer CT im-
ages. 3D CT images provide a more robust and accurate measurement of 
DW and Deff. However, the input images could be affected by truncation 
artifacts owing to the limited reconstruction field-of-view (FOV), which 
is common in thoracic, cardiac, and musculoskeletal CT examinations 
[10–12]. Besides, it requires more computational and storage resources 
and is not available before spiral acquisition. Conversely, extracting 
patient size-related parameters and CFs from the localizer images are not 
affected by truncation because they are commonly acquired with an 
extended FOV option and do not need much space and computational 
burden. In this light, the definition of more accessible and easier metrics 
for patient attenuation has been suggested by Mihalidis et al. [13]. In 
addition, patient size and attenuation information extracted from the 
localizer image can be used to optimize the irradiation parameters ac-
cording to the desired image quality and radiation dose. Knowledge of 
the patient’s body attenuation or shape characteristics prior to spiral CT 
scanning is helpful in effectively optimizing spiral CT scanning to ach-
ieve automatic tunning of size-adapted exposure parameters, such as 
automatic tube current modulation (TCM) and automatic kVp selection 
[14–17]. Ichikawa et al. trained a deep neural network to correlate the 
scout image and patient’s weight with an error close to 3 kg [18]. 
However, owing to the lack of a standard absolute calibration for the 
localizer pixel values among different vendors and the limited accuracy, 
even when using more complex and time-consuming calibration pro-
cedures, estimation of DW based on the localizer is not recommended by 
the AAPM and is not commonly used in a clinical setting. In addition, the 
magnification/minification of the localizer images caused by altering 
the table height (TH) is another challenging issue that affects the ac-
curacy and reproducibility of DW measurement [12,19,20]. 

Zhang et al. [21] calibrated the localizer image according to AAPM 
report 220 guidelines to obtain accurate localizer pixel values CF to 
convert the localizer image to DW. Their results showed a 5 % error in 
phantom measurements. In a follow-up study, they successfully 
extended the model to different scanners using a single anthropomor-
phic phantom and five clinical studies [22]. Anam et al. [23] derived a 
correlation between the water equivalent thickness (TW) and the AP and 
lateral localizer image pixel values. They validated their model on body 
CTDI phantom, an anthropomorphic phantom, and 30 clinical studies, 

reporting an average error in DW calculation of 5.4 ± 4.2 % compared 
with axial images serving as ground truth (GT). Burton et al. [24] re-
ported a good agreement between size metrics estimated from two AP 
and lateral images and the metrics measured from axial CT images on 
284 chest CT images with R2 = 0.92. Terashima et al. [20] evaluated the 
effect of TH on the accuracy of DW estimates from the AP localizer and 
found a suitable CF based on TH with an error equal to 2.4 % in an 
anthropomorphic phantom study. Nowik et al. [14] evaluated the ra-
diation dose and functionality of acquiring an ultra-low-dose spiral CT 
scan before the main spiral CT instead of the 2D localizer within ten 
patients. They reported accurate size estimation and measurements of 
DW from the synthetic localizer compared to the routine AP or lateral 2D 
localizer. The additional radiation dose burden from the additional 
spiral CT scan was the major drawback of this approach. 

Nowadays, machine learning and deep neural networks are being 
used to solve various problems facing medical imaging, from image 
denoising, image reconstruction, and segmentation to prognosis and 
outcome prediction [25–30]. The lack of quantitative CT localizers is the 
main problem restraining the accuracy and reproducibility, hence pre-
venting the extraction of DW from the localizer image prior to the main 
scan. The localizer pixel values are vendor-specific, and the quantifica-
tion process requires a versatile and robust calibration strategy across 
various vendors. We developed a model to calculate a patient’s body 
shape, size, and attenuation metrics from a single 2D localizer image 
using deep neural networks to address this limitation. 

2. Materials and methods 

Extraction of patient size-related parameters prior to CT scanning 
involved training a deep neural network to predict 3D CT images from 
the corresponding localizer images. Accordingly, patient-specific body 
size metrics and attenuation information were extracted from the pre-
dicted 3D CT images. These values were then compared to those ob-
tained from standard-dose 3D CT images serving as a standard of 
reference. The graphical representation of the whole process is illus-
trated in Fig. 1. 

2.1. Study population 

This retrospective study included a total of 4005 axial chest CT and 
localizer images collected from a single center in standard DICOM 
format. This retrospective study was approved by the ethics committees 
of the participating center. Written consent was waived with approval. 
The patients were referred for assessment of various pathologies from 
2017 to 2020. All patients were scanned on the Siemens Emotion Duo 
slice scanner with different tube potentials (kVps) and slice thicknesses. 
After excluding 624 subjects, 3381 subjects were selected for the final 
model implementation. The exclusion criteria were arms-down position 
(96 cases), reconstruction FOV smaller than the patient’s body size 
leading to truncation (459 cases), presence of metallic respiratory aiding 
equipment in the FOV (12 cases), high-resolution sequential acquisition 
mode images with table increment more than slice thickness (10 cases), 
patients scanned in the prone position (38 cases), and patients with low 
localizer image quality in terms of noise/contrast (9 cases). 

2.2. Image Pre-processing 

All pre-/post-processing tasks were performed in MatLab 2020b 
image processing toolbox. According to the location tag in the DICOM 
header data, the AP localizer images were registered and cropped in 
craniocaudal (CC) and right to left (RL) directions to the axial image and 
registered to match 3D axial images. The localizer images were 
normalized within the range [0–1]. The axial images were resized to 128 
(RL) × 64 (CC) pixels. 

The axial CT images were registered to the gantry location using the 
location tag in the DICOM header. Images with a slice thickness of 3 to 8 
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mm were cropped in the posterior-anterior (PA) direction by 370 mm 
coverage in the FOV from a fixed posterior to anterior point of the 
gantry. After cropping, all images were visually reviewed to verify that a 
370 mm PA FOV covers the whole patient’s body of all subjects. Then, 
the axial body contour was extracted, and all voxels outside of the body 
contour, e.g., the scanner’s bed and the blanket in some cases, were 
replaced by air (-1024 HU). The axial images were smoothed by a 3 mm 
full-width at half-maximum Gaussian filter in 2D mode. Subsequently, 
they were rotated to coronal images and resized to 128 (RL) × 168 (PA) 
× 64 (CC) voxels. 

2.3. Network architecture and parameters setting 

A modified 3D U-Net-shaped image to image regression network 
with five encoders and five decoder layers was developed. Each con-
volutional layer was followed by a max-pooling and a ReLU layer. The 
training process was performed on Matlab version 2020 (NVIDIA 
Geforce 2080 Ti GPU with 11 GB of RAM). The localizer images (after 
pre-processing) were the input, whereas the smoothed coronal images 
served as the output for the model. 

The training of the network was carried out using an L2-norm 

objective function (OF) along with a regularization L1 term in the 
following form: 

OF(regularized) =
1
2
∑

(ŷ − y)2
+

λ
2
∑

w 

The following setting was used for the training: optimizer = Adam, 
learning rate = 0.001, learning rate drop factor = 0.6, learning rate drop 
period every two epochs, batch size = 2, and decay = 0.00001. 

2.4. Implementation details 

A total number of 3243 subjects were split into 2270 (70 %) for 
training, 325 (10 %) for validation, and 648 (20 %) for external tests. 
From the 3381 cases included in this study, 3243 patients had a fixed 
table height (TH) equal to 160 mm for both scout scan and 3D axial 
acquisition, while only 138 cases were scanned using different THs. To 
evaluate the effect of TH and patient misregistration in the AP direction 
on the accuracy of our model, we excluded these 138 patients from the 
training and validation datasets to evaluate the generalizability of our 
model against this variable through an isolated external validation set. 
Finally, the model was tested on two separate datasets composed of 648 

Fig. 1. Flowchart of pre-processing steps and machine learning approach.  
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cases with fixed THs and 138 cases with different THs varying between 
80 mm and 230 mm. 

2.5. Patient-specific size-related metric calculation 

The body contour was delineated by applying intensity thresholding, 
assessment of shape features within the segmented regions and edge 
detection, followed by removing the bed and any other object in the 
field-of-view and hole-filling processing. All body contours were 
reviewed visually to avoid any potential errors. The DW parameter was 
calculated based on the protocol reported in the AAPM 220 [7] from 
axial deep and GT images as the following formula: 

DW = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
1

1000
CT number in the Body Contour + 1

]
Body contour Area

π

√

(1)  

where CTnumberintheBodyContour is the average of voxel values (HU) in 
the patient body contour. The evaluation of the model was performed 
based on two parameters, namely body contour area and DW for the two 
test groups. The predicted parameters were compared to GT using two 
strategies. First, total-body patient comparison, wherein the body con-
tour area and DW were averaged on the total number of axial slices. 
Second, slice-wise comparison, wherein each slice on the predicted 
image was separately compared with the corresponding slice on the GT 
image in terms of absolute error. In other words, the evaluation of the 
model was performed using both patient-wise and slice-wise modes to 
avoid the averaging effect of negative and positive errors among slices. 
Besides, the Dice index between the body contour obtained from the 
model and GT CT images was calculated in a slice-wise mode. In addi-
tion, the average HU of the deep learning generated image and the 
ground truth image within the body contour were compared and the 
absolute error in HUs (HU_AE) reported. 

The average and multiple percentile errors were reported for all 
parameters. In addition to the R-squared calculated between the DW 
estimated from the model outcomes and the GT images, other metrics, 
such as structural similarity index measure (SSIM), mean absolute error 
(MAE), and relative absolute error (RAE), were calculated in axial mode. 
Finally, the student’s t-test was used to compare the statistical signifi-
cance of the differences between the two groups used as external vali-
dation sets (groups with fixed TH (648 cases) and variable TH (138 
cases)). 

As an estimation of the TCM performance, we calculated DW slice- 
wise on the 3243 original axial CT images with 512 × 512 pixels size, 
and the corresponding tube current recorded in each DICOM header was 
extracted. These values were plotted to find the TCM behavior in clinical 
conditions. 

3. Results 

The average age of the patients included in this study (1827 male and 
1554 female) was 53.8 ± 17.9 (18–120) years. A tube current of 170.9 
± 38.5 (44–239) mA and kVp of 80 and 110 were used for CT acquisi-
tions with slice thicknesses varying between 2 and 5 mm. Patient de-
mographic and acquisition information was summarized in Table 1. The 
DW, tube current, and CTDIvol measured on original axial images in the 
external 138 cases group were significantly larger than those of the 
external 648 cases (P < 0.05). Fig. 2 shows two examples of predicted 

images versus reference images (axial slices). The visual assessment of 
automatic analytic body contour definition on axial images confirmed 
that the process was successful on all included cases. 

By comparing the predicted images to the corresponding GT, ori-
ented in the axial view, the average of SSIM, RMSE, RE, ARE, and HU_AE 
metrics were 0.998 ± 0.001, 0.125 ± 0.027, 0.281 ± 2.626, 7.688 ±
1.955, and 52.1 ± 34.3, respectively. Table 2 summarizes the results of 
the evaluated metrics in two external validation groups. The average 
slice-wise Dice index for body contour was 0.948 ± 0.02 (5 percentile =
0.916, 95 percentile = 0.973), reflecting a good slice-wise agreement of 
body shape prediction. The mean relative errors for DW were 2.9 ± 3.7 
% (5 percentile = -3.1, 95 percentile = 9.0 %) and 9.6 ± 5.2 % (5 
percentile = 3.5, 95 percentile = 19.5 mm) for total and slice-wise 
evaluations, respectively. 

Fig. 2 shows representative examples of slice-wise DW graphs for 
four patients with various body habitus. Patients #1 and #2 (upper row) 
represent two cases with large body sizes (BMI > 30), whereas patients 
#3 and #4 represent two cases with small body sizes (BMI < 30). The 
DW scales in the Y direction are not the same for a better illustration of 
the difference between DL and GT DW. Body habitus can be seen in the 
lower 3D rendered image. Patients #1 and #4 are female, whereas pa-
tients #2 and #3 are male subjects. The excellent agreement between 
the two methods was observed in the majority of slices. 

Fig. 3 shows the histogram distribution of the total errors in DW 
calculation by the proposed method. The slice-wise relative error for the 
body area was about 4.0 ± 2.5 % (5 percentile = 1.3, 95 percentile =
8.4 %). 

Fig. 4 shows the correlation between DW estimated by the deep 
learning model and the GT images, wherein R-squared was equal to 
0.92, reflecting excellent agreement. A significant correlation between 
patients’ size in terms of DW and the error in the DW estimation was 
observed, wherein more significant errors were seen for larger patients. 

Fig. 5 depicts the tube current vs DW variation in each slice for 
112′249 axial slices acquired with 110 kVp, and CareDose TCM turned 
on. Two linear and exponential curves fitted on the data are shown with 
R2 equal to 0.52 and 0.48, respectively. 

4. Discussion 

This study proposed a new DL-based solution to calculate patient size 
and attenuation metrics in chest CT scanning from the localizer image. 
We developed a modified UNET architecture to generate 3D axial images 
from 2D AP localizers on a large dataset consisting of 3243 chest CT 
images. We evaluated the trained model on 648 + 138 external vali-
dation cases. We assessed the performance of the proposed method in 
terms of image similarity indices, estimated patient size, shape metrics 
of body contour, Dice index, and attenuation factors, in addition to the 
widely accepted metric of water equivalent diameter. In addition to 
patient-wise analysis (considering the whole patient volume as a single 
data point), the model’s performance was assessed slice by slice to 
evaluate the feasibility of our proposed method in calibrating a 
personalized scan parameter modulation. To the best of our knowledge, 
this is the first AI-based DW size metric estimation from the localizer 
image performed on a large number of clinical studies. 

During the data selection process, we excluded 459 cases (~12 %) 
from our study because of truncated CT axial images, which reflects the 
high prevalence of truncation phenomena as reported in previous 
thoracic CT studies (>80 % of cases) [10]. This fact necessitates finding 

Table 1 
Demographic data of all 3243 patients included in this study. The DW was measured on original axial images.  

Database Male Female Age Average tube current CTDIvol DW kVp 

All 4005 cases 1827 1554 53.8 ± 17.9 (18–120) 170.9 ± 38.5 (44.7–239) 4.80 ± 1.15 (1.25–6.89) 30.9 ± 3.65 (17.29 – 42.10) 80 & 110 
648 fixed TH Cases 396 252 49.5 ± 14.3 (21 – 87) 165.3 ± 53.3 (54 – 210) 4.62 ± 1.23 (1.34 – 6.70) 30.12 ± 4.31 (17.84 – 39.50) 80 & 110 
138 varied TH cases 65 73 55.3 ± 16.5 (27 – 103) 178 ± 42.2 (68–239) 5.15 ± 1.31 (1.51 – 7.02) 32.10 ± 3.84 (19.25 – 42.10) 80 & 110  
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Fig. 2. Four examples of DL performance. For each case, the upper row is the DL output, the second row is the ground truth image. In the bottom, the perpendicular 
black lines show the slicewise difference between DW calculated by deep learning (orange line) and ground truth (blue line). The last row shows the 3D colored 
visualization of images where the blue volume depicts the lung. Case #1: male patient with BMI > 30. Case #2: female patient with BMI > 30. Case #3: male patient 
with BMI < 30. Case #4: female patient with BMI < 30. 
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a solution to calculate DW unaffected by the truncation problem. 
Repeating the reconstruction with a larger field of view is not usually 
possible as the raw data are not available. Three main barriers in the 
automated DW calculation from the localizer images are calibration of 
the pixel intensities, magnification, and mis-centering issues, which lead 
to inaccurate and unreproducible measurements. In this study, we 
trained a network to reconstruct the axial images by considering the 
pixel values in the localizer to overcome the time-consuming and prone 
to error calibration procedure. Moreover, this approach generates 
valuable information regarding the shape and size of the patient prior to 

Table 2 
Results of DL measurements of two additional external test groups. ABS: Absolute. E: Error. S: Slicewise strategy. T: Total strategy.   

138 cases 648 cases 

Value Area-E- 
S(%) 

HU_AE 
(HU) 

DICE- 
S 

DW-E- 
S(%) 

DW-E- 
T(%) 

DW-ABS- 
E-T(%) 

DW-E-T 
(mm) 

Area-E- 
S(%) 

HU_AE 
(HU) 

DICE- 
S 

DW-E- 
S(%) 

DW-E- 
T(%) 

DW-ABS- 
E-T(%) 

DW-E-T 
(mm) 

Average 5.2  55.1  0.936 11.3 3.7 4.7 10.9 4  51.5  0.948 9.6 2.9 3.7 8.6 
min 0.7  0.3  0.783 2 − 6.2 0 − 17.5 0.6  0.4  0.783 1.1 − 9.2 0 − 35.4 
per 5 1.3  4.6  0.887 4 − 3.7 0.5 − 11 1.3  4.8  0.916 3.5 − 3.1 0.3 − 9.4 
per 10 2  8.6  0.899 5.1 − 1.7 0.7 − 5.2 1.6  9.8  0.926 4.3 − 1.8 0.6 − 5.4 
per 25 2.7  30.0  0.930 6.8 0.7 1.8 1.8 2.4  23.3  0.937 5.9 0.4 1.5 1 
per 50 4.1  56.3  0.940 9.4 3.9 4.1 11.8 3.5  47.2  0.950 8.5 2.8 3.2 8.4 
per 75 6.4  79.3  0.958 13.8 6.3 6.3 19.4 5  73.6  0.961 12 5.3 5.4 16.4 
per 90 9.2  96.2  0.966 20.4 9.6 9.6 26.9 6.7  100.1  0.969 16.8 7.7 7.8 23.1 
per 95 13.1  111.4  0.968 23.8 11 11 31.5 8.4  112.4  0.973 19.5 9 9.1 27.7 
max 24.2  150.8  0.976 36.2 16.6 16.6 45.5 24.2  197.8  0.984 36.2 16.6 16.6 45.5 
stdev 3.6  34.3  0.030 6.3 4.4 3.4 12.7 2.5  35.0  0.020 5.2 3.7 2.8 11.2 
Q1-Q3 3.6  49.2  0.028 7 5.6 4.5 17.5 2.7  50.4  0.023 6.1 4.9 3.8 15.4  

Fig. 3. Histogram of the distribution of the percentage error in the area mea-
surement from the deep predicted images in slice-wise approach (upper figure), 
and DW calculation from deep predicted images (lower figure). 

Fig. 4. Correlation between the total DW calculated using the proposed DL 
approach and ground truth images. 

Fig. 5. Trend of tube current adjustment with respect to DW in all cases 
scanned with 110 kVp. Each point is related to a single slice. The fitted linear 
(solid-green) and exponential (dashed-red) curves are also shown. 
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the axial scan. The performance of the body contour segmentation 
approach (Dice coefficient = 0.95) was comparable to previous studies 
reported by Juszczyk et al. [31] and Anam et al. [32], achieving a Dice 
coefficient of 0.98 to 0.99, respectively. It is worth emphasizing that 
they used 3D axial images, while our model relied on a single slice AP 
localizer as the input image. Furthermore, we demonstrated the 
robustness of our method with respect to table height and magnification 
variations on 138 unseen external validation datasets. Nine cases in the 
test dataset were scanned twice at two different table heights. These 
patients were included in the two groups of patients with fixed and 
varied table heights. The table height for these patients in the test 
dataset varied from 103 to 179 mm. Considering the quantitative met-
rics, no dramatic changes were observed for the patients scanned twice 
at different table heights. The errors between the two scans with 
different table heights were within the range of errors (standard devi-
ation) across the patients scanned at a fixed table height. The average 
change in these nine cases were 1.65 %, 0.01 %, 2.36 %, 4.40 %, and 
1.49 % in terms of Area-E-S (%), DICE-S, DW-E-S (%), DW-E-T (mm), 
DW-E-T (%), respectively, which is comparable to the average changes 
across subjects scanned at a fixed table height of 160 mm. It should be 
noted that the positioning, scan range, and other parameters were 
different between the two scans. Hence, the variation in model perfor-
mance is not solely related to table height. The similar results obtained 
from the same patient scanned twice at different table heights demon-
strate the generalizability and robustness of the model to changes in 
table height. 

In addition, the prediction of patient size-related information from 
the localizer images, commonly acquired in extended axial FOVs 
compared to the axial CT images, is helpful for the selection of the best 
fit computational phantom either in full Monte Carlo simulations [33] or 
other pre-tabulated CT dose calculation software, such as ImPactCT or 
NCICT [34,35] dose engines. The DW or patient’s effective diameter is 
required to calculate the SSDE as a more personalized metric rather than 
the CTDIvol. Our proposed model can be useful in the calculation of 
SSDE, especially when the DW calculated from 3D axial images is not 
reliable, e.g. in the case of truncated CT reconstructions or raw data not 
available. 

One of the most critical applications of the extracted metrics from the 
scout scans before the spiral CT acquisition in 64 slices in the CC di-
rection is optimizing the acquisition protocol to reduce radiation 
exposure according to body shape, size, and attenuation properties. The 
only parameter considered by automatic TCM or kVp selection software 
on current commercial CT scanners is attenuation-related information 
from a single projection [36]. We trained a model to provide the 
attenuation information from a single projection angle. The required 
time for preprocessing, inference, and post-processing (measurement of 
the metrics) for a new case is in the order of a few seconds, making the 
technique applicable in the clinical routine. We also calculated slice- 
wise errors (comparing the outcomes slice-by-slice to the GT) to inves-
tigate the possibility of object-specific acquisition parameters optimi-
zation. The calculated shape and attenuation parametrics of body 
contour and DW can be helpful in calibrating both angular and Z-axis 
tube current modulation according to the specific body of the patient. 

As shown in Fig. 5, the adaptation of tube current to DW is not well 
established in the clinical setting [37]. The scanner chooses the desired 
tube current based on the localizer image variation in the Z direction and 
mainly based on the calibration data between the localizer pixel value 
and the roughly estimated attenuation characteristics of the patient’s 
body with no knowledge about the shape. This procedure could be 
affected by different issues such as patient mis-centering or acquisition 
parameters [37]. A number of studies attempted to locate the patient 
automatically by means of external cameras to overcome the mis- 
centering problem. Although these devices are capable of pinpointing 
the patient size and body contour with clothes, they do not provide any 
information about body composition. Moreover, they are prone to sig-
nificant errors when patients are covered with blankets or bed sheets. 

Nevertheless, these devices usually provide better performance 
compared to technologists [38–41]. Employing the proposed deep 
learning-based solution with automatic patient positioning systems 
would be optimal for DW determination before the spiral scan. This fact 
proves the need for methods, such as the one proposed in this study in a 
clinical setting. The maximum allowed tube current according to the 
protocol selected by the technologist (250 mA) limited the performance 
of the TCM system (Fig. 5). Even for very large and highly attenuating 
patient body parts, the maximum tube current was 250 mA. AP localizer 
is more popular or frequently used than the lateral localizer in clinical 
practice owing to the better visualization to localize organs and delim-
itate the scan range. It has been shown that the localizer image is prone 
to less error due to mis-centering and can help the TCM to select more 
appropriate tube currents [39]. In this regard, even by considering the 
additional lateral localizer radiation exposure, the total radiation from 
the CT scan can be reduced [42]. Employing two AP and lateral scout 
views would lead to less changes in the CTDI due to varying magnifi-
cation. Li et al. [43] scanned patients and a CTDI cylindrical phantom on 
a GE light speed scanner and changed the table height. They reported 
12–49 % change in the CTDI by changing the table height. Euler et al. 
[44] scanned a pediatric CIRS phantom at different table heights by 
acquiring two AP and lateral localizers. They reported 34 % change in 
organ doses and 26 % change in tube current when moving the table in 
the vertical direction. Kaasalainen et al. [45]demonstrated that much 
less change in CTDIvol would be observed when using a lateral localizer 
(29 %) compared to AP localizer (91 %). The lateral scout view exhibited 
superior robustness to changes in table height and/or magnification. 
Despite the superiority of lateral to AP scout view, variation in tube 
current of up to 30 % was observed. In this regard, the proposed method 
exhibited a mean error of 4.7 % (0 to 16.6 %) in DW measurement, 
demonstrating its robustness against changes in table height. 

In terms of accuracy, despite the slightly smoothed appearance of the 
estimated images (Fig. 2), our results are comparable or superior to 
recently published studies with an average HU_AE of 52 HUs. Anam 
et al. reported 5.4 ± 4.2 % and 2.3 ± 3.2 % errors in calculating TW in an 
anthropomorphic phantom study and 30 clinical cases, respectively 
[10]. Our results showed similar R2 achieved by the proposed metric 
compared to Burton et al.[24], wherein they used both AP and lateral 
images simultaneously. We only used a single AP localizer commonly 
acquired in clinical protocols. Moreover, better than Mihalidis et al. [13] 
proposed technique, they calculated DW from the 16 axial chest CT 
images with a less computational burden to achieve an accuracy of 13 % 
compared to the AAPM 220 guidelines. In two consecutive studies, 
Zhang et al. [21,22] achieved an accuracy of ± 2.5 % in terms of DW for 
patients with 25 to 30 cm DW through calibrating localizer pixel in-
tensities for multiple scanner vendors. Our results showed a correlation 
between the error and patient size, where larger patients have more 
considerable errors than smaller patients. To compare our results with 
Zhang et al., we selected 292 patients with sizes smaller than 30 cm, the 
DW error and absolute DW error were 1.7 ± 3.4 % and 2.9 ± 2.4 %, 
respectively. In comparison, our method estimated the body contour size 
and DW from a single measurement. We included a large number of 
clinical studies in contrast to previous studies where phantom mea-
surements were extended on a selected and limited number of patients. 

We excluded 8 cases from our dataset identified as outliers, repre-
senting 1.3 % of the test dataset. Rather unusual body habitus of patients 
can be seen in Supplementary Fig. 1. The skinny border of the anterior 
chest wall led to successful body contouring from the predicted image. 
The automatic body contour segmentation on the original axial images 
produced acceptable results. From a total of 3243 cases, only one case 
was edited after visual inspection. 

This work bears some limitations that should be acknowledged. First, 
only chest CT images were investigated. Second, we provided a model 
for a single vendor. Yet, we believe the model can be easily transferred 
and implemented on other scanners provided sufficient training data are 
available. Inter-scanner variability of the localizer pixel values limits the 
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application of this model. The localizer pixel value is related to the total 
attenuation across the patient body and the table along the path of the X- 
ray source to the detector. The localizer images are processed to 
enhance/optimize the quality/contrast of visualization. In this light, the 
localizer pixel values are not quantitative and standardized, since they 
are not used for diagnostic purposes. To create a quantitative CT local-
izer, similar to Hounsfield unit standard values in spiral 3D images, 
time-consuming phantom calibrations are required, which is dependent 
on the phantom shape and size. Since the geometry and pixel intensities 
of the localizer are vendor-specific, it is not reasonable to test the current 
model on other scanners. An experimental study involving scanning an 
anthropomorphic phantom at variable table heights to compare the DL- 
based calculated DW with the ground truth may be helpful to demon-
strate the robustness of the model against changes in table height. Un-
fortunately, this was not possible in the present study. Moreover, as 
reported by Perisinakis et al. [46], the radiographer might select spiral 
scan ranges beyond the craniocaudal region which is included in the 
scout scan. This acquisition is not recommended since there is no in-
formation about the size/attenuation characteristics of the patient’s 
body to guide the TCM system in selecting the tube current. Our pro-
posed model is not capable of predicting patient’s shape or DW in this 
case. 

5. Conclusion 

We developed a DL model to predict axial images from a single 2D AP 
localizer image. Our DL-based proposed method is able to simulta-
neously estimate the shape, size, and attenuation parameters with 
acceptable slice-wise accuracy, robust to patient mis-centering and 
truncation, and applicable to extended axial field-of-view scans. This 
information could be used to measure the radiation dose in terms of 
SSDE, phantom selection for Monte Carlo-based calculations or a pre- 
tabulated software, and more importantly, for protocol optimization in 
chest CT imaging. 
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