

M. Riveira Martin¹, A. Lopez Medina², A. Gonzalez Pose², A. Fernandez Gonzalez², F. Salvador Gomez², O. Miguel Vila Nieto³, I. Nieto Regueira⁴, V. Ochagavia Galilea⁴, V. Manuel Muñoz Garzon⁴

¹Galicia Sur Health Research Institute, Medical Physics and RP Department, Vigo, Spain; ²Hospital do Meixoeiro, Medical Physics and RP Department, Vigo, Spain; ³Alvaro Cunqueiro Hospital, Radiology Department, Vigo, Spain; ⁴Hospital do Meixoeiro, Radiation Oncology Department, Vigo, Spain

Introduction

US Galicia Sur

Diffusion-weighted imaging (DWI) in MRI is a promising method for adaptative radiotherapy. The aim of this study is to compare several diffusion-related metrics derived from DWI in different brain structures and metastasis.

SINFONIA

Materials and Methods

Each patient undergone a DWI turbo-spin echo sequence (DWI-TSE) with b = 0, 1000 s/mm², a DWI echo-planar imaging sequence (DWI-EPI) with b = 0, 50, 100, 200, 500, 1000 s/mm² (distortion corrected) and dynamic studies (Ktrans) (Fig. 1)

Diffusion-related parameters of five brain structures (brainstem, ventricles, vitreous humor, grey and white matter) and eight brain metastatic tumours from five patients were calculated using four models [1]:

- Monoexponential: for TSE and EPI series (ADC-TSE and ADC-EPI, b = 0, 1000 s/mm2)
- Double-monoexponential: for EPI to return ADC_{fast} (b = 0, 200 s/mm²) and ADC_{slow} (b = 500, 1000 s/mm²) (only ADC_{slow} is diffusion-related)
- IVIM: fitting all b-values with the bi-exponential model implemented in two ways: with all the parameters free (D_{free}) and in two steps (D_{2st}), first adjusting D for b>200 s/mm²

Results

ADC-TSE and ADC-EPI show significant similar results for all the structures (Table 1). There are no significant differences between ADC-EPI_{slow} and D_{25t}, while D_{free} present lower values. Poorly vascularized areas from heterogeneously vascularized tumours show lower ADC and D values than well vascularized (Fig. 2).

Figure 1. Diffusion-related maps from a patient with 3 metastases of NSCLC

Table 1. Values of Ktrans, ADC (TSE, EPI and EPIslow) and D (free and in two steps) for five structures and eight CTVs of 5 patients. Tumours are divided into heterogeneously and homogeneously vascularized, delineated on Ktrans maps.

Structures (n = 5)	Volume	ADC-TSE	ADC-EPI	ADC-EPI slow	D _{free} - IVIM	D _{2st} - IVIM	Ktrans
Brainstem	29.06 ± 2.15	1.05 ± 0.11	1.21 ± 0.22	0.73 ± 0.06	0.78 ± 0.05	0.74 ± 0.03	
Grey matter	472.3 ± 75.35	1.53 ± 0.22	0.153 ± 0.25	1.18 ± 0.21	1.08 ± 0.19	1.25 ± 0.18	
Ventricles	23.74 ± 6.25	2.55 ± 0.25	2.44 ± 0.31	1.97 ± 0.32	1.84 ± 0.25	2.08 ± 0.24	
Vitreous humor	3.75 ± 0.27	3.19 ± 0.21	3.45 ± 0.26	3.18 ± 0.45	2.41 ± 0.26	2.86 ± 0.06	
White matter	791.3 ± 77.05	0.94 ± 0.09	0.92 ± 0.11	0.79 ± 0.08	0.64 ± 0.04	0.79 ± 0.05	
Heterogeneous (n =	3)						

 Whole CTV
 5.17
 ±
 3.12
 1.13
 ±
 0.18
 1.09
 ±
 0.13
 0.94
 ±
 0.08
 0.79
 ±
 0.16
 0.95
 ±
 0.12
 0.11
 ±
 0.04

 well vascularized CTV
 1.81
 ±
 1.68
 1.13
 ±
 0.17
 1.10
 ±
 0.04
 ±
 0.08
 0.85
 ±
 0.15
 0.94
 ±
 0.05

poorly vascularized CTV 1.09 ± 0.89 0.93 ± 0.21 0.92 ± 0.24 0.77 ± 0.11 0.63 ± 0.24 0.79 ± 0.16 0.04 ± 0.03 Homogeneous (n = 5)

Whole CTV 0.14 ± 0.08 1.20 ± 0.35 1.29 ± 0.27 1.11 ± 0.26 0.93 ± 0.05 1.11 ± 0.23 0.04 ± 0.03

Values are shown as mean ± standard deviation

Units: Volume (cm³); Ktrans (min⁻¹); ADC (10⁻³mm²/s); D (10⁻³mm²/s)

Figure 2. Boxplot of mean ADC and D values calculated with different models and for different metastatic structures

Conclusions

- ADC from TSE and EPI show similar values, but due to acquisition time, EPI is more suitable for IVIM studies since multiple b-values are needed.
- Implement IVIM model in 2 steps may be more accurate than with all the parameters free, and equivalent to ADC_{slow} values.
- Lower ADC and D values in heterogeneous tumours may represent poor vascularized areas.

Acknowledgments

This project has received funding from the Euratom research training programme 2019-2020 under grant agreement N° 945196

References

[1] Klaassen, R. et al. International Journal of Radiation Oncology, Biology, Physics (2018)